
Cooperative Computing in Dynamic Environments
MIT9904-12

Proposal for 1999-2000 Funding

Nancy Lynch and Dr. Idit Keidar

Project Overview

Both the Cooperative Computing research group at NTT and the Theory of
Distributed Systems research group at MIT are carrying out research on
theoretical foundations of distributed computing, with a focus on cooperative
group activities in networks.  Such group activities range from human social
activities in cyber communities to powerful distributed applications involving data
sharing and cooperative work.  Such activities are often supported by agent
communication services, which provide distributed intelligence, or by group
communication services, which manage group membership and guarantee
coherent communication.

An important characteristic of the environments in which such activities take
place is their dynamicity: participants come and go (and change their location),
network topology changes, and components fail and recover.  Coping with such
difficult environments leads to complex implementations, which are difficult to
build, understand, and analyze.  Formal, mathematical techniques can help to
make such implementations more tractable.

Both the NTT and MIT research groups are addressing these problems using
formal modeling and verification techniques.  So far, the techniques used by the
two groups have been different:  The NTT group has been emphasizing certain
language-based methods, including process algebras such as the pi-calculus,
modal logics, and temporal logics, and  automatic verification tools  such as
model-checkers.  In contrast, the MIT group has been emphasizing
mathematical methods based on (asynchronous and timed) input/output
automaton models, and  interactive verification tools  such as interactive
theorem-provers.  This project aims at combining these methods into a strong,
coherent foundation for understanding cooperative group activities in networks.

Problems

Our work will involve developing formal models and validation methods for agent
communication services and group communication services in dynamically-



changing networks, and for cooperative computing applications built on top of
these services.
Agents are computational entities that communicate using a special “Agent
Communication Language” (ACL).  In a basic communication step, an agent
receives an ACL message over an incoming communication channel, changes its
internal state and sends some new messages over an outgoing channel.  We are
mainly interested in flexible agent systems, in which agents and communication
channels are dynamically created and destroyed.

Although agent communication systems are popular, they so far do not have a
mathematical foundation adequate for supporting formal language definitions and
formal verification methods.  Milner’s pi-calculus appears to be a useful starting
point for such a mathematical foundation.  For example, Kogure’s group at NTT
has developed a network programming language, Nepi2, based on the pi-
calculus, and is currently developing an agent programming language on top of
Nepi2.  However, this agent language depends on extensions to Nepi2 and to the
pi-calculus, to accommodate issues of timing, failures, and human interface
behavior.   These extensions require a formal foundation.

Group communication services are powerful distributed communication services
that allow application processes located at different nodes of a distributed
network to operate collectively as a group, using the service to multicast
messages to all members of the group.  Such a service is based on a group
membership service, which provides each group member with a view of the
group, including a list of the processes that are members of the group.  The
service manages both consistent delivery of messages within each view and the
reconfiguration involved in changing views.  Such systems are used for
applications in many areas, including banking, stock market, air-traffic control
computer-supported cooperative work, and interactive games.

Building on a large body of prior work, members of Lynch’s group have
developed formal I/O automaton-based models for a collection of group
communication services and algorithms, and have used these models in proofs
of safety, performance and fault-tolerance properties.  In developing the service
and algorithm models, they have worked closely with network and distributed
system developers.  This work has resulted not only in good models and proofs,
but also in the discovery of significant logical errors in three real systems (Orca,
Ensemble, and Horus).

 Approach

The modeling/verification framework used by Lynch’s group at MIT is based on:
•  The untimed and timed I/O automaton models of Lynch, Tuttle, and

Vaandrager.



• Methods of structural decomposition using parallel composition and levels of
abstraction.

•  Methods of proof involving invariant assertions, formal abstraction
relationships, compositional reasoning, and conditional performance/fault-
tolerance analysis.  The basic framework is defined mathematically, which
allows it to support descriptions in different languages.

We believe that I/O automaton models can be used as the mathematical basis
for semantic definitions and proof methods for agent programming languages,
group communication services, and other primitives for cooperative group
activities in dynamic networks.  The basic communication behavior of agent
communication languages is easily expressed in this style.  However, some
features that are fundamental to the agent application domain, such as dynamic
process creation, open system behavior, and failures, are not represented
explicitly in the basic automaton models.  It will be important to identify such
features and develop “standard” patterns for modeling those on top of the basic
automaton models.  For instance, dynamic process creation can be modeled by
treating the components that are created at runtime as if they were there (but
inactive) from the beginning.   Special “activate” actions could be used to model
the dynamic creation steps.

We would like to see how untimed and timed I/O automata can be used to
express the semantics of an extended pi-calculus sufficient to support agent
communication.  We would also like to determine what must be added to our
existing IOA modeling/programming language in order to express the notions
needed for this domain.  Similarly, we will use untimed and timed automata, and
the IOA language, to provide models for group communication and services.
Since both types of services cope with similar issues of timing, failure, and
dynamic behavior, it will be interesting to see what aspects the formal models
have in common.

Once such semantic definitions are developed, we will use them as the basis for
modeling and analyzing a collection of typical examples from cooperative
computing applications (e.g., computer-supported cooperative work, distributed
knowledge bases and data bases).  The models for these examples will
emphasize structural decomposition, and the analyses will be based on the
standard techniques for distributed algorithms (invariants, abstraction, conditional
timing analyisis, composition).  The examples will allow us to determine which
techniques are the most useful and what they can accomplish (that is, what types
of properties they can be used to formulate and prove, and for what types of
systems).  Since agent communication and group communication systems cope
with similar environmental anomalies, we can compare how similar applications
can be built on top of both.



Much of the initial work may be done by hand, in terms of the basic automaton
models, because the main issues may involve devising good abstractions.
However, it is also important to develop computer support for the most useful
types of reasoning.  This computer support will involve a combination of
automatic tools (as currently used at NTT) and interactive tools (as used at MIT).
Since the automaton framework is very general, it is capable of supporting such
a combination of tools.

In developing this combination of tools, we expect to find that different tools will
require different restrictions on the systems and properties being handled.  For
example, model-checkers require finite-state automata; theorem-provers require
expressiveness in particular logics (LP is first-order).  We will try to identify useful
restrictions on systems and properties that will allow them to be handled with
particular types of computer tools.

The implementation of agent communication services and group communication
services involve interesting, complex distributed algorithms, running over rapidly-
changing, fault-prone networks.  For example, the communication manager of
Nepi2 manages rendezvous-style communication among processes, using a
protocol that coordinates among local and global communication managers,
using LINDA-style tuple spaces.  For another example, Keidar, Marzullo and
Sussman are developing a novel group membership algorithm for WANs (also
based on a combination of local and global communication managers).  As
challenge problems for the use of our methods, we will attempt to model and
verify several of these algorithms.

Many of the results we would like to prove about distributed algorithms involve
performance and fault-tolerance properties.  We also plan work on developing
general techniques for compositional performance and fault-tolerance analysis.
Some ideas for this appear in work by Fekete, Lynch, and Shvartsman on view-
synchronous group communication services.

Both Kogure’s group and Lynch’s group are interested in connecting models for
distributed systems with actual runnable code.  In order to establish such
connections, it is important to model the data types used in distributed algorithms
at multiple levels of abstraction.  Our two groups appear to be taking similar
approaches to this problem, using a combination of programming language code
(Nepi 2 uses LISP, while IOA uses JAVA) and logical equations.  We would like to
combine our knowledge and ideas on this topic.

Specific Tasks

Specifically, we will work on:



1.  Defining semantics for agents in distributed networks, using I/O automata and
timed I/O automata.
Identifying concepts that are fundamental to agent systems, such as dynamic
process creation and open system behavior, and that are not explicitly present in
the basic automaton models.  Developing standard patterns for modeling these
concepts.

2.  In the same style, defining semantics and identifying and modeling key
concepts for group communication systems.

3.  Modeling and analyzing typical examples from the cooperative computing
application domain, using the automaton models for the underlying agent
communication and group communication services.

4.   Developing computer support for the types of reasoning that prove to be most
useful in these examples, using a combination of automatic and interactive tools.
Identifying useful restrictions on systems and properties that will allow them to be
handled with the various types of computer tools.

5. Using automata and their standard proof techniques to model and verify
particular communication protocols.  Example protocols may include protocols
from the Nepi2 system developed at NTT and group communication protocols
under study at MIT.

6.  Developing techniques for analyzing timing and failures for distributed
systems, in particular, techniques that can be used compositionally, and at
multiple levels of abstraction.

7. Developing good ways of (formally) modeling data types in a distributed
setting.


