Project Overview

- Developing models, analysis methods for distributed systems, focusing on cooperative group activities in networks.
- Agent communication, group communication.
- Dynamic:
 - Participants come and go, change location.
 - Network topology changes, components fail and recover.
- Implementations are complex; difficult to build, understand, and analyze.
- Addressing problems using formal modeling, verification methods
- Input/output automaton, process algebraic, knowledge-based methods.
- Extending, combining methods.
- Applying method to case studies, in computer-supported cooperative work, e-commerce, distributed databases.
Progress Through December 1999

- Agents:
 - Dynamic I/O automaton (DIOA) model
 - Extends I/O automata with automaton creation and destruction.
 - Travel agent case study
 - Simple e-commerce example
 - Using dynamic I/O automata, NePi2 process algebra, knowledge-based programs.

- Group Communication
 - Comprehensive set of specifications for guarantees of GC services.
 - Formal design for virtually synchronous group multicast service.
 - Uses client-server architecture
 - Membership managed by dedicated membership servers.
 - Multicast implemented at clients.
 - Scalable group membership algorithm for WANs.
 - Dynamic configuration service.
Research Plan for the Next Six Months

• Travel agent case study
 – State correctness, performance properties, carry out analysis.
 – Evaluate, compare, combine the three methods used.
• Further develop the dynamic I/O automaton (DIOA) model.
 – Include timing-dependence, liveness.
 – Support for modeling mobility.
• Fault-tolerant agent programming case study.
• Implement our group communication algorithms, tune for performance.
• Consider alternative forms of middleware support for cooperative computing in dynamic WANs.
 – For applications that require consistency, like shared white-board, shared text editor.
 – E.g., totally ordered multicast services that preserve QoS.