Self-Organizing Collaborative Environments

Hari Balakrishnan Srinivasan Seshan Pravin Bhagwat M. Frans Kaashoek
MIT LCS IBM Watson IBM Watson MIT LCS

1. Introduction

This position paper outlines a vision for smart environments based on
self-organizing collaborative regions. It describes

important research challenges in networking infrastructure and
middleware to be tackled over the next few years, including networking
over Bluetooth, ad hoc topology formation and configuration,
intentional naming and discovery, and self-configuring overlays.

Our vision of smart environments of the future is motivated by three
main goals:

1. Enhance collaboration: Today, it is cumbersome to set up ad hoc
collaborating communities of people and their computing devices; for
example, when a group of people gather together in a room and wish to
exchange information, it requires significant manual effort and causes
great frustration. Ideally, ad hoc interaction between people and
devices should be as easy as assembling lego-style building
blocks. Our vision is a collaborative region of mobile people, their
networked devices, and their distributed applications, that is
self-organizing.

2. Integrate the physical world: The future is certain to see a
large number of networked devices that will allow us to interact with
the physical world and control it better. However, the large number
and diversity of such entities requires scalable techniques for the
discovery and control of these devices.

3. Reduce management cost: Over time, management and operational
costs have started to dominate other costs; this is because of the
excessive amount of difficult and manual configuration and maintenance
required both in the underlying network layer and in the organization
of networked services and applications. Furthermore, with rapidly
diminishing hardware cost, the number of networked devices and
appliances will rapidly increase, thus increasing overall operating
costs.

Our vision is shared by many others; our main contribution is a set of

ideas to realize the vision: (i) ad hoc networking protocols over
Bluetooth, (ii) intentional naming, and (iii) self-configuring
overlays.

2. Networking with Bluetooth

A variety of technology trends have made it possible to incorporate
computational capability in all devices. Unfortunately, although
shrinking technology has made the devices around us "smart," it has
not always improved their usability. What we need is an infrastructure
via which people and systems with more usable interfaces can in turn
control and interact with these smaller more ubiquitous devices. The
easiest way to do this is to provide IP-level network connectivity
between devices and the systems that interact with them.



The first step in this infrastructure is to provide a low cost, low
power, wireless communication system. One of the key technologies we
are planning on using to interconnect devices is Bluetooth. Bluetooth
is an emerging, promising, low-power (0 dbm), short range (10-15
meters) RF wireless technology with the primary objective of
eliminating cables between devices. Bluetooth allows the formation of
relatively static short range pico-nets where a designated master node
can be connected to up to seven slaves. In principle, using Bluetooth
interfaces it should be possible to form an ad hoc network of devices,
but the techniques for forming such networks are largely unknown
today---i.e., today, Bluetooth is "wireless cabling" and not a true
link layer over which IP can run.

Because of the short range nature of wireless links, not every device
in our network will be able to communicate with every other device or
with the wired infrastructure. We need to support routing among ad
hoc groupings of devices to ensure ubiquitous reachability. The
characteristics of our simple devices connected via Bluetooth make the
problem different from traditional wireless ad hoc routing. In
traditional ad hoc routing, the topology of the nodes is dictated by
their current location and reachability. In a densely concentrated
Bluetooth network, the interconnection of nodes is largely determined
by the set of pico-nets that each node is participating in. In
addition, the traditional ad hoc routing solutions assume that most
nodes are similar in capabilities and are willing to forward packets
and participate in the route discovery algorithms. Many devices may
not be willing to forward packets or participate in the control
protocol due to energy or computational constraints. New protocols
must be developed for this environment: The combination of
point-to-point and master-slave link abstractions, and
energy/computation constraints affect routing protocol design.

We need protocols to allocate network addresses for these devices and
automatically configure them. The scalable, automatic approach is
decentralized, unlike existing schemes like DHCP that rely on a server
to assign addresses and prevent address collisions. In particular, we
are designing a distributed, randomized protocol for this. Because
addresses signify location in a network topology, the ad hoc
addressing protocol also has to handle the joining and splitting of
subnetworks as nodes move and new nodes join a region.

3. Intentional naming

The large number of networked devices and services requires scalable
techniques to discover and manage them. We believe that one of the
core technical challenges here is in the design of a naming system
allows service-providing nodes to easily advertise what they provide,
and nodes that desire services to express what they want. One
possible approach to this is to design a large-scale intentional
naming system. Today, most network naming schemes (including the DNS)
are built around the implicit assumption that what applications want
to retrieve are the contents of an address, where the address
signifies location in the network topology. In fact, what distributed
applications want to retrieve is either information or functionality.
The key insight behind intentional names is that while applications
may not know best *where* to find what they are looking for, they



often can express *what* they want. Thus, the first step is to
support a more intentional network naming scheme in which applications
describe what they are looking for (their "intent"), not where to find
it.

Intentional names must be descriptive, using a carefully designed
language that allows applications to express a rich set of properties
and perform queries for services they want. A language that allows
exact (and fuzzy) matches of attributes and values, range operations,
and wild-card matches is a good starting point. The precise set of
operators in the language is an important research question.

To illustrate the power of an intentional name, notice that a
networked audio speaker in MIT LCS's Room 510 of Building NE-43 can be
expressed using the following intentional name (or something similar):

[owner = lcs.mit.edul /* owner's domain name */
[entity = audio-speaker] /* type of service */
[building = ne-43
[room = 510]] /* example of a hierarchical attribute */
[id = 18310149] /* this is a unique ID, like an IP address */
[access = public]

This contrasts greatly with what one would do today, which is
hard-code and manually maintain a DNS entry such as
speaker510.1lcs.mit.edu (and have to maintain elsewhere, manually, that
this corresponds to a particular speaker). To access services,
applications construct query expressions based on intentional names,
describing what they desire.

To take this desired behavior and turn it into something real requires
a system architecture for intentional names that scales well with a
large number (potentially hundreds of millions) of names (services).
We intend to use our self-configuring overlay framework to deploy
intentional-name resolvers (the next section discusses this).
Supporting "late binding" between names and network addresses allows
us to address mobility, replication, and distribution of services.
Here, name resolvers do not simply return the handle to the network
location of a name; rather, they forward messages in the overlay
network to the eventual intended destination(s). This integration of
resolution and message forwarding enables highly dynamic name
bindings, since the application is never left with a stale binding
even if bindings change while the message is in transit. We believe
that enabling late binding in the resolution process is key to
handling dynamism in self-organizing networked systems.

4. Self-configuring overlay networks

Numerous networked services form an application-level overlay network

over a network-layer such as IP. Examples of this include naming
systems (Section 3), transcoding middleware, cache and replica
management, performance discovery systems, etc. Overlay networks are

a convenient way to add new functions to the network and they will
become more important as we try to move the Internet into new
application domains.

Currently overlay networks are not general (one for each application)



and are static (e.g., DNS, MBone, 6Bone). To work well in dynamic
environments, middleware to organize, deploy, and administer an
overlay is necessary. To make self-configuring overlay networks a
reality, the following issues need to be addressed:

1. Bootstrap. In the absence of even one overlay node (e.g., a name
server, a transcoder, a cache, etc.), the protocol must have a
bootstrap mechanism to spawn one. This is especially important
in ad hoc networks without a pre-configured infrastructure.

2. Neighbor formation. One of the features of overlay networks is
that they exchange information between other overlay nodes, such
as meta-data, routing information, etc. To scale well and be
efficient, nodes need to establish neighbor relationships with
other nodes.

3. Load management. As the load on an overlay node increases, nodes
need to be able to offload work on to other nodes, perhaps
spawning them if necessary. This needs to be done in a
decentralized manner.

4. Dissemination. Overlay nodes need to exchange task-specific
information between each other (e.g., cache contents, mobile node
locations, transcoder state, etc.). To achieve robustness and
availability, we believe that the use of "soft-state" protocols
is crucial. 1In this respect, the overlay architecture shares
common properties with the successful Internet routing
infrastructure.

5. Application control. Overlays should be able to participate in
message routing, allowing applications to influence routing
metrics (compared to using hop count alone).

The key difference between overlays and network-layers, such as IP, is
that overlays incorporate application-specific information. We expect
that a self-organizing overlay in which new network services can plug
in application-specific forwarding metrics and meta-data that will
allow networks to quickly adopt to new application domains.

5. Summary

As many others, we believe that smart environments should improve
collaboration, integrate the physical world, and reduce management
costs. To enable this shared vision, we propose three ideas:
networking with Bluetooth, intentional naming, and self-configuring
overlays.



