NTT-MIT Research Collaboration

http://www.ai.mit.edu/projects/ntt

Outline of Talk

- MIT research partnerships
- MIT structure, LCS/AI
- LCS/Al as labs
- Why we think it is a good idea for MIT
- Why we think it is a good idea for NTT
- Seventeen NTT-MIT projects
- Web site
- Some highlights
- Oxygen
- Summary

MIT-- Constant but Changing

MIT Research Collaborations

Amgen Bio-tech

Ford Automobiles

Merck Pharmaceuticals

Merrill-Lynch Finance

Microsoft Software

NTT Telecommunications

All are five year projects with multiple faculty involved

MIT--Organized in Five Schools

- School of Engineering is about 2/3 of MIT students
 - has eight departments and two divisions
- Department of Electrical Engineering and Computer Science (EECS) has about 1/3 of all MIT students
- CS now has more than half of the EECS students

The Research Happens In Labs

LCS and Al

- Al Lab founded in 1959, LCS in 1963 (as project MAC)
- Al Lab: 225 people, LCS: 500 people

Al occupies top 3 floors

LCS occupies bottom 6 floors

June 23, 1997 -- US Research Labs

THE TOP 20 U.S. RESEARCH LABORATORIES

R	NK.	STAFF	FACULTY MEMBERS OR PhDs (%)	RESEARCH HONORS	PATENTS	RANK STAFF FACULTY RESEARCH PATEN SIZE MEMBERS HONORS OR PhDs (%)		
STANFORD UNIVERSITY Where many researche	1 s wan	230 It to work	13	10	.004	MICROSOFT RESEARCH 11 205 70 46 N.A A five-year-old newcomer leaps ahead		
CARNEGIE MELLON UNIVER COMPUTER SCIENCE Creating new centers to	2	263	20	9	N.A.	CMU ROBOTICS INSTITUTE 12 220 20 5 N.A. Its robots aren't just for factories		
MIT LABORATORY FOR CO	IPUTER	1				SANTA FE INSTITUTE 13 40 100 10 0.0 Very strong in complexity research		
SCIENCE Long a hotbed for new	2 start	254 ups	12	13	0.08	UNIVERSITY OF ILLINOIS- 14 356 10 2 0.1		
AT&T LABS Tied with Bell Labs, the	4 ough o	2,500 nly one-t		11 ig	N.A.	Mosaic and Netscape started here		
BELL LABS (Lucent Technologies) King-sized lab is award	4 ed an	24,000 average		40 atents a c	0.2 lav	UNIVERSITY OF SOUTHERN CALIFORNIA 14 374 29 5 0.0 Its Information Sciences Institute is a star		
UNIVERSITY OF CALIFORNIA-BERKELEY Closing the gap with tra	6	230	13	10	N.A.	UNIVERSITY OF MICHIGAN 16 283 14 2 0.2 Good marks in artificial intelligence		
IBM RESEARCH Big Blue remains a rese	7 earch	2,300 bulwark	52	75	0.7	UNIVERSITY OF WASHINGTON 16 175 17 4 N.A Rapid rise in standing since 1970s		
XEROX PARC Now generating startup	8 s, too	230	60	34	1.0	GEORGIA INSTITUTE OF TECHNOLOGY 18 685 40 3 0.5		
MIT ARTIFICIAL INTELLIGENCE LAB Has spun off 20 startuj	9 com	165 panies	12	5	0.3	Has new Advanced Telecommunications Center CALIFORNIA INSTITUTE OF TECHNOLOGY 19 2,713 N.A. 104 0.0		
MIT MEDIA LAB Keeps on making news	10 —and	400 waves	5	N.A.	0.06	CORNELL UNIVERSITY 19 101 50 4 N.A An Ivy League computer pioneer		

LCS #2

AI #9

Media #10

Some LCS Innovators

Ward **Rivest Dertouzos** Zue **Information** Berners-Lee Workstation/ Clark Metcalf **RSA** Speech Ethernet Marketplace Encryption Interfaces NuBus WWW Internet Corbato **Szolovits** Time Shari Guardian Angel Franksto **SpreadSheet**

Some Al Lab Innovations

- 1959 LISP -- first computer language with
 - conditional expressions
 - storage management
- 1965 MacHack -- first tournament level chess program
 - all major features found today in Deep Blue
 - first real implementation of alpha-beta search
- 1967 First megabyte memory
- 1968 Macsymma -- first widely available computer algebra system
- 1972 First RAM-based bit-mapped display
- 1972 VICARM -- prototype of first commercial electric robot arm
- 1972 SHRDLU -- first natural language interface to a computer

- 1973 Actors -- precursor to object oriented programming
- 1975 Chess machine -- special purpose computer
- 1976 Chaosnet -- concurrent with first ethernet
- 1976 Lisp machine -- first personal workstations
- 1979 First special purpose vision chip
- 1982 Digital Orrerey -- first supercomputer in a box
- 1982 Connection Machine
- 1988 Small mobile robots -- direct precursor to 1997 Mars mission
- 1993 White House publication system
- 1993 PHANTOM -- first commercial haptic interface system
- 1997 Daily image guided brain surgery

Distribution of People - 1999

Research Sponsorship - 1999

- DARPA
- Government (Other)
- Industry

- DARPA
- **■** Government (Other)
- Industry

L C S

Why MIT Likes Working with NTT

- MIT Computer Science has been driven since the 1960's by the needs of US defense
- The world situation has changed over the last few years
- We believe that it is important for us to be driven by a more commercial set of fundamental issues
- NTT is a large scale player in telecommunications and multimedia
- It has a culture of understanding the importance of basic research

Why We Think it's Beneficial to NTT

- In the US the model of innovation into large companies has been augmented
 - large companies still have good internal research labs (Microsoft, Compaq, IBM, AT&T, Lucent, Xerox, etc.)
 - but, they also buy many small companies
- Small companies are a major source of innovation
 - there is a much stronger tradition of entrepreneurial small companies in the US than in Japan or Europe
 - but, it may be hard for foreign companies to absorb small US companies into their main stream
- But where does the innovation come from?
 - largely it is from research students coming out of the major research universities: MIT, CMU, Stanford & Berkeley
- NTT gets direct access to these students and their ideas at the pre-competitive stage

The Collaboration

- Began July 1st, 1998
 - first year had seven projects
 - MIT faculty and NTT researchers
 - many visits to NTT from MIT faculty
 - many visits to MIT from NTT researchers (for varying lengths of time)
 - all projects were renewed for a second year

- Second year began July 1st, 1999
 - ten new projects
 - each project has NTT collaborators

First Year Projects; 1998-2000

- **u** WIND: Wireless Networks of Devices
 - Hari Balakrishnan and John V. Guttag; Minoru Katayama
- **u** Multilingual Conversational Speech Research
 - James Glass and Stephanie Seneff; Kiyoaki Aikawa
- Research in Cryptography, Info Security and Algorithm Dev.
 - Shafi Goldwasser, Ronald L. Rivest, and Mike Sipser; Tatsuaki Okamoto
- Self-updating Software
 - Barbara Liskov and Daniel Jackson; Minoru Kubota
- **u** Variable Viewpoint Reality
 - Paul Viola and Eric Grimson; Ken'ichiro Ishii
- Y Image Database Retrieval
 - Paul Viola; Tsutomu Horikoshi
- Interactive Sculpting of Virtual 3D Materials
 - Julie Dorsey and Leonard McMillian; Tsutomu Horikoshi

Second Year Projects(1); 1999-2000

- Y Malleable Architectures for Adaptive Computing
 - Arvind, Larry Rudolph, and Srinivas Devadas; Hiroshi Sawada
- A Framework for Automation Using Networked Information Appliances
 - Srinivas Devadas and Larry Rudolph; Satoshi Ono
- Haystack: Per-User Information Environments
 - David Karger and Lynn Andrea Stein; Kazuhiro Kuwabara
- Learning Rich, Tractable Models of the Real World
 - Leslie Pack Kaelbling; Shigeru Katagiri
- Digital Control and Communication in Living Cells
 - Tom Knight and Gerry Sussman; Hitoshi Hemmi

Second Year Projects(2); 1999-2000

- Building Blocks for High-Performance, Fault-Tolerant Distributed Systems
 - Nancy Lynch and Idit Keidar; Kiyoshi Kogure
- Y A Synthetic-Aperture Camera Array
 - Leonard McMillian and Julie Dorsey; Hiroshi Murase
- **Y** Adaptive Man-Machine Interfaces
 - Tomaso Poggio; Norihiro Hagita
- High Resolution Mapping and Modeling of Multi-Floor Architectural Interiors
 - Seth Teller; Tsutomu Horikoshi
- Y Human-Robot Dynamic Social Interaction
 - Rodney Brooks; Katsunori Shimohara

Current Status

17 projects

• 28 MIT faculty members

17 Projects in 5 Broad Areas

Areas of Research (1)

Man-machine interface

- **u** Multilingual Conversational Speech Research
- **Y** Adaptive Man-Machine Interfaces
- Interactive Sculpting of Virtual 3D Materials
- Y Human-Robot Dynamic Social Interaction

Networks

- u WIND: Wireless Networks of Devices
- Self-updating Software
- Cryptography, Info Security and Algorithm Development
- Automation Using Networked Information Appliances
- High-Performance, Fault-Tolerant Distributed Systems

Areas of Research (2)

Content

- Mapping and Modeling of Architectural Interiors
- Y A Synthetic-Aperture Camera Array
- **u** Variable Viewpoint Reality

Architectures

- Y Malleable Architectures for Adaptive Computing
- Digital Control and Communication in Living Cells

Information Management

- Y Image Database Retrieval
- Haystack: Per-User Information Environments
- Learning Rich, Tractable Models of the Real World

Collaboration Web Site

• http://www.ai.mit.edu/projects/ntt

- username: NTTMIT

- password: collaboration

- information on all the current projects
 - project overviews
 - recent updates and breaking news
 - presentations, online papers
 - progress reports
 - links to related research
 - scripts for NTT and MIT researchers to add
 - comments
 - content

NTT-MIT Collaboration Page

A Page for Each Project

The OXYGEN Project

 A new project started in Al and LCS in mid-1999

 We expect it to grow to cover approximately one third of our two laboratories

 We view our new building as a target of opportunity for building the Oxygen project on a very large scale

Oxygen: Goals and Vision

- Goal: Help people "do more by doing less"
 - bring information technology to people
 - increase ease of use
 - increase human productivity, 300% possible

- Vision: To bring an abundance of computation and communication within easy reach of humans
 - through natural perceptual interfaces of speech and vision
 - so computation blends into peoples' lives
 - enabling them to easily do tasks they want to do -
 - collaborate, access knowledge, automate, and customize

Translating the vision...Oxygen System

Whose World?

That was then:

- people enter the computational world, they go to a computer
 - · more recently they lug it around
 - it doesn't care, nor is aware, whether they are even there
- virtual reality makes this even worse...

• This is now:

- Computation to enter the human world, and understand the goals, intentions, and desires of people
- To be freely available everywhere, like batteries and power sockets

Oxygen Funding

- US Government
- Negotiating with European Union
- Setting up an industrial consortium
 - speaking actively to many companies
 - these companies will come from a spectrum of different interests (e.g., chip manufacturers, computers, software, etc.)
 - companies will contribute research funds
 - companies benefit by being part of the research
- Of course, NTT is already such a close collaborator, that NTT is a member by virtue of our existing arrangement

Summary

- We are 18.5 months into a five year collaboration
- The collaboration has established many relationships between NTT and MIT researchers
- Visits between the groups are commonplace
- MIT is very interested in finding new research challenges that are driven by NTT's strategic needs
- MIT is very grateful for close intellectual interactions
- LCS and AI are strong advocates for NTT and feel very fortunate to be working with such a strong group

