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1 Project overview

The goal of this project is to develop eÆcient algorithms for a variety of geometric pattern matching (GPM)

problems. A typical geometric pattern matching problem involves a pattern P and a scene S (or possibly

a database of scenes S1 : : : Sn), and the goal is to discover one or all occurrences of P in the scene(s).

Geometric pattern matching is pervasive in many areas of computer science. It is of special importance in

computer vision, where it directly corresponds to fundamental vision problems like object registration and

recognition. It is also of importance in computational drug design and computational biology, where it has

been successfully used for identi�cation of drug molecules with similar shapes (and therefore similar chemical

properties). More recent motivation comes from the �eld of visual information retrieval. In this case we

are given a database of images and a pattern, and the goal is to �nd an image containing the pattern. So

far, most of the visual search engines compute the similarity between the pattern and the image using only

global features (e.g., color histogram, texture characteristics etc). However, in order to improve the search

quality, using the geometry of the image and the pattern seems unavoidable.

2 Matching with one scene

In the simplest version of a GPM problem we are given a pattern and only one scene. Typically, both the

pattern and a scene are represented by a set (or an ordered sequence) of features. In the simplest case, each

feature is just a point; in general, more elaborate features (e.g., edges or splines) can be allowed. In addition,

we are given a distance function D(�; �), which for any two objects, represented by feature sets S; S0, speci�es

the dis-similarity D(S; S0) between S and S0. Once the distance function is de�ned, the problem can be

formally de�ned as follows: given a pattern P and scene S, �nd a subset S0
� S of a scene such that D(P; S0)

is minimized. Alternative formulations of this problem involve �nding one or all S0's such that D(P; S0) is

smaller than prede�ned threshold etc.

Several distance functions D(�; �) have been proposed in the literature. One of the most popular measures

is the Hausdor� distance, de�ned as

DH(S; S
0) = max

p2S

min
p02S0

jjp� p0jj2

Several variants of this measure exist, including symmetric or translation/rotation-invariant Hausdor� dis-

tance. One can de�ne further variations of this distance, e.g., by replacing the \max" in the above de�nition

by \sum", etc. The Hausdor� distance has been introduced to computer vision and computational geometry

by Huttenlocher and has been widely used since then.

Another popular measure, de�ned for ordered sequences of features, is the Frechet distance, closely related

to the time-warping distance. Given two sequences of features (e.g., points) S = s1 : : : sn and S0 = s01 : : : s
0

m
,

the Frechet distance DF (S; S
0) is de�ned as

DF (S; S
0) = min

�

max
i=1:::n

jjsi � s0
�(i)jj2

where � ranges over all monotone mappings from f1 : : : ng to f1 : : :mg. Intuitively, this distance function

measures the maximum distance between \corresponding" features of S and S0, with respect to the best
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\correspondence" function �. As before, one can make the measure translation/rotation invariant, or replace

\max" by \sum" (in the latter case the measure is called time-warping distance). The Frechet or time-warping

distances were introduced in the speech-recognition community and are used e.g., for measuring distance

between electronic pen signatures.

2.1 Previous and proposed work

Several eÆcient algorithms for solving pattern matching problems are known. For the translation-invariant

Hausdor� distance, the pattern matching problem can be solved (approximately) in O(n logn) time1 [Schul-

man'99,Indyk'99]; exact solutions can be found in polynomial time. The Frechet or time-warping distance

are computationally more diÆcult: the best algorithm just for computing the distance DF (S; S
0) (even

approximately) takes O(n2) time. The quadratic running time is a severe bottleneck which prohibits us-

ing these measures for large data sets. Only very recently a polynomial time algorithm for computing

translation-invariant Frechet distance has been discovered [Efrat, Indyk, Venkatasubramanian'01].

Our goal is to design more eÆcient algorithms for solving (approximate) pattern matching problems

under Frechet distance and/or similar measures. Once such algorithms are developed, we plan to perform

experimental evaluation of their behavior and apply them to application areas where they can be used best.

3 Matching with many scenes

In this scenario we are given a pattern P and database consisting of many sets S1 : : : Sn. Our goal is to

solve the nearest neighbor problem, i.e., �nd Si which minimizes D(P; Si), for a prespeci�ed distance function

D(�; �) (as before, we could replace D(P; Si) by D(P; S0

i
) for S0

i
� Si). A naive way of solving this problem

is to compute D(P; Si) for all i = 1 : : : n. This approach, however, inevitably requires at least 
(n) running

time per pattern, which in most situation, is too expansive. Ideally, one would like to build an indexing

structure which would identify the Si minimizing D(P; Si) by inspecting only very few Si's.

3.1 Previous and proposed work

Until recently, no sublinear (i.e., o(n)-time) algorithm for the nearest neighbor problem under any of the

above measure was known. Only very recently it was shown [Farach-Colton,Indyk'99] how to construct a

data structure which enables to �nd approximate nearest neighbor under Hausdor� distance in logO(1) n

time per pattern. So far, the data structure requires a considerable amount of memory, at least in theory. It

is conceivable that it can be made to require much less storage in practice. No similar algorithms for other

measures are known.

Our goal is to design a practical version of the data structure of [Farach-Colton,Indyk] and apply it to

registration and recognition problems. In addition, we plan to develop eÆcient data structures for other

measures, like Frechet and/or time-warping distance.

4 The Budget

The budget is roughly broken down as follows: 1 RA (55K), 1 month summer salary for PI (25K), Travel

(10K), Equipment (10K). Total: 100K.

1
n denotes the size of the input.
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