
An Integrated Congestion Management Architecture for Internet Hosts

Hari Balakrishnan, Hariharan S. Rahul

M.I.T. Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139

fhari, rahulg@lcs.mit.edu

Srinivasan Seshan

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

srini@watson.ibm.com

Abstract

This paper presents a novel framework for managing net-
work congestion from an end-to-end perspective. Our work
is motivated by trends in traÆc patterns that threaten the
long-term stability of the Internet. These trends include the
use of multiple independent concurrent ows by Web ap-
plications and the increasing use of transport protocols and
applications that do not adapt to congestion. We present an
end-system architecture centered around a Congestion Man-
ager (CM) that ensures proper congestion behavior and al-
lows applications to easily adapt to network congestion. Our
framework integrates congestion management across all ap-
plications and transport protocols. The CM maintains con-
gestion parameters and exposes an API to enable applica-
tions to learn about network characteristics, pass informa-
tion to the CM, and schedule data transmissions. Internally,
it uses a window-based control algorithm, a scheduler to
regulate transmissions, and a lightweight protocol to elicit
feedback from receivers.

We describe how TCP and an adaptive real-time stream-
ing audio application can be implemented using the CM.
Our simulation results show that an ensemble of concur-
rent TCP connections can e�ectively share bandwidth and
obtain consistent performance, without adversely a�ecting
other network ows. Our results also show that the CM en-
ables audio applications to adapt to congestion conditions
without having to perform congestion control or bandwidth
probing on their own. We conclude that the CM provides
a useful and pragmatic framework for building adaptive In-
ternet applications.

1 Introduction

The success of the Internet to date has been in large part due
to the sound principles of additive-increase/multiplicative-
decrease (AIMD) congestion control [4] on which its dom-
inant transport protocol, TCP [15, 30], is based. Because
most traÆc in the Internet has been dominated by long-
running TCP ows, the network has shown relatively stable
behavior and has not undergone large-scale collapse in the

Proc. ACM SIGCOMM, Cambridge, MA, September
1999.

past decade.
However, Internet traÆc patterns have been changing

rapidly and are certain to be very di�erent in the future.
First, Web workloads stress network congestion control heav-
ily, and in unforeseen ways. Typical Web transfers are char-
acterized by multiple concurrent, short TCP connections.
These short Web transfers do not give TCP enough time or
information to adapt to the state of the network, and con-
current connections between the same pair of hosts compete
rather than cooperate with each other for scarce resources.
Second, some commercial products \accelerate" Web down-
loads by turning o� or changing TCP's congestion control
in unknown and potentially dangerous ways. Third, and
perhaps most importantly, several increasingly popular real-
time streaming applications run over UDP using their own
user-level transport protocols for good application perfor-
mance, but in most cases today do not adapt or react prop-
erly to network congestion. Furthermore, there are appli-
cations such as teleconferencing where multiple concurrent
streams co-exist (e.g., audio, video, whiteboards, text), that
will bene�t from eÆcient multiplexing and sharing of band-
width.

All these trends, coupled with the unknown nature of
future applications, threaten the long-term stability of the
Internet. They make it likely that large portions of the net-
work might su�er congestion-triggered collapse due to unre-
sponsiveness in the face of congestion or aggressive mech-
anisms to probe for spare bandwidth. While this might
sound overly pessimistic, even the optimists amongst us will
grant that applications should be able to track and adapt to
congestion, available bandwidth, and varying network con-
ditions to obtain the best possible performance. Unfortu-
nately, protocol stacks today do not provide the right sup-
port for this; the desire to be a good network citizen forces
applications to use a single TCP connection, even if this
transport model is ill-suited to the application at hand. Or,
more likely, because a single TCP connection is mismatched
to the requirements of the application, the result is a prolif-
eration of ows that are not well-behaved and are deleterious
to the rest of the network.

Our work attempts to overcome these problems by devel-
oping a novel framework for managing network congestion
from an end-to-end perspective. Unlike most past work on
bandwidth management that focuses on mechanisms in the
network to provide QoS to ows or reduce adverse interac-
tions between competing ows (e.g., [7, 22, 8, 5, 36, 2]), we
focus on developing an architecture at the end-hosts to:

� Enable eÆcient multiplexing of concurrent ows, en-



A
P
I

CM Protocol

RTSP Audio

Transport
Instances

Manager

TCP1 TCP2 UDP

RTP Video

Congestion

HTTP FTP

Applications

IP

Figure 1: New sender protocol stack with the Congestion Manager.

suring proper and stable congestion behavior using
AIMD principles.

� Enable applications and transport protocols to adapt
to network congestion and varying bandwidth by pro-
viding an adaptation API.

The resulting framework is independent of speci�c appli-
cations and transport protocols, but provides the ability for
di�erent ows to perform shared state learning. Here, ows
learn from each other and share information about the state
of congestion along common network paths.

Increasingly, the trend on the Internet is for unicast data
servers to transmit a wide variety of data, ranging from
best-e�ort (unreliable) real-time streaming content to reli-
able Web pages and applets. As a result, many logically dif-
ferent streams using di�erent transport protocols will share
the path between server and client. These streams have
to incorporate control protocols that dynamically probe for
spare bandwidth and react appropriately to congestion for
the Internet to be stable. Furthermore, they will often have
di�erent reliability requirements, which implies that a gen-
eral congestion management architecture should separate
the functions of loss recovery and congestion control that
are coupled in protocols like TCP.

At the core of our architecture is the Congestion Manager

(CM), which maintains network statistics and orchestrates
data transmissions governed by robust control principles.
Rather than have each stream act in isolation and thereby
adversely interact with the others, the CM coordinates host-
and domain-speci�c path information. Path properties are
shared between di�erent streams because applications and
transport protocols perform transmissions only with the con-
sent of the CM.

Internally, the CM ensures stable network behavior by
the sender because it reacts to congestion, carefully probes
for spare bandwidth by permitting applications to send at
a higher rate, implements a robust and lightweight protocol
to elicit feedback from receivers about losses and status,
and schedules data transmissions by apportioning available
capacity between di�erent active ows. The CM's internal

algorithms and protocols are described in Section 4, where
we justify them using ns-based [20] simulations and analysis.

The CM API is designed to enable easy application adap-
tation to congestion and variable bandwidth, accommodat-
ing heterogeneous ows. The API includes functions to
query path status, schedule data transmissions, notify the
CM upon data transmission, and update variables upon con-
gestion or successful transmission. It also includes callbacks
to applications upon rate change. Motivated by the end-
to-end argument [26] and the principle of Application-Level
Framing (ALF) [6], the CM API permits the application to
have the �nal say in deciding what to transmit, especially
when available bandwidth is smaller than what the applica-
tion desires. We discuss our design decisions and the details
of the API in Section 3. In the same section, we also discuss
how two applications|a Web server and an audio server can
be implemented using the CM API and adapt eÆciently to
congestion. Section 5 discusses the actual performance re-
sults for di�erent applications.

The resulting end-to-end network architecture from the
viewpoint of a data sender is shown in Figure 1. The CM
frees transport protocols and applications from having to
(re-)implement congestion control and management from
scratch, and it discourages applications from using an inap-
propriate transport protocol (e.g., TCP for high-quality au-
dio) simply because the transport implements a congestion
control scheme. Above all, the CM provides the required
support and a simple API over which adaptive Internet ap-
plications can be developed.

The following are the main contributions of this paper:

� CM algorithms and protocol. The design of a
Congestion Manager to perform integrated congestion
management across an ensemble of unicast ows in an
application- and transport-independent manner. To
ensure stable network behavior and shared state learn-
ing, the CM incorporates (i) a window-based AIMD
scheme with traÆc shaping, (ii) a loss-resilient proto-
col to periodically elicit feedback from receivers, (iii)
an exponential aging mechanism to regulate transmis-
sions in a stable manner when feedback is infrequent,
and (iv) a scheduler to apportion bandwidth to ows.



A
P
I

IP

Congestion Manager

Global and
per-flow

state

Flow
Scheduler

Congestion
Controller

Prober

API
Calls

Application

Callback

CM Protocol

Figure 2: Internal organization of the Congestion Manager
at the sender.

� CM adaptation API. An API for applications and
transport protocols to learn about and adapt to net-
work congestion and varying bandwidth. We also de-
scribe how TCP and an adaptive layered audio appli-
cation can be implemented using the API.

� CM applications and performance. We present
simulations of application performance that demon-
strate that the CM ensures stable network behavior.
It also greatly improves performance predictability and
consistency of TCP transfers, and enables applications
such as audio servers to e�ectively transmit the best
among several available source encodings.

2 CM Architecture

In this section, we give a brief description of the overall CM
architecture. The CM has two modules, one at the data
sender and the other at the receiver. The sender orches-
trates data transmissions, while the receiver maintains loss
statistics and responds to occasional sender probes. Most of
the complexity is at the sender.

Figure 2 shows a schematic description of the compo-
nents of the CM at the sender. The Congestion Controller

adjusts the aggregate transmission rate between sender and
receiver based on its estimate of congestion in the network.
It obtains feedback about its past transmissions from ap-
plications themselves, as well as from the Prober, which
sends periodic probes to the receiver CM. The Flow Sched-

uler apportions available bandwidth amongst the di�erent
ows and noti�es applications when they are permitted to
send data. Applications schedule transmissions by invoking
scheduler functions. The CM components communicate us-
ing well-de�ned interfaces; this allows us to change any one
of them without a�ecting the rest of the system.

To communicate with the receiver CM module, the CM
uses a protocol that attaches a CM header to outgoing pack-
ets. This protocol is used to determine if the receiver is CM-
enabled via a simple two-way handshake, and if so, exchange
information about losses and other interesting statistics. If
the receiver is not CM-enabled, the CM sender does not at-
tach this header. However, it continues to implement its

A
P
I

Global and
per-flow

state

IP

Application
Hints

Loss
Detector

Responder

Hints

Dispatcher

CM Protocol

Figure 3: Internal organization of the Congestion Manager
at the receiver.

internal algorithms to enable eÆcient multiplexing, proper
congestion behavior, and application adaptation.

Figure 3 depicts the CM components at the receiver.
Application hints for apportioning bandwidth are communi-
cated by the API to the Hints Dispatcher, which transmits
them to the CM sender. The receiver CM module strips the
CM header and dispatches the packet to the receiver appli-
cation. The Loss Detector maintains loss statistics based on
information in the CM header and informs the sender when
it detects congestion. The Responder maintains statistics of
the number of bytes received by each ow and participates
in the probing protocol.

The ability to function even when the receiver is not
CM-enabled is ensured by the CM protocol, and the CM al-
gorithms at the sender often function with application feed-
back (as opposed to CM protocol feedback from the receiver
CM module). Thus, while the full bene�ts of the archi-
tecture are observed when both senders and receivers are
modi�ed, there are substantial bene�ts even when only the
sender is CM-enabled. This is especially true for those ap-
plications that have a feedback mechanism (e.g., TCP) and
use the CM API to inform the sender.

The rest of this paper describes the CM API, its algo-
rithms and protocol, and simulation results of some CM
applications.

3 The CM API

Using the CM API, ows can determine their share of the
available bandwidth, request and schedule their transmis-
sions, inform the CM about successful transmissions, and
be informed when the CM's estimate of path bandwidth
changes. Thus, the CM frees applications from having to
maintain information about the state of congestion and avail-
able bandwidth along any path.

3.1 Design Rationale

We motivate our design choices and discuss the API in terms
of four guiding principles.



1. Put the application in control: While the CM decides
the rate at which each application ow can transmit data,
it follows the end-to-end argument [26] and puts the appli-
cation in �rm control of two critical decisions: (i) deciding
what to transmit at each point in time, and (ii) deciding the
relative fraction of available bandwidth to allocate to each
ow. To achieve this, the CM does not bu�er any appli-
cation data; instead, it allows applications the opportunity
to adapt to unexpected network changes at the last possi-
ble instant. This design decision to not bu�er any data is a
direct consequence of Application Level Framing (ALF) [6],
and leads to the following API.

If the CM were to queue data and eventually transmit
it at some rate, the sending API would consist simply of a
cm send() call, much like the BSD Sockets API [29]. How-
ever, this would preclude applications from \pulling out"
and repacketizing data upon learning about any rate change.
Thus, we decide to design a non-blocking request/callback
API. Here, an application that wishes to send data invokes
cm request(id). (The id is obtained by the application
using the cm open(dst) call, where dst is the destination
address.) After some time, depending on the past trans-
missions and allowed rate, the CM triggers an application
callback using cmapp send(), which is a grant for the appli-
cation to send up to mtu bytes. The application can transmit
any mtu (or less) bytes soon after this, and it does not mat-
ter if those bytes are di�erent from the ones for which the
original request was made. The application uses cm mtu(id)

to get the path MTU (Maximum Transmission Unit), which
can either be statically con�gured or discovered using path
MTU discovery [19].

(In our original design, cm request() and cmapp send()

used the number of requested and permitted bytes as ar-
guments. This would have potentially given applications
greater control, at the expense of complicating the sched-
uler and making traÆc shaping harder to accomplish. Ul-
timately, because we could not see any clear bene�ts of
this additional control for application writers, we eliminated
these arguments. We are grateful to Steve McCanne for con-
vincing us to pursue this better alternative.)

Our initial design only allowed for the ALF-oriented API
based on callbacks described above. However, early experi-
ence and discussions convinced us that not all applications
would want to use ALF, and that a conventional bu�ered
send mode was worth supporting as well. This is straight-
forward; such streams, invoke cm send(id, data, length)

and the CM bu�ers data for eventual transmission.
To learn about per-ow available bandwidth and the

round-trip time, applications use the CM's cm query(id,

&rate, &srtt) call, which �lls in the desired quantities.
2. Accommodate traÆc heterogeneity: The CM should

bene�t a variety of traÆc types, including TCP bulk trans-
fers and short transactions, real-time ows that can trans-
mit at a continuum of rates, and layered streams that can
transmit only at discrete rate intervals.

3. Accommodate application heterogeneity: The design of
the CM API should not force a particular application style;
rather, the API should be exible enough to accommodate
di�erent styles. In particular, the API should accommodate
two common styles of transmitters: the asynchronous style
and the synchronous style.

Asynchronous transmitters do not transmit based on a
periodic clock, but do so triggered by asynchronous events
like �le reads or captured frames. For these transmitters
that typically have bytes ready to be transmitted, the re-
quest/callback API described above is appropriate because

their transmissions are scheduled by the CM. On the other
hand, synchronous transmitters are timer-driven and would
use the CM to adapt the frequency of their internal timers
and the amount of data transmitted at each timer event.
Such applications can use the cmapp update(rate, srtt)

callback function informing them of changes in rates. Thus,
there are two callback functions implemented by the CM:
cmapp send() in response to a previous request call, and
cmapp update() whenever a ow's share of the available
rate changes. This second method is provided for both
types of transmitters, because the knowledge of sustainable
rate is useful for asynchronous applications as well; e.g., an
asynchronous Web server disseminating images using TCP
could use cmapp send() to schedule its transmissions and
cmapp update() to decide whether to send a low-resolution
or high-resolution image.

4. Learn from the application: The API includes func-
tions that applications can use to provide feedback to the
CM. They can use cm update(id, nsent, nrecd, lossmode,

rtt) call to inform the CM that nsent bytes were sent of
which nrecd were received, that the loss event was PERSISTENT
(e.g., a TCP timeout), TRANSIENT (e.g., TCP duplicate ac-
knowledgments), or ECN (on Explicit Congestion Noti�ca-
tion), and that the observed RTT sample was rtt. The
feedback could be through ACKs as in TCP, through RTCP
[27] in the case of real-time applications, or through any
other protocol. The CM uses this information to update its
congestion window and round-trip time estimates.

The CM also exposes a noti�cation function, cm notify()

that must be invoked by the IP output routine at the sender
whenever any bytes are sent for a ow. This allows the CM
to update its estimate of the number of outstanding bytes
for the ow.

At the receiver, the CM can learn from application hints
about the relative proportion of the available bandwidth to
allocate to di�erent ows. This allows receivers to express
their preference for certain types of traÆc over others, for
example, images over text. We are currently completing the
details of this part of the API.

An application calls cm close(id) when a ow is termi-
nated allowing the CM to destroy the internal state associ-
ated with that ow and repartition available bandwidth. If
an application forgets to invoke cm close(), its associated
ow state is cleaned up by the CM after a timeout.

The CM API is summarized in Figure 4.

3.2 Using the API

In this section, we describe how applications and transport
protocols use the CM API. We focus on two applications|a
Web server disseminating objects using TCP and an adap-
tive audio server that disseminates objects using a user-level
transport protocol over UDP.

3.2.1 Web server over TCP

Using HTTP1, clients request index �les and sets of objects
from the server. The CM enables the sender to decide what
fraction of the bandwidth to use for what ow, based on
hints from the receiver. It also helps the sender to choose
between multiple representations that are available for some
objects, e.g., low-, medium- and high-resolution images, for
the best application performance.

1It really does not matter what version of HTTP, but as we will
see in Section 6, the use of persistent connections in P-HTTP has
some drawbacks.



typedef int cmid_t;

Query

void cm_query(cmid_t id, double *rate, double *srtt);

Control

cmid_t cm_open(addr dst);

int cm_mtu(cmid_t id);

void cm_request(cmid_t id);

void cm_notify(addr dst, int nsent);

void cm_update(cmid_t id, int nrecd,

int nlost, int lossmode,

double rtt);

void cm_close(cmid_t id);

Bu�ered transmission

void cm_send(cmid_t id, char *data, int len);

Application callback

void cmapp_send();

void cmapp_update(double rate, double srtt);

Figure 4: Data structures and functions for the sender-side
CM API.

Using the receiver CM API, the client expresses its rel-
ative interest in the n objects with a vector of tuples of the
form [o1 : r1; o2 : r2; : : : ; on : rn], where oi is the ith object
and ri the relative fraction of the available bandwidth to al-
locate to that stream. The sender takes this into account to
apportion bandwidth while transmitting these objects. This
is similar to the WebTP [34] protocol.

Multiple representations of di�erent sizes exist for several
of these objects. The sender uses the cm query() call and
the cmapp update() handler to adapt to changing available
bandwidths (tracked by the CM) and pick the representa-
tion that maximizes receiver quality without incurring high
latency. We are currently extending the HTTP content ne-
gotiation protocol [14] to incorporate these ideas.

The Web server uses TCP to disseminate data, which in
turn uses the CM to perform congestion management; thus,
TCP/CM2 now only performs loss recovery and connection
management. We now outline how TCP congestion control
can be written as a CM application.

Normally, TCP's congestion management keeps track of
a congestion window on a per-connection basis. When ACKs
arrive, TCP updates the congestion window and transmits
data if its congestion window allows it, and when it detects
losses, the window is reduced by at least a factor of two.
To use the CM, we modify TCP to call cm open() when it
establishes a connection. When data arrives from the appli-
cation (e.g., Web server), TCP/CM calls cm request() to
schedule their transmission. When an ACK arrives from the
network acknowledging nrecd bytes of data, TCP/CM calls
cm update() to update the congestion state in the CM. It
then calls cm request() if the receiver-advertised ow con-
trol window has opened up and there is more data queued
for transmission.

When the CM decides to service TCP/CM's request, it
performs a callback using cmapp send() to the TCP/CM
send routine, allowing for up to 1 MTU's worth of data to

2\TCP over CM"

be sent, provided the receiver-advertised window permits
transmission. When the IP output routine sends this data,
it calls cm notify() to update the CM's estimate of the
number of outstanding bytes. nsent could be smaller than
the amount permitted.

Notice that we have eliminated the need for tracking and
reacting to congestion in TCP/CM, because proper conges-
tion behavior is ensured by the CM and its callback-based
transmission API. Notice also that duplicate ACK and time-
out based loss recovery remain unchanged, as does end-to-
end ow control based on advertised windows. In our im-
plementation and experiments, we use the Newreno variant
of TCP/CM [13] because it performs better than TCP Reno
under most conditions. The result is that the CM permits
an ensemble of TCP connections to behave in a manner less
deleterious to the health of the network than before.

3.2.2 Audio server for layered audio streams

Many Internet audio servers support a variety of audio sam-
pling rates and audio encodings to allow the client to trade-
o� quality for network bandwidth. Typically, the end user
is forced to manually select the most appropriate encoding
for the current network conditions. The use of the CM en-
ables the server to automatically adapt its choice of audio
encoding to the congestion state of the network.

When requested to transmit audio to a client, the server
calls cm open() and uses cm query() to determine how soon
it may transmit data. It then begins transmitting audio
at the highest quality encoding that does not exceed the
rate returned by cm query(). Although some streaming
servers solicit feedback about network conditions from their
clients, many do not. For servers that do not, feedback is
obtained using the CM's probing protocol (Section 4.2.2). If
the CM identi�es a change in the available bandwidth upon
the arrival of a probe response, it noti�es the audio server of
this change using the cmapp update() callback. The audio
server's implementation of cmapp update() then adjusts its
data encoding using the new rate information. Via these
simple interactions with the CM, the audio server can au-
tomatically adjust audio quality to reect the quality of re-
ception. Note that the CM does not shape such traÆc by
forcing transmissions at particular times; instead, it shapes
all other traÆc around those events.

4 CM Algorithms and Protocol

In this section, we present the CM's internal algorithms and
protocols. We �rst present the architecture of the CM at
the sender. Then, we describe the corresponding organiza-
tion of the CM at the receiver. We conclude this section
by discussing issues that arise in non-best-e�ort networks,
including ones with service di�erentiation and reservations.

4.1 Stable Congestion Control

One of the key features of the CM is that it ensures proper
congestion behavior of an ensemble of ows by sharing con-
gestion information between them. This implies that its
mechanisms for reacting to network congestion and probing
for spare capacity must be sound and robust. An attractive
feature of the CM framework is that it provides a good plat-
form for experimenting with and deploying new congestion
control algorithms.

It is hard to characterize our scheme as rate-based or
window-based; it is best characterized as a window-based



0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

Se
qu

en
ce

 N
um

be
r

Time (seconds)

TCP Newreno
TCP/CM

Figure 5: Sequence traces for TCP Newreno and TCP/CM,
showing TCP/CM's true emulation of TCP Newreno con-
gestion control.

scheme that modulates transmissions using a rate-based traf-
�c shaper to reduce bursts. It is thus a hybrid window-rate
scheme|while it uses a TCP-like window-based mechanism,
it also shapes outgoing traÆc using a rate estimate that is
the ratio of the window size to the smoothed round-trip
time. Furthermore, it changes to an exponentially decaying
rate-based scheme when feedback is absent, as explained in
Section 4.4.

Our primary consideration in the design of the congestion
control module is that it be stable and friendly to existing
TCP traÆc in the network. The CM maintains a conges-
tion window that changes as the CM learns from active ows
about the state of the network and as it carefully increases
the rates allocated to them to probe for spare capacity. The
additive increase component is no more aggressive than a
comparable TCP ow. This does lead to a bias against long
round-trip ows in a congested network [12, 35, 9], but we
felt that an accurate emulation of TCP's increase algorithm
is currently the safest deployment alternative. Upon a loss,
the congestion window is halved, and when persistent con-
gestion occurs (e.g., a TCP timeout), the rate drops to a
small value forcing slow start [15] to occur.

We chose to implement a hybrid scheme instead of a
pure TCP-like window-based scheme for two main reasons.
First, this avoids bursts of transmissions that window-based
schemes (e.g., TCP) are prone to, which makes it likely to
overwhelm bottleneck router bu�ers on the path to the re-
ceiver. Second, several applications, unlike TCP, provide
relatively scarce and infrequent receiver feedback about re-
ceived data, and our experiments showed that using rate-
based aging leads to more consistent performance without
compromising network stability in these situations.

We conducted several experiments to validate the sound-
ness of the CM's algorithm and tune it to perform well. Re-
sults from one set of experiments, for two connections|TCP
Newreno [13] and TCP/CM|running over a network with
random Web-like background traÆc are shown in Figure 5.
This �gure shows sequence traces of the two TCPs over a
large range of bottleneck capacities. It is clear from these
results that TCP/CM closely emulates a TCP Newreno.

We now argue that our experimental data demonstrates
that TCP/CM competes fairly with TCP Newreno. Figure 5
shows the sequence number plots for TCP/CM and Newreno
for a particular transfer and topology (the topology itself is
shown in Figure 7). We observed similar behavior over a
wide range of bottleneck bandwidths and topologies. Fig-
ure 6 shows the throughput (number of successfully received
packets) as a function of the loss rate (ratio of the number of

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 0.04 0.08 0.12 0.16 0.2

(p
ac

ke
ts

 r
ec

ei
ve

d)

(packets dropped)/(packets sent)

TCP Newreno
TCP/CM

Figure 6: CM's rate control is TCP-friendly.

Node with CM

Regular node

Bottleneck Destination

CBR, Web Servers and clients

Figure 7: Topology for simulations.

dropped to sent packets) for TCP/CM and Newreno trans-
fers lasting 20 seconds each. Each point on the graph is the
average of ten runs for each bottleneck bandwidth; there
were seven di�erent bottlenecks: 100 Kbps, 300 Kbps, 500
Kbps, 1 Mbps, 3 Mbps, 5 Mbps, 10 Mbps; one-way delays
of 60 ms (35 ms in some experiments), and queue sizes set
to the bandwidth-delay product. These results show that
TCP/CM and Newreno have similar throughput-loss rela-
tionships, which is evidence that the congestion control is
\TCP-friendly."

4.2 Receiver Feedback

One of the fundamental requirements for stable end-to-end
congestion control is receiver feedback. Without it, the
sender would not know if its current transmission rate is
higher or lower than available capacity. Furthermore, this
feedback about successfully received data and observed con-
gestion needs to be communicated to the sender in a timely
manner. The sender's CM uses standard congestion indi-
cators | packet losses and Explicit Congestion Noti�cation
(ECN) [10, 23] bits set by routers and echoed by the receiver.

We now address three issues: feedback frequency, feed-
back mechanism, and exponential aging to perform well
when feedback frequency is infrequent.

4.2.1 Feedback frequency

TCP's feedback mechanism using ACKs provides the sender
with feedback several times every round-trip, since the re-
ceiver generates an ACK for at least every other packet. In
contrast, several streaming protocols are not reliable, and
hence do not inform the sender of transmission status as
frequently. Because the CM must function well across all



Sending a probe to the receiver

message = <probe,probeseqnum>;

send(message);

probe(probeseqnum) = {probeseqnum, now, nsent};

nsent = 0;

probeseqnum = probeseqnum+1;

Responding to probe number thisprobe

message=<response,thisprobe,lastprobe,nrecd>;

send(message);

lastprobe = thisprobe;

nrecd = 0;

Sender action on receiving a response
<response,thisprobe,lastprobe,nrecd>

nsent = 0;

for(i=lastprobe+1; i<=thisprobe; i++) do

nsent += probe(i).nsent;

end;

lossprob = nrecd/nsent;

Delete all entries in probe less than

thisprobe;

Figure 8: Sender and receiver side pseudocode for handling
probes/responses.

applications, we �rst need to determine an appropriate feed-
back frequency.

Unfortunately, it is not easy to determine the appropriate
frequency in general. After some simple experiments that
measured loss rate as a function of feedback frequency, we
(somewhat arbitrarily) decided on a frequency of every one-
half RTT. In Section 4.3 we discuss the insertion of a CM
packet header that will allow the CM receiver to detect losses
and thereby reduce the sensitivity to probe frequency.

4.2.2 Feedback mechanism

The CM uses two forms of feedback to adjust its congestion
window and react to congestion: application noti�cation and
explicit feedback. Application noti�cation occurs when the
receiver application or transport protocol provides feedback
to the sender application. The sender application can now
notify the CM about the number of transmitted and received
bytes, if any losses occurred, and if any ECN information
was received. For example, TCP over CM uses this method
and the CM design for such situations does not require any
changes at the receiver.

Unfortunately, not all applications are as considerate as
TCP in providing frequent feedback. This moves us to in-
corporate an explicit feedback protocol in the CM architec-
ture, with modi�cations to the receiver to respond to peri-
odic probe messages from the CM sender and report loss or
ECN information to the sender. This protocol should not
generate too much traÆc on its own and also be resilient to
losses.

We now describe our lightweight probing protocol. The
sender CM periodically sends probes to the receiver CM to
elicit responses. The current frequency of these probes is
twice every round-trip. Each probe includes an increment-
ing, unique sequence number. The receiver CM, on receiving
this probe, responds with the sequence of the last probe it
received (i.e., the current one), the sequence of the last probe
it responded to, and the number of packets received for each

Data

Sender

Receiver

Probe
Time

Loss

Figure 9: Example of reordering of probe and data packets.

ow in between these two probes. Upon receipt of the re-
sponse, the sender can estimate per-ow loss rates because it
keeps track of the number of packets sent per ow, the total
loss rate in the network, and update its round-trip time es-
timate. Because the sender maintains information about all
probes since the last one for which a response was received,
the protocol is robust to losses of probes or responses.

Figure 8 shows pseudocode for the probing protocol at
the sender and receiver. For simplicity of exposition, we
assume that the sender and receiver maintain information
aggregated across all ows. The sender maintains an ar-
ray probe indexed by the probe number. Each entry of
the array is a structure with two elements: timesent, the
time at which the probe was sent, and nsent, the number
of bytes sent since the previous probe. It also has a vari-
able probeseqnum which is the sequence number of the next
probe to be sent.

This pseudocode correctly identi�es losses (and infers
congestion) when the network does not reorder packets. Un-
fortunately, when the network does reorder data and probe
packets, the packets received between a pair of probes may
not be the same as the packets sent between those same
probes. If the reordering occurs such that the fewer pack-
ets were received between the probes than were sent, the
CM will erroneously identify a loss and perform congestion
avoidance.

However, unlike TCP which would perform a premature
retransmission, the ambiguity in this case is not as serious
since the CM only performs congestion control, not retrans-
missions. Thus, if reordering is mistaken for a loss and we
later recognize this mistake, we can undo the changes to the
congestion state by updating the CM's congestion window.
The problem then is determining how to undo a false win-
dow reduction. This can be done by observing the number
of received and sent packets, nrecd and nsent, in successive
probes. In particular, if packet reordering had occurred,
the sender CM will see probe responses in which nrecd >

nsent, and can use these \extra" packets to identify the
previous false window reduction. The reduction can then be
reversed by incrementing the congestion window as neces-
sary.

As it turns out, doing this correctly is a little more in-
volved and requires a small amount of additional state. The
sender CM begins storing the cumulative number of sent and
received packets after it receives a response in which nsent

6= nrecd. For each subsequent response, it compares the
cumulative sent and received packets since it started storing
responses. If the sent and received count are not equal and
multiplicative decrease has not been performed for at least
one round trip time, the CM invokes its decrease routine. As



soon as the CM receives two successive reports with nsent

= nrecd, the CM clears its memory of stored responses. At
this stage, if the cumulative sent and received counts match,
then we know that the CM performed an unnecessary win-
dow reduction and this action is reversed. The example
shown in Figure 9 illustrates how this algorithm identi�es
reordered packets. In the �rst period, four packets were
sent and only three received. Since a loss was indicated,
the CM would perform a multiplicative decrease and store
the information about the number of packets sent and re-
ceived. The next probe indicates that an \extra" packet was
received. If no further losses had occurred, the CM would
notice that nsent = nrecd over the entire loss period and
reverse the previous window reduction. However, the next
probe indicates that only three out of �ve packets were re-
ceived. If this probe was more than one round trip after
the previous decrease, the CM would perform an additional
window decrease. Assuming that no further losses occurred,
the CM would not reverse either of the two decreases it had
performed. In this scenario, the \extra" packet may have be-
longed to the �rst or third loss periods and the CM should
have only performed a single window reduction. Since the
CM cannot identify this from the information it has, it takes
the conservative approach of two window reductions.

However, this solution is complex and does not work
well when packet duplication occurs. Duplicate packets may
cause losses to be hidden from the CM and wrongly reverse a
correct window reduction. We address these issues by incor-
porating a CM packet header, which solves these problems
(Section 4.3).

4.3 CM Packet Header

During our design, a question that repeatedly arose was
whether the CM should incorporate a packet header of its
own. There are some trade-o�s involved in this decision.

� Loss/congestion detection. In the absence of a CM
header with its own sequence number, detecting loss
and congestion is problematic. It increases the reliance
on a well-tuned probing scheme, because the CM re-
ceiver cannot provide feedback to sender as soon as
congesion has occurred. To prevent the sender from
transmitting in open-loop until the next probe and re-
sponse when congestion has already occurred is unde-
sirable. Note that this is not a signi�cant issue with
applications like TCP that incorporate their own se-
quence spaces and congestion detection machinery, us-
ing cm update() to inform the CM about congestion.

� Reordering issues. A CM header with an increment-
ing sequence number attached to data packets eases
the task of distinguishing losses from reordering.

� Deployment concerns. A CM header is certainly
cleaner, in the sense that all the information used by
the sender and receiver CM modules can be encapsu-
lated in it. However, adding this entails more change,
especially at the receivers. This is why we hesitated
including it initially.

In our initial design, we decided to incorporate the com-
plicated reordering machinery (Section 4.2.2) and thought
that we could arrive at a straightforward solution to the
probing frequency problem. This led us to believe that we
could get away with the simpler alternative of eliminating a
CM header. However, subsequent experience and reection

Version Type Protocol Checksum

0 4 8 16 31

FlowID

Sequence

Figure 10: Format of the CM header. Type can be one
of SYN (1), SYN-ACK (2), RST (3), PROBE (4), or RESPONSE

(5). Protocol is the transport protocol type that the packet
should be dispatched to at the receiver. Sequence is an
incrementing packet sequence number and FlowID uniquely
identi�es the ow.

Version Type Checksum

0 4 8 16 31

Unused

Unused

FlowID

FlowID

Count

Count

ThisProbe

LastProbe

NumFlows

Figure 11: Format of the CM response header. NumFlows is
the number of ows for which statistics are included in the
response. ThisProbe is the sequence number of the probe
triggering the response, and LastProbe is the sequence num-
ber of the previous probe received. Count is the number of
bytes received between ThisProbe and LastProbe for the
ow with identi�er FlowID.

convinced us that the complexity and ineÆciency of the re-
ordering distinguisher was enough to justify the additional
change required at receivers to process the CM header. Fur-
thermore, while we still believe that the feedback frequency
problem is tractable, we do not think it is trivial.

We convinced ourselves that the addition of a CM header
is not a signi�cant deployment problem because the CM al-
ready requires receiver changes to respond to periodic sender
probes and to implement the receiver-side API (both of
which require changes to the protocol stack). However, we
would like a CM sender to communicate with a receiver
that does not have a CM, and work well for applications
that provide feedback to the sender (which can in turn use
cm update() to inform the CM of the state of the network).
We achieve this by creating a new CM protocol type identi-
�er (IPPROTO CM) and negotiating the use of the CM header
via a two-way handshake between sender and receiver.

The CM uses the packet header format shown in Figure
10 for its messages. This is used in the probe and response
packets, in data packets, and in state setup/reset packets.

The Protocol �eld is used by the receiver CM to decide
which transport protocol to pass the incoming packet on to.
This is needed because the sender CM rewrites the IP pro-
tocol �eld of all outgoing packets to CM-enabled receivers
using a new IP protocol type IPPROTO CM (this protocol num-
ber needs to be standardized by the IETF).



When any data is received, the sequence number �eld
increments for every packet that is transmitted to the des-
tination, independent of FlowID. The receiver CM monitors
these sequence numbers (and ECN as well) to determine if
congestion has occurred. It is robust to reordering in the
same way that TCP is, agging a congestion event to the
sender only if a packet at least three packets greater than a
missing one arrives.

For type PROBE packets, the sequence number refers to
the probe sequence number, which is a di�erent increment-
ing stream from the data sequence numbers. In response, the
receiver sends a RESPONSE packet, which has a very di�erent
format from the other types (see Figure 11). The RESPONSE
packet carries in it per-ow information of the number of re-
ceived bytes between two probe sequence epochs|the cur-
rent sender probe and the previous one received by the re-
sponder.

The SYN packet type is used to perform a two-way hand-
shake between sender and receiver. The CM sender uses
this to determine if a given receiver is CM-enabled. Ob-
serve that a three-way handshake is unnecessary because
the receiver's RESPONSE messages do not use an independent
sequence number, they only echo the sender's query. If a
pair of hosts are both sending and receiving CM-enabled
traÆc between each other, there are two \connections" of
the probe/response protocol in action.

The RST type is used to reset the sender's state after
crash recovery or any other loss of synchronization in the
sender and receiver states.

When the sender encounters a new receiver, it sends a
SYN packet with an initial sequence number using the same
mechanism that TCP uses. There are two cases to consider:
a CM-enabled receiver and a non-CM receiver.

In the �rst case, the receiver's IP layer passes the packet
on to the receiver CM because of the IPPROTO CM protocol
type. The receiver CM generates a SYN-ACK in a response,
echoing the sequence number. If the receiver was not CM-
enabled, the SYN would be dropped and an ICMP \protocol
not available" message sent to the sender. Upon the receipt
of this message or on a timeout (since the sender cannot
rely on the ICMP being generated or received), the sender
realizes that the receiver is not CM-enabled and proceeds
without the CM header.

In the above description, no application data is sent dur-
ing the round-trip to e�ect this handshake. This is undesir-
able, so we permit packets to be sent emulating TCP slow
start, and assuming that the receiver does not have a CM
(i.e., these packets do not have a CM header). If the receiver
is indeed CM-enabled, we discover this when the SYN-ACK

arrives and start incorporating a CM header on packets.
The existence of the CM header is transparent to the

transport protocols and applications at both the sender and
receiver. Thus, when the receiver-side CM receives a packet
with data, it adds the payload size (from the IP header) to
the number of bytes received on the corresponding FlowID,
strips the CM header and passes the packet to the higher
layer based on the Protocol �eld in the CM header.

Finally, PROBE and RESPONSE types are handled as ex-
plained in Section 4.2.2.

4.4 Exponential aging

The probing protocol described above periodically elicits a
response from the receiver regarding the number of received
bytes to infer the state of the network. However, probe mes-
sages or responses may be lost during times of congestion,

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

Se
qu

en
ce

 N
um

be
r

Time (seconds)

rttmin
srtt

Figure 12: Sequence traces showing that exponential aging
based on mean round-trip time causes substantially more
losses than the alternative based on minimum round-trip
time.

because of which the sender will not have an accurate esti-
mate of the network state.

The �rst possible way to handle this is to clamp sender
transmissions if more than one round-trip time elapses since
the receipt of the last response. This is a conservative re-
sponse and is the least likely to lead to instability. However,
it comes at signi�cant cost, because all ows stall until we
hear a response once again, which could take quite a while
longer because of the low probe frequency.

The second possible way to handle this is exactly the
opposite: continue to transmit at the same rate until a re-
sponse arrives, which may indicate that all packets were
successfully received or that losses happened. The CM can
now either increase or decrease its rate at this time. How-
ever, this is overly aggressive behavior because the sender
transmits data in open-loop fashion for multiple round-trips
without attention to the true state of the network. We are
therefore forced to search for a compromise that avoids com-
plete stalls, but yet transmits at prudent rates while in open-
loop mode.

Our solution is a technique we call exponential aging,
which is triggered when the CM does not receive a response
to a probe message within a round-trip time. In each subse-
quent round-trip period starting from this point, the open-
loop transmission rate is halved to its current value. This
leads to an exponential fall-o� in the rate as a function of
time while in open-loop mode. It is not hard to see that this
algorithm is stable because, in the worst case, each subse-
quent round-trip will also be congested. Such rate reduction
would be the appropriate action if this were to happen, and
it is easy to verify that the throughput-loss relationship has
behavior similar to TCP. Thus, exponential aging permits
ows to continue transmitting data without stalls, albeit at
lower rates.

An important parameter in exponential aging is the time
intervals at which rate reduction is done, or the \half-life"
of the algorithm. Our �rst choice was to use the sender's
smoothed round-trip estimate for this. However, Figure 12
shows that this choice of half-life is too aggressive. This is
because upon the onset of congestion, the sender's smoothed
round-trip estimate often increases as a result of larger queue-
ing delays, and rather than decay at an exponent governed
by the true mean round-trip time, the decay occurs at a
much slower rate. This leads to unstable behavior and in-
duces a large number of losses.

Fortunately, there is an easy solution to this problem
that signi�cantly improves things by ensuring more con-



0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Se
qu

en
ce

 N
um

be
r

Time (seconds)

Figure 13: The CM scheduler apportions bandwidth well
between simultaneous ows.

servative behavior. Because the problem is caused by the
sender transmitting too rapidly and for too long in open-loop
mode, we decrease the time-constant of exponential decay.
The CM keeps track of the minimum of all its round-trip
samples obtained over the duration of activity and decays
the open-loop rate based on this. The improvements over
using the mean round-trip estimate are apparent from Fig-
ure 12 which shows the sequence traces of transfers in each
mode. Using the smoothed round-trip time, the connection
experiences a larger number of losses and does not recover
from it, while with the minimum, it does not burst out as
many packets.

4.5 Better-than-best-e�ort Networks

Thus far, our design of the CM architecture assumes that
the underlying network provides a best-e�ort service model.
It is likely that the future Internet infrastructure will in-
corporate mechanisms such as di�erentiated services, inte-
grated services, priorities based on ow identi�ers or port
numbers, etc., and that a non-trivial fraction of Internet
traÆc will use these enhancements. In such situations, the
previously described approach of aggregating congestion in-
formation based on the peer host address will in general be
incorrect because di�erent ows might experience di�erent
bandwidths and loss rates, depending on how routers treat
them.

This problem may be tractable using ow segregation,
where the ows are aggregated not by host address but by
some combination of address, port numbers, and identi�ers.
If an application knows a priori that some of its ows will
be treated di�erently from best-e�ort traÆc, it can inform
the CM of this. To function well in the absence of such
explicit information, the CM incorporates a segregation al-
gorithm to classify ows into aggregates based on loss rates
and perceived receiver throughputs. Using a combination of
cm update() hints and the probing protocol, the CM obtains
per-ow loss-rates and bandwidths, to segregate (and there-
fore also cluster) ows if their properties are very di�erent.
At this point, we have not implemented or experimented
with this, but plan to do so soon.

4.6 Flow Scheduling

One of the advantages of the modular CM design is that
one scheduler can be swapped with another without a�ect-
ing the rest of the system. We currently use a simple Hier-
archical Round Robin (HRR) Scheduler [17]. The sched-
uler apportions bandwidth among ows in proportion to

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Se
qu

en
ce

 N
um

be
r

Time (seconds)

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

Se
qu

en
ce

 N
um

be
r

Time (seconds)

Figure 14: The top graph shows sequence traces for a Web-
like workload using 4 concurrent TCP Newreno connections.
The performance of these transfers is highly variable and
inconsistent. The bottom graph demonstrates the consis-
tent and predictable performance of a Web workload using
TCP/CM|the four connections are indistinguishable!.

pre-con�gured weights (and soon based on receiver hints).
Figure 13 shows ows starting at di�erent times eventually
achieving the same rate allocation from the HRR scheduler.

The scheduler is invoked whenever any application makes
a call to transmit data. It schedules the request for a time
in the future based on the CM congestion window and on
past transmissions, without considering the current request
size (indeed, there is no explicit request size in the API).
At this time, it calls cmapp send(), causing the application
to send up to mtu bytes (obtained by the application using
cm mtu().

The scheduler as currently implemented performs only
bandwidth allocation, and does not use delay bounds in its
scheduling. While this is adequate for applications like TCP,
it does not accomodate delay-sensitive applications. We are
planning on implementing an H-FSC-like scheduler [31] in
the CM.

5 Application Performance

We have implemented the CM in ns [33]. We have also
implemented a TCP agent and an audio server application
to use the CM, and performed experiments with a variety
of topologies. We present and discuss the results for the
topology shown in Figure 7.

5.1 Web Performance

This section presents the results of experiments with a sim-
ple Web-like workload consisting of four concurrent connec-
tions with signi�cant TCP and constant bit-rate cross-traÆc
in a network with a 1 Mbps bottleneck link and round-trip
propagation delay of 120ms. Our results show that the CM



ensures proper behavior in the face of congestion and im-
proves the consistency of application performance.

Figure 14 shows two sets of sequence traces: when TCP
Newreno was used, and when TCP/CM was used for the
four connections. Using TCP Newreno, the performance of
the four connections varies between 99 Kbps and 268 Kbps,
a factor of 2.7 in transfer time between the fastest and slow-
est connections! This is because of the lack of shared state
learning and the competitive, rather than cooperative con-
gestion control for the ensemble of connections. In contrast,
the four connections using TCP/CM progress at very sim-
ilar, consistent rates sharing bandwidth equitably. All four
connections achieve throughputs of 170 Kbps, without caus-
ing as many losses along the way. Thus, the CM enables the
ensemble of connections to e�ectively share bandwidth and
learn from each other about the network.

We calculated the fairness index [16] for several experi-
ments; for the TCP/CM ensemble, the index was 1.0 while
for the Newreno ensemble it was 0.952. Note that the ag-
gregate throughput obtained by the TCP/CM connections
(� 680 Kbps) is lower than the aggregate throughput ob-
tained by independent TCP Newreno connections (� 785
Kbps). This is not surprising because the CM forces the
concurrent connections to behave as one from the point of
congestion control, whereas the e�ective decrease and in-
crease coeÆcients for the independent connections are sig-
ni�cantly larger than for a single TCP. The CM does indeed
ensure that a group of connections between the same hosts
behaves in a socially proper way. The observed throughput
degradation, while unfortunate, is a consequence of correct
congestion control. But TCP applications do directly ben-
e�t in signi�cant ways: they obtain improved performance
consistency and predictability, which is a de�nite incentive
for adoption.

5.2 Layered Audio Performance

This section discusses the results of experiments testing the
interactions of adaptive audio applications using CM with
TCP traÆc. Our experiment consisted of performing test
transfers against competing TCP and constant bit rate cross
traÆc across a bottleneck link of 0.5 Mbps and a round-trip
propagation delay of 120 ms. The test traÆc consisted of
a single audio transfer using CM, a single TCP/CM trans-
fer (on the same end-host) and a TCP Newreno transfer.
The expected and desired result is that the combined band-
width of the TCP/CM and audio transfer would equal the
bandwidth of the TCP Newreno transfer. In addition, the
audio transfer should choose an encoding that most closely
matched it to the bandwidth of the TCP/CM transfer. In
our experiment, the audio application chose amongst encod-
ings of 10, 20, 40, 80, 160 and 320 Kbps. It always performed
transmissions of 1 KB packets.

The results of the experiment, shown in Figure 15, con-
�rm that the CM, TCP/CM and adaptive audio perform
as desired. The TCP Newreno transfer obtained approxi-
mately 150 Kbps. The combination of the audio, at about
65Kbps, and the TCP/CM, at about 85 Kbps, was close to
the throughput of Newreno. The audio primarily used the
80 Kbps encoding, occasionally switching to the 40 and 160
Kbps encodings. These results show that the CM API en-
ables applications like layered audio to adapt well to network
conditions, despite only using coarse-grained layers.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

Se
qu

en
ce

 N
um

be
r

Time (seconds)

Audio/CM
TCP/CM
TCP Newreno

Figure 15: Performance of a layered adaptive audio appli-
cation using the CM.

6 Related Work

Most Web sessions today use multiple concurrent TCP con-
nections. Each connection wastefully performs slow start
irrespective of whether other connections are currently ac-
tive to the same client. Furthermore, upon experiencing
congestion along the path to a client, only a subset of the
connections (the ones that experience losses) reduce their
window. The resulting multiplicative decrease factor for the
ensemble of connections is often larger than 0.5 [1], the value
used by individual TCPs3. This is unfair relative to other
clients that use fewer connections, and worse, will lead to
instability in a network where most clients operate in this
fashion. To solve these problems, researchers have proposed
two classes of solutions|application-level solutions and in-

tegrated TCP congestion control.

6.1 Application-level Solutions

Application-level solutions multiplex several logically dis-
tinct streams onto a single transport (TCP) connection to
overcome the adverse e�ects of independent competing TCP
transfers. Examples of this include Persistent-connection
HTTP (P-HTTP, part of HTTP/1.1), which is application-
speci�c, and the Session Control Protocol (SCP) [28] and
the MUX protocol [11], which are not tied to HTTP.

There are several drawbacks with this class of solutions.

� Architectural problems: These solutions are application-
speci�c and attempt to avoid the poor congestion man-
agement support provided by protocol stacks today.
However, congestion is a property of the network path
and the right point in the system to manage it is inside
the protocol stack, not at the application. If the right
support is provided by the system, the need for such
solutions can be eliminated.

� Application-speci�city: These solutions require each
class of applications (Web, real-time streams, �le trans-
fers, etc.) to reimplement much of the same machinery,
or else force them to use protocols like TCP that are
not well-suited to the task at hand.

� Undesirable coupling: These solutions typically mul-
tiplex logically distinct streams onto a single byte-
stream abstraction. If packets belonging to one of the
streams is lost, another stream could stall even if none

3If there are n concurrent connections with equal windows and m
of them experience a loss, the decrease factor is (1�m=2n).



of its packets are lost. This is because of the in-order
delivery provided by TCP, which forces a linear order
over all the transferred bytes when only a partial or-
der is desired. This is a violation of the ALF principle
[6], which states that independent Application Data
Units (ADUs) should be independently processible by
receivers independent of the order in which they were
received.

6.2 Transport level solutions

Motivated in part by the drawbacks of the above solutions
and by the desire to improve Web transfer performance,
various researchers have proposed modi�cations to TCP it-
self [1, 21, 32]. In RFC 2140 [32], Touch proposes a scheme
called \TCP control block interdependence," where the goal
is to share part of the TCP control block between connec-
tions to improve transient TCP performance. In [1, 21],
the authors present an integrated approach to TCP where
TCP control block state is shared for better congestion con-
trol and loss recovery for concurrent connections. Although
these approaches do solve some of the problems associated
with the Web scenario, they are transport-speci�c and do
not provide any APIs for application adaptation.

6.3 Real-time Multimedia

There has been some recent work in developing congestion
control protocols for such applications. Much of this work
has been in the context of multicast video (e.g., IVS [3],
RLM [18], etc.). There have also been numerous recent con-
gestion control proposals for various reliable multicast ap-
plications (for a survey, see [25]). In contrast to these e�orts
which are application-speci�c, our aim is to develop a sub-
strate that manages congestion and allows applications to
implement their own adaptation policies. For example, the
RAP protocol [24] is a rate-based congestion control scheme
intended for streaming applications. The CM provides a
general architecture within which a scheme like RAP could
be implemented as the congestion controller. Because the
CM is independent of speci�c transport protocols and fa-
cilitates the sharing of information, it integrates congestion
management across all ows.

7 Conclusions

This paper motivated and presented the Congestion Man-
ager (CM) architecture for managing Internet congestion.
At the sender, the congestion manager maintains network
statistics on a per-receiver basis, performs congestion avoid-
ance and control, schedules transmissions, and exposes an
API based on ALF principles to enable applications to adapt
to congestion. At the receiver, the CM maintains loss statis-
tics, responds to sender probes, and exposes an API for ap-
plications to provide hints on apportioning bandwidth.

We showed using ns-based simulations that the CM en-
abled eÆcient multiplexing of logically di�erent streams, en-
suring proper congestion behavior for an ensemble of ows.
Our results showed that the CM enhances the predictability
of TCP performance and allows a layered audio application
to adapt well to changing bandwidth.

In terms of deployment, the full bene�ts of the CM ar-
chitecture require changes to both senders and receivers.
However, substantial bene�ts can be obtained with sender
changes alone (e.g., at popular servers), especially for those

applications such as TCP that already have their own feed-
back mechanism. This incremental deployment path encour-
ages us to be optimistic about the CM's long-term prospects.

Acknowledgments

Several people provided useful comments and constructive
criticism of the CM design and earlier versions of this pa-
per. Our special thanks to Sally Floyd, Mark Handley,
Vern Paxson, and Steve McCanne for extensive discussions
that greatly improved (and simpli�ed) the CM API. We
thank Mark Allman, Jean Bolot, Sally Floyd, Mark Hand-
ley, Tom Henderson, Frans Kaashoek, Shiv Kalyanaraman,
Steven McCanne, Greg Minshall, Robert Morris, Vern Pax-
son, Bodhi Priyantha, Suchitra Raman, Lixia Zhang, and
the SIGCOMM reviewers for their comments on this work.
This research was supported in part by a research grant from
the NTT Corporation. Much of this work was done while
Srinivasan Seshan was a Visiting Scientist at the M.I.T. Lab-
oratory for Computer Science.

References

[1] Balakrishnan, H., Padmanabhan, V. N., Seshan, S.,

Stemm, M., and Katz, R. TCP Behavior of a Busy Web
Server: Analysis and Improvements. In Proc. IEEE INFO-
COM (Mar. 1998).

[2] Bennett, J., and Zhang, H. Hierarchical Packet Fair
Queueing Algorithms. In Proc. ACM SIGCOMM (Aug.
1996).

[3] Bolot, J., Turletti, T., and Wakeman, I. Scalable Feed-
back for Multicast Video Distribution in the Internet. In
Proc. ACM SIGCOMM (London, England, Aug 1994).

[4] Chiu, D.-M., and Jain, R. Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in Com-
puter Networks. Computer Networks and ISDN Systems 17
(1989), 1{14.

[5] Clark, D., Shenker, S., and Zhang, L. Supporting Real-
Time Applications in an Integrated Services Packet Network:
Architecture and Mechanisms. In Proc. ACM SIGCOMM
(August 1992).

[6] Clark, D., and Tennenhouse, D. Architectural Consid-
eration for a New Generation of Protocols. In Proc. ACM
SIGCOMM (September 1990).

[7] Demers, A., Keshav, S., and Shenker, S. Analysis and
Simulations of a Fair-Queueing Algorithm. Internetworking:
Research and Experience V, 17 (1990), 3{26.

[8] Ferrari, D., and Verma, D. A scheme for real-time com-
munication services in wide-area networks. IEEE Journal
on Selected Areas in Communications 8, 3 (Apr. 1990), 368{
379.

[9] Floyd, S. Connections with Multiple Congested Gateways
in Packet-Switched Networks Part 1: One-way TraÆc. Com-
puter Communications Review 21, 5 (Oct. 1991).

[10] Floyd, S. TCP and Explicit Congestion Noti�cation. Com-
puter Communications Review 24, 5 (Oct. 1994).

[11] Gettys, J. Mux protocol speci�cation, wd-mux-961023.
http:// www.w3.org/ pub/ WWW/ Protocols/ MUX/ WD-
mux-961023.html, 1996.

[12] Hashem, E. Analysis of Random Drop for Gateway Con-
gestion Control. Tech. Rep. LCS TR-465, Laboratory for
Computer Science, MIT, 1989.

[13] Hoe, J. C. Improving the Start-up Behavior of a Congestion
Control Scheme for TCP. In Proc. ACM SIGCOMM '96
(Aug. 1996).



[14] Holtman, K. Transparent Content Negotiation in HTTP.
RFC, March 1998. RFC-2295.

[15] Jacobson, V. Congestion Avoidance and Control. In Proc.
ACM SIGCOMM 88 (August 1988).

[16] Jain, R. The Art of Computer Systems Performance Anal-
ysis. John Wiley and Sons, 1991.

[17] Kalmanek, C. R., Kanakia, H., and Keshav, S. Rate
Controlled Servers for Very High-Speed Networks. In Pro-
ceedings of the IEEE Conference on Global Communications
(Dec 1990).

[18] McCanne, S., Jacobson, V., and Vetterli, M. Receiver-
driven Layered Multicast. In Proc ACM SIGCOMM (Aug.
1996).

[19] Mogul, J., and Deering, S. Path MTU Discovery, Nov
1990. RFC-1191.

[20] ns-2 Network Simulator.
http://www-mash.cs.berkeley.edu/ns/, 1998.

[21] Padmanabhan, V. Addressing the Challenges of Web
Data Transport. PhD thesis, Univ. of California, Berkeley,
September 1998.

[22] Parekh, A. K., and Gallager, R. G. A Generalized Pro-
cessor Sharing Approach to Flow Control in Integrated Ser-
vices Networks: The Single-Node Case. IEEE/ACM Trans-
actions on Networking 1, 3 (June 1993), 344{357.

[23] Ramakrishnan, K., and Floyd, S. A Proposal to Add
Explicit Congestion Noti�cation (ECN) to IPv6 and to TCP.
Internet Draft draft-kksjf-ecn-00.txt, Nov. 1997. Work in
progress.

[24] Rejaie, R., Handley, M., and Estrin, D. RAP: An End-
to-end Rate-based Congestion Control Mechanism for Real-
time Streams in the Internet. To appear in Proc. Infocom
99.

[25] Reliable Multicast Research Group.
http://www.east.isi.edu/RMRG/, 1997.

[26] Saltzer, J., Reed, D., and Clark, D. End-to-end Argu-
ments in System Design. ACM Transactions on Computer
Systems 2 (Nov 1984), 277{288.

[27] Schulzrinne, H., Casner, S., Frederick, R., and Jacob-

son, V. RTP: A Transport Protocol for Real-Time Applica-
tions. RFC, Jan 1996. RFC-1889.

[28] Spero, S. Session Control Protocol (SCP). http://
www.w3.org/ pub/ WWW/ Protocols/ HTTP-NG/ http-ng-
scp.html, 1996.

[29] Stevens, W. R. UNIX Network Programming. Addison-
Wesley, Reading, MA, 1992.

[30] Stevens, W. R. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms, Jan 1997.
RFC-2001.

[31] Stoica, I., and Zhang, H. A Hierarchical Fair Service
Curve Algorithm for Link-Sharing, Real-Time and Priority
Services. In Proc. ACM SIGCOMM '97 (1997).

[32] Touch, J. TCP Control Block Interdependence. RFC, April
1997. RFC-2140.

[33] VINT Project. http://netweb.usc.edu/vint, 1998.

[34] WebTP Home Page. http://webtp.eecs.berkeley.edu/, 1999.

[35] Zhang, L. A New Architecture for Packet Switching Net-
work Protocols. Tech. Rep. LCS TR-455, Laboratory for
Computer Science, MIT, Aug. 1989.

[36] Zhang, L., Deering, S., Estrin, D., Shenker, S., and
Zappala, D. RSVP: A new resource ReSerVation Protocol.
IEEE Network Magazine (Sept. 1993), 8{18.


