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Our project has two threads:

1) Building computational models of how people learn and structure semantic concepts, and
testing those models with behavioral experiments.

2) Developing new machine learning algorithms to help computers learn and structure semantic
concepts closer to the ways that people do.

Two specific questions drive this research program. First, how do people -- and how can
computers -- combine unsupervised and supervised approaches to concept learning, using
unsupervised learning to build better hypothesis spaces for supervised concept learning?

Second, what is the large-scale structure of human semantic concepts in natural language, and
how can this structure be learned — by either people or machines -- from large text or hypertext
corpora? This proposal discusses each of these questions in turn. In each of these areas, there are
currently ongoing efforts in both Tenenbaum’s group at MIT and Ueda’s group at NTT. Our
overarching goal for this project is to improve each group’s work by bringing it into closer
contact with synergistic work in the other group, and to develop new joint approaches that
combine the strengths of each group’s efforts.

I. Combining unsupervised and supervised approaches to concept learning

The specific learning task we focus on is learning the meaning of words from examples. For
instance, given just a few examples of dogs all labeled with the same word “dog,” the learner's
goal is to infer which other objects in the world can also receive this label. This is an important
task to understand from the standpoint of human cognition. It is also of long-term interest in
artificial intelligence, for the purposes of increasing the fluency of human-computer interaction as
well as in more constrained applications such as searching an image database to return images
matching the concept in one or more examples provided by a human user.

Learning words from examples presents a more difficult inductive problem than what is currently
addressed by typical computational models of supervised concept learning. Most supervised
learning algorithms assume that different concepts are mutually exclusive. If each object were an
instance of one and only one concept, then positive examples of one concept would necessarily be
negative examples of all other concepts, and a learner who saw just a few positive examples of
each concept to be learned would still have vast quantities of (primarily negative) evidence about
each concept. However, natural semantic concepts are not mutually exclusive, but overlap
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extensively. Consider some of the overlaps with “dog”: “animal”, “mammal”, “canine”,
“dalmatian”, “pet”, “spotted”, “running”, “friendly”, “mean”, to name just a few. To understand
how people and machines can learn natural semantic concepts, we must develop new

computational paradigms for learning concepts from examples.

In previous work, we have shown that human learner's generalizations of word meanings from
just one or a few labeled examples can be explained in terms of Bayesian inference over a
hypothesis space of possible concepts. However, we did not address the crucial question of how
the learner's hypotheses might be acquired, in order to guide supervised generalization from just



one or a few examples of a word. Our present studies explore how hypotheses might be acquired
for novel objects via unsupervised learning tasks from unlabeled examples. Mixture models
provide one promising framework for combining labeled and unlabeled examples -- or supervised
and unsupervised learning modes -- in concept learning tasks. Essentially, mixture models are
used to discover multiple clusters in the unlabeled data, and those clusters then correspond to
possible ways of generalizing a concept from a few labeled examples.

We have pursued two separate approaches in parallel at NTT and MIT. Ueda and colleagues at
NTT have adopted an approach popularized in the field of text classification (e.g., Nigam,
McCallum, Thrun, and Mitchell, 2000), in which a single mixture model represents the learner's
knowledge about the concepts to be learned, and labeled and unlabeled examples are processed in
an integrated fashion using the EM algorithm. They have extended the standard model in several
directions, allowing for a more complex correspondence between concepts and mixture
components and for more powerful learning algorithms based on variational Bayes and active
learning.

Tenenbaum and colleagues at MIT have developed a new approach based on fitting multiple
"one-mode" mixture models to the unlabeled data, with each model representing one potential
concept to be learned from the labeled data. Each model consists of a mixture of two
components: a Gaussian distribution to capture the potential concept and a uniform noise process
to account for all data points not well-described by that concept. By fitting many instances of the
one-mode mixture model to the unlabeled data, we can pick out many different clusters — or many
different potential hypotheses for concepts that could be inferred from the labeled examples.
Specifically, the clusters extracted in an unsupervised fashion with the one-mode mixture models
form a hypothesis space for a Bayesian (supervised) concept learning algorithm that generalizes
from the few labeled examples.

Both of these approaches overcome some of the representational limitations of conventional
clustering algorithms that prevent them from providing good models of the concepts picked out
by words in natural language. Conventional approaches to clustering treat clusters as either
mutually exclusive or nested in a tree-like hierarchy. In the former case, two clusters are always
nonoverlapping, while in the latter case, two clusters are either completely nonoverlapping or else
one is contained completely inside the other. However, words in natural language frequently map
onto partially overlapping clusters, which are neither mutually exclusive nor nested.

We have focused on two kinds of partially overlapping structures: overlapping subcategories and
orthogonal classification systems. As an example of overlapping subcategories, consider "feline"
and "pet", two subcategories of "animal": a cat may be both "feline" and "pet", a dog only the
latter, and a leopard is (hopefully) only the former. As an example of an orthogonal classification
system, we might talk about the objects found in a furniture store in terms of their kind --
““table", “*chair", ““bookcase" -- or their composition -- ““metal", *“plastic", “"wooden". While the
categories within one system (e.g., kind) are mutually exclusive, each one cross-cuts every other
category in the other system (e.g., composition).

Both of our mixture-model approaches can, in different ways and to different extents, learn to
represent such partially overlapping concepts from unlabeled data. The approach of Ueda and
colleagues does this by relaxing the one-to-one correspondence between concepts and mixture
components that is the basis of traditional mixture models. The approach of Tenenbaum and
colleagues does this by allowing the extraction of each cluster to proceed independently of the
others, so that clusters come to represent the strongest regularities in the data regardless of how
they might overlap with other clusters.



From the point of view of combining unsupervised and supervised concept learning, the two
approaches have complementary strengths and weaknesses. Ueda's approach is not as flexible in
the kinds of cluster overlaps it can tolerate, but allows the supervised and unsupervised learning
phases to be seamlessly integrated in parallel. Tenenbaum's approach allows a greater range of
overlapping cluster structures, but requires that the unsupervised phase strictly precede the
supervised phase, with unlabeled data influencing learning from labeled data but not vice versa.
Also, Ueda's approach supports powerful variational Bayesian and active learning algorithms,
while Tenenbaum's approach requires further work on search procedures for extracting all
significant clusters from a data set efficiently and with minimal redundnacy. Both approaches
have produced good results on several benchmark data sets, but require further testing and
development on large real-world data sets.

In ongoing work, Tenenbaum, Ueda and their colleagues are discussing how to bring their
proposed approaches into closer contact, through common applications or evaluations and, if
possible, the development of hybrid algorithms that combine the powerful learning algorithms of
Ueda's approach with the rich representational possibilities of Tenenbaum's approach. We are
focusing on tasks that people perform relatively effortlessly and successfully, far beyond the
capabilities of existing machine learning algorithms . In particular, we are exploring the extent to
which our models can explain the behavior of human learners in clustering, sorting, and word
learning tasks, and we are working on a tool for automated conceptual image-database search that
attempts to use the huge volumes of unlabeled data available in many databases to infer more
accurately what kinds of results a human user desires from a query that consists of just one or a
few labeled examples.

I1. Learning semantic structure from text and hypertext

The work described above focuses on learning single concepts, one at a time, primarily from
perceptual input. However, many concepts — particularly more abstract concepts — are probably
learned in a very different way: by encountering them in one or more linguistic contexts
(documents) and integrating them into a large network of previously learned concepts. In order to
understand more fully these aspects of human concept learning, we have recently turned our
attention to studying the large-scale structure of semantic networks in natural language. We have
focused on trying to describe this structure statistically, and also on developing learning
algorithms that can extract this structure from large text or hypertext corpora and put it to use in
information retrieval tasks.

A. Statistical analyses of network structure

Our statistical studies of the large-scale structure of semantic networks have focused on networks
of word associations obtained from three different sources: human subjects in free association
experiments, Roget’s thesaurus, and WordNet. We have found several statistical properties in
common across these networks. First, they all have a small-world structure, characterized by
sparse connectivity, short average path-lengths between words, and strong local clustering. In
addition, the distributions of the number of connections follow power laws that indicate a scale-
free pattern of connectivity, with most nodes having relatively few connections joined together
through a small number of hubs with many connections. These regularities have also been found
in certain other complex natural networks, such as the world wide web, but they are not consistent
with many conventional models of semantic organization, based on inheritance hierarchies,
arbitrarily structured networks, or high-dimensional vector spaces. We have proposed that these



structures reflect the mechanisms by which semantic networks grow. We have also developed a
simple model for semantic growth, in which each new word or concept is connected to an
existing network by differentiating the connectivity pattern of an existing node. This model
generates appropriate small-world statistics and power-law connectivity distributions, and also
suggests one possible mechanistic basis for the effects of learning history variables (age-of-
acquisition, usage frequency) on behavioral performance in semantic processing tasks.

In future work, we would like to better understand the implications of these statistical properties
of natural semantic networks, and the growth processes giving rise to them, for processes of
information retrieval and search. Algorithms for efficient search on small-world and scale-free
networks have been developed, which when coupled with our semantic network representations,
could lead to better models of human semantic memory retrieval as well as more efficient
computational models for constructing coherent semantic interpretations of sentences.

Also, we would like to draw connections between the model of network growth developed in
Tenenbaum’s group and a new model recently proposed by Saito, Ueda, and colleagues at NTT.
The NTT model was proposed to describe the web, with an explicit focus on community structure
that gives rise to strong clustering, and an elegant probabilistic formulation in terms of latent
variables. We would like to explore the community structure of semantic networks, with the
expectation that communities will be found corresponding to coherent semantic domains or
topics. We would also like to explore whether the latent-variable formulation of the NTT model
can be profitably combined with the growth mechanisms of our previously developed model for
semantic growth, to produce more realistic models of natural-language semantic networks.
Finally, we would like to investigate the possibility of creating joint models of semantic networks
and web structures, which would mutually constrain each other: knowledge of web community
structure would lead to more accurate semantic networks, and knowledge of semantic structure
would lead to more accurate models of web communities.

B. Algorithms for learning semantic networks

The statistical patterns described above place strong constraints on models that attempt to learn
semantic concepts from large text corpora. We have shown that popular methods for information
retrieval such as latent semantic analysis (LSA) are not capable of producing these patterns. This
has motivated us to develop new approaches for learning semantic structure from text.

One approach is based on Latent Dirichlet Allocation, recently introduced by Blei, Ng, and
Jordan (2001). We have developed a Markov Chain Monte Carlo approach to fitting this model,
and shown that it is capable of learning meaningful semantic representations from raw text. We
have also shown that it produces representations consistent with the statistics of word associations
in natural language, as described above. That is, the distribution of word senses follows a power
law, and the network’s connectivity behaves as a small world. This model is the first that we
know of that can learn, from raw text, meaningful semantic representations with large-scale
statistical properties that are qualitatively similar to natural language semantic networks.

Recently, Ueda and Saito at NTT have developed a new approach to learning multiple
classifications in the context of classifying text documents by topic. Their PMM algorithm is
designed to learn document classifications which are not necessarily mutually exclusive —a
critical goal if these classes are to correspond to natural language concepts, as explained above.
They have shown that this algorithm outperforms conventional approaches based on binary
classification, when applied to real data from the WWW. The approach of Ueda and Saito is
closely related to both the one-mode mixture model and the latent dirichlet model that have been
explored in Tenenbaum’s group. A high priority for future work is to pursue the connections



between these models and the PMM approach developed at NTT. We hope to produce a joint
paper soon applying these methods to two related problems in learning from text: classifying
documents into overlapping concepts (topics), and classifying words into overlapping concepts
(senses). Over the longer term, we also hope to bring these approaches to bear on the other main
theme of this project: combining supervised and unsupervised concept learning. Because these
approaches are formulated as probabilistic mixture models, they provide a natural framework for
unsupervised learning of hypothesis spaces that could be useful in subsequent supervised concept
learning. Given their success on learning from raw text, it would be most interesting to see if
they can also be adapted to learn from a combination of text and perceptual input, and thus
provide a more general framework for understanding the different aspects of human concept
learning.

III. Approximate budget

1 PhD student RA: $50,000 (total cost)

1 Technical Assistant 50% time: $30,000 (based on full time 1-year salary $28K)

1 month summer salary for Tenenbaum: $15,000 (based on 2001-2002, 9 month salary of $65K)
Computer Equipment (2 workstations): $12,000

Travel and miscellaneous: $3,000



