
Self-Updating Software
9807-12&26

Proposal for 1998-1999 Funding

Barbara Liskov and Daniel Jackson

Summary

Self-updating software updates itself at runtime, either autonomously or under the control
of a remote authority. We plan to develop the basic infrastructure that is needed to make
self-updating software efficient, economical and safe. Our approach is distinguished by
the fine granularity of the updates, the flexibility of the mechanism, and the separation of
online and offline analysis.

We believe we can make exciting, concrete progress in the short term by building on our
previous achievements. In the long term, our project will be a source of fascinating
research challenges, and will shape the building blocks of a new generation of software.

Why this problem?

Most research in software has focused on its execution, but increasingly the biggest costs
are in its installation, upgrading, and removal. Current methods for installing software are
inefficient and unsafe. They consume vast resources, not only in network bandwidth and
unnecessary local storage, but, worse, in the attentions of the user.

As software production grows, and as small computing devices with limited memory
become more pervasive, the pattern of updates will change from occasional, large
updates to frequent, small ones. Moreover, our environment will become filled with
software-enabled sensors and actuators whose interfaces allow no direct human control,
and thus cannot be updated by current methods at all.

What's the long-term vision?

Our infrastructure will make it easy to build software that updates itself. In response to
changes in the environment, to new requests from users, or to publication of new
versions, the software will autonomously detect the need for an update; locate the right
server; download the new software; certify that the update will have no bad effects; and
integrate the new code. All this will occur without major interruptions in service, and will
scale to a worldwide network.

Updates will be extremely fine-grained, often at the level of an individual object. The
infrastructure will provide simple, reliable and flexible mechanisms, on top of which
application developers can implement different updating policies. In some contexts, a
'push' policy will be needed, in which a server makes the decision to perform the update,
and acts on objects distributed in perhaps thousands of computing devices. In other
contexts, a 'pull' policy will be better, where clients initiate the updating.

Just making this happen is itself a major research challenge. Equally important, however,
will be safety: the update will usually be required to preserve existing functionality and
state, and must never compromise security or reliability. For embedded devices in
particular, the viability of the entire scheme depends on its safety.

Motivating Examples

* Adaptive Front End for Centralized Service. The user buys a service such as a filtered
newsfeed, home banking, or airline reservation; as the service is expanded by its provider,
the front-end application adapts automatically and invisibly, so the user sees new features
as they become available.

* New Features for Embedded Devices. An elevator manufacturer improves its scheduling
algorithm; new software is automatically installed at local plants worldwide. A new
telephone switch feature requires additional computation at the handset; when the user
requests the feature, the relevant software is downloaded. To optimize traffic flow in a city,
the transport authority decides to price roads dynamically, so that the charge for travelling
on a particular stretch depends on how congested it is at that time; car navigation software
then adapts invisibly to a new price information source. A cable TV company offers a new
way to choose programs according to user profiles; the user's VCR downloads new
software spontaneously.

* Embedded Devices Adapt to Changing Environment. An elevator detects heavy load
patterns and downloads software to plan better. A climate-control system adapts to a
heatwave by downloading a special energy-saving regimen. A PABX detects the addition
to a local network of a new device for teleconferencing, and fetches appropriate software.

* Gentle-Slope Application. The initial installation of a program by a user gives a minimal
system with extensive help facilities; as the user matures, the application automatically
fetches new features from a server, removes basic help functions, and morphs the user
interface.

What are the major research issues?

Two key problems need to be solved. First is the object management problem (1). How is
the need for an update perceived, and how are the updates performed? How is the
storage of objects organized? Where do objects reside in the network, and how are they
named? How and when are objects garbage-collected?

Second is the certification problem (2). How are objects checked in advance of their
integration into the running client system, in order to ensure that the update is safe? What
kinds of properties can be checked, and how are they specified? Are specifications
predetermined, or generated according to circumstance? Is an object checked against one
specification or several? Are specifications given per class or per method?

Although these two problems are largely independent, we expect some coupling: how and
where specifications are stored, for example, will affect what kinds of certification schemes
make sense.

This is a high risk project. It is hard to predict how the computing environment will look 10
years from now, so we are wary of preconceived solutions. Nevertheless, we have some
initial ideas about how to approach these problems. These are simple and speculative first
steps; obviously, we hope to develop more powerful and general answers to these
questions.

(1) The update protocol can be phased to minimize its runtime cost. When a server
decides to update a class of objects, it will use directory and caching schemes (as in Thor)
to find out where affected objects reside. Individual sites then identify the affected objects
locally, and modify them temporarily (by inserting new dispatch vectors) so that
subsequent uses are trapped. When a call to a method of an affected object occurs, a
filter is applied to the object. If the object does not pass the filter, it is not updated (and its
old dispatch vector is reinstated). Otherwise, new code for the object is downloaded from
the server database, and a new object representation is made that incorporates the old
data, but points to the new code. With filters, the decision to update can be fine-grained:
based not only on gross properties of the environment in which the object operates, but
also on the local state of the object itself.

The above describes the mechanism to support a push policy. For a pull policy, the site
where the object resides might intercept a call to an unsupported method - perhaps using
Java's reflection mechanism - and fetch the new object autonomously from the server
database.

(2) Our certification approach combines offline and online activities. Performing checking
offline reduces the runtime cost, but is less safe. An economical balance is called for, in
which compute-intensive analysis is performed offline for establishing more subtle
properties, and simpler, but still critical checks are performed online. We plan also to
accommodate analyses that cannot be automated at all; these might be carried out
manually offline, and then certified cryptographically.

The simplest form of online checking will be little more than type checking, either
implemented conventionally within a just-in-time compiler, or more tightly interwoven with
the running program using reflection. The simplest form of offline checking will be an
elaborated type analysis to establish that certain exceptions (such as failed downcasts)
will never be thrown. But much more ambitious schemes are possible. Mutability
information - which methods write which fields, for example - might be used to
approximate subtype compatibility. Using object modelling notions, we might characterize
methods in terms of how they add, delete and change links to other objects, and check
that such behaviour is preserved. It might also prove useful to track dependences;
updates of one object may be correlated with updates of another.

As our research progresses, we will address the many obstacles in the way of making
self-updating software practical. Many systems, for example, will need some mechanism
that gives users some control over how updates are made. What kind of abstractions and
interfaces are suitable remains to be seen.

What's the short-term plan?

We have two initial goals. The first is to get a prototype running, to give us a solid basis on
which to experiment, and to give us early feedback on some simple schemes. The second
is to develop a suite of touchstone examples to guide the work. Particularly in this latter
goal, we hope to work with NTT researchers: to learn about what kinds of problems they
see as most critical in practice, and perhaps to take NTT examples as challenge
applications to be supported by our infrastructure.

We understand that Dr. Naito (of NTT Software Labs) has started a group with similar
goals, and we are eager to exchange ideas. We also look forward to talking to Dr. Horita
(of NTT Software Labs), and to the members of the NTT Optical Network Systems Labs
who have expressed interest in our work.

In order to make rapid progress, we plan to build on our existing achievements. In
particular, Thor will provide much of the mechanism for storage and naming of objects.
Using Thor as a platform will allow us to focus immediately on some of the more unusual
and radical aspects of the problem.

Why us?

Liskov has extensive experience in all the fundamental areas of this project: in
asynchronous distributed systems, in object-oriented compilation and runtime support,
and in typing and subtyping disciplines. Her focus will be primarily on the object
management aspect.

Jackson has been working on practical and tractable specification techniques, and
technologies for fully automatic analysis of code and specifications. He will therefore focus
primarily on the certification aspect.

