
 draft-cm-cm-00.txt

Internet Engineering Task Force Hari Balakrishnan
INTERNET DRAFT MIT
Document: draft-ietf-cm-cm-00.txt Srinivasan Seshan

 IBM
 June 23, 1999

 Expires: December 23, 1999

 The Congestion Manager

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [1].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet- Drafts
 as reference material or to cite them other than as "work in
 progress."
 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt
 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

1. Abstract

 This document describes the Congestion Manager (CM), an end-system
 module that (i) enables an ensemble of multiple concurrent flows
 sharing the same receiver and congestion behavior to display proper
 congestion behavior, and (ii) allows applications to easily adapt to
 network congestion. This framework integrates congestion management
 across all applications and transport protocols. The CM maintains
 congestion parameters (available aggregate and per-flow bandwidth,
 per-receiver round-trip times, etc.) and exports an API that
 enables applications to learn about network characteristics, obtain
 information from and pass information to the CM, share congestion
 information, and schedule data transmissions. This document focuses
 on applications and transport protocols with their own independent
 per-byte or per-packet sequence number information. It does not
 address networks with reservations or service discrimination.

2. Conventions used in this document:
 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [2].

 FLOW
 A "flow" is a stream of packets that all share the same source

 and destination IP address, transport protocol, and transport
 port numbers.

 MACROFLOW
 A group of flows that uses the same congestion management and
 scheduling algorithms, and shares congestion state
 information. Flows destined to different receivers MUST belong
 to different macroflows. Flows destined to the same receiver
 MAY belong to different macroflows. Flows that experience
 identical congestion behavior in the Internet and desire the
 same congestion control algorithm SHOULD belong to the same
 macroflow.

 APPLICATION
 Any software module that uses the CM is called an
 "application." This includes user-level applications such as
 Web servers or audio/video servers, as well as in-kernel
 protocols such as TCP [3] that use the CM for congestion
 control.

 WELL-BEHAVED APPLICATION
 An application that only transmits when allowed by the CM and
 accurately accounts for all data that it sends, by informing
 the CM using the CM API.

 STREAM
 A "stream" is a logical sequence of packets generated by an
 application that directly corresponds (one-to-one) with a
 network-layer FLOW.

 PATH MAXIMUM TRANSMISSION UNIT (PMTU)
 The PMTU is the size of the largest packet that the sender can
 transmit without it being fragmented. It includes the sizes
 of all headers and data except the IP header.

 CONGESTION WINDOW (cwnd)
 A CM state variable that modulates the amount of outstanding
 data between sender and receiver.

 OUTSTANDING WINDOW (ownd)
 The number of bytes that has been transmitted by the source,
 but not known to have been either received by the destination
 or lost in the network, is called OUTSTANDING. OUTSTANDING
 MUST not exceed the CONGESTION WINDOW.

 INITIAL WINDOW (IW)
 The initial window is the size of the source's congestion
 window at the beginning of a macroflow.

 DATA TYPE SYNTAX
 We use "u64" for unsigned 64-bit, "u32" for unsigned 32-
 bit, "u16" for unsigned 16-bit, "u8" for unsigned 8-bit, "i32" for
 signed 32-bit, "i16" for signed 16-bit quantities, "float" for IEEE
 floating point values. The type "void" is used to indicate that no
 return value is expected from a call. Pointers are referred to
 using "*" syntax, following C language convention.

3. Introduction

 The CM is an end-system module that enables an ensemble of multiple
 concurrent flows to display proper congestion behavior and allows
 applications to adapt to network congestion. It integrates
 congestion management across all applications and transport
 protocols. The CM maintains congestion parameters (available
 aggregate and per-flow bandwidths, per-receiver round-trip times,
 etc.) and exports an API to enable applications to learn about
 network characteristics, obtain information from and pass
 information to the CM, share congestion information, and schedule
 data transmissions. All data transmissions MUST be done with the
 explicit consent of the CM via this API to ensure proper congestion \
behavior.

 This document focuses on applications and networks where the
 following conditions hold:

 1. Well-behaved applications with their own independent per-byte
 or per-packet sequence number information.
 2. Best-effort networks without service discrimination or
 reservations. In particular, it does not address situations where
 different flows between the same pair of hosts traverse paths with
 differing characteristics.

 The Congestion Manager can be extended to support applications that
 do not provide their own feedback. These extensions will be
 addressed in later documents.

 The CM is motivated by two main goals:

 (i) Enable efficient multiplexing. Increasingly, the trend on the
 Internet is for unicast data senders ("servers") to transmit a wide
 variety of data to receivers ("clients"), ranging from unreliable

 real-time streaming content to reliable Web pages and applets. As a
 result, many logically different flows share the same path between
 sender and receiver. For the Internet to remain stable, each of these
 streams must incorporate control protocols that safely probe for

 spare bandwidth and react to congestion. Unfortunately, these
 concurrent flows typically compete with each other for network

 resources, rather than share them effectively. Furthermore, they
 do not learn from each other about the state of the network. Even
 if they each independently implement congestion control

 (e.g., a group of TCP connections), the ensemble of flows tends
 to be more aggressive in the face of congestion than a single TCP
 connection implementing congestion control and avoidance.

 (ii) Enable application adaptation to congestion. Increasingly
 popular real-time streaming applications run over UDP using their own
 user-level transport protocols for good application performance, but
 in most cases today do not adapt or react properly to network
 congestion. By implementing a stable control algorithm and exposing a
 simple API, the CM enables easy application adaptation to congestion.

 The resulting end-host protocol architecture at the source is shown
 in Figure 1. The CM helps achieve network stability by
 implementing stable congestion avoidance and control algorithms

 that are "TCP-friendly" [4]. However, it does not attempt to
 ENFORCE proper congestion behavior for all applications (but it
 does not preclude a policer on the host that performs this task).
 Note that while the policer at the end-host can use CM, the network
 has to be protected against compromises to the CM at the end hosts,
 a task that requires router machinery. We do not address this issue
 further in this document.

--------		--------		--------		--------		--------------
HTTP		FTP		RTP 1		RTP 2		
--------		--------		--------		--------		
 | | | ^ | ^ | |
 | | | | | | | Scheduler |
 | | | | | | |---| | |
 | | | |-------|--+->| | | |
 | | | | | |<--| |
 v v v v | | |--------------|
 |--------| |--------| |-------------| | | ^
 | TCP 1 | | TCP 2 | | UDP 1 | | A | |
 |--------| |--------| |-------------| | | |
 ^ | ^ | | | | |--------------|
 | | | | | | P |-->| |
 | | | | | | | | |
 |---|------+---|--------------|------->| | | Congestion |
 | | | | I | | |
 v v v | | | Controller |
 |-----------------------------------| | | | |
 | IP |-->| | | |
 |-----------------------------------| | | |--------------|
 |---|

 Figure 1

 The key components of the CM framework are (i) the CM API, (ii) the
 Congestion Controller, (iii) the Scheduler. The API is motivated
 by the ideas of application-level framing [5] and is described in
 Section 4. The CM internals (Section 5) consist of a Congestion
 Controller (Section 5.1), a Scheduler to orchestrate data
 transmissions between concurrent flows in a macroflow (Section
 5.2). The Congestion Controller adjusts the aggregate transmission
 rate between sender and receiver based on its estimate of
 congestion in the network. It obtains feedback about its past
 transmissions from applications themselves. The Scheduler
 apportions available bandwidth amongst the different flows within
 each macroflow and notifies applications when they are permitted to
 send data. A future document will describe the sender-receiver
 protocol and header formats that will handle applications that do
 not incorporate their own feedback to the CM. This document
 focuses on the class of "well-behaved applications."

4. CM API

 Using the CM API, flows can determine their share of the available
 bandwidth, request and have their data transmissions scheduled,
 inform the CM about successful transmissions, and be informed when
 the CM's estimate of path bandwidth changes. Thus, the CM frees
 applications from having to maintain information about the state of
 congestion and available bandwidth along any path.

 The function prototypes below follow standard C language
 convention.

 4.1 State maintenance

 1. Open: All applications MUST invoke cm_open(u32 dst) before
 using the CM API. dst is the 32-bit IPv4 address. This returns a i32
 handle, cm_flowid, which the application MUST use for all further CM
 API invocations for that flow. If cm_flowid is -1, then the cm_open()
 failed and that flow cannot use the CM.

 2. Close: When a flow terminates, the application SHOULD invoke
 cm_close(i32 cm_flowid) to inform the CM about the termination of the
 flow.

 3. Packet size: cm_mtu(i32 cm_flowid) returns the estimated PMTU
 of the path between sender and receiver. Internally, this information
 may either be statically configured, or obtained via discovery [6].

 4.2 Data transmission

 The CM accommodates a variety of sources, including ALF-based
 streams. There are three styles of data transmission using the CM.

 1. Callback-style. The callback-style transmission API puts the
 stream in firm control of deciding WHAT to transmit at each point
 in time. To achieve this, the CM does not buffer any data; instead,
 it allows streams the opportunity to adapt to unexpected network
 changes at the last possible instant. Thus, this enables streams
 to "pull out" and repacketize data upon learning about any rate
 change. A stream wishing to send data in this style MUST call
 cm_request(i32 cm_flowid). After some time, depending on the rate,
 the CM invokes a callback using cmapp_send(), which is a grant for
 the stream to send up to PMTU bytes. The callback-style API is the
 recommended choice for ALF-based streams.

 2. Buffered-style. Streams that do not want to use the callback-
 style API can use cm_send(i32 cm_flowid, (u8*) data, u32 length). The
 CM buffers the data for eventual transmission. The data buffer MUST
 contain a raw IP datagram (excluding the IP header) ready to be sent,
 and length MUST be the length of the entire IP payload
 (i.e, excluding the IP header).

 3. Synchronous-style. The above callback-style API (#1)
 accommodates a class of transmitters that are ASYNCHRONOUS.
 Asynchronous transmitters do not transmit based on a periodic
 clock, but do so triggered by asynchronous events like file reads
 or captured frames. On the other hand, SYNCHRONOUS transmitters
 transmit periodically based on their own internal timers. While CM
 callbacks could be configured to interrupt such transmitters
 periodically, the transmit loop of such applications is less
 affected if they retain their original timer-based loop. Thus,
 such applications will benefit from a CM callback informing them of
 changes in rates, for which the CM provides the
 cmapp_update(u64 newrate, u32 srtt) callback function, where newrate is
 the new rate in bits per second for this flow and srtt is the current
 smoothed round trip time estimate in microseconds. In response, the
 stream MUST adapt its packet size or change its timer interval to
 conform to the allowed rate.

 An application can query the current state by using
 cm_query(u32 flowid, u64* rate, u32* srtt). This sets the rate
 variable to the current rate estimate in bits per second and the srtt
 variable to the current smoothed round-trip time estimate in microseconds.

 Note that a given stream can use more than one of the above
 transmission APIs for different reasons. For example, the knowledge
 of sustainable rate is useful for asynchronous streams as well as
 synchronous ones; e.g., an asynchronous Web server disseminating
 images using TCP could use cmapp_send() to schedule its
 transmissions and cmapp_update() to decide whether to send a low-
 resolution or high-resolution image.

 4.3 Application notification

 When a stream receives feedback from receivers, it MUST use
 cm_update(i32 cm_flowid, u32 nsent, u32 nrecd, u8 lossmode, i32
 rtt) to inform the CM about events such as congestion losses,
 successful receptions, type of loss (timeout event, Explicit
 Congestion Notification [7], etc.) and round-trip time samples. The
 nsent parameter indicates how many bytes were sent, the nrecd
 parameter identifies how many of those bytes were received. The rtt
 value indicates the round-trip time measured during the
 transmission of these bytes. The rtt value must be set to -1 if no
 valid round-trip sample was obtained. The lossmode parameter
 provides an indicator of how a loss was detected. A value of
 CM_PERSISTENT indicates that the application believes congestion to
 be severe, e.g., a TCP that has experienced a timeout. A value of
 CM_TRANSIENT indicates that the application believes that the
 congestion is not severe, e.g., a TCP loss detected using duplicate
 (selective) acknowledgements or other data-driven techniques. A
 value of CM_ECN indicates that the receiver echoed an explicit
 congestion notification message. Finally, a value of CM_NOLOSS
 indicates that no congestion-related loss has occurred.

 cm_notify(u32 dst, u32 nsent) MUST be called in the IP output
 routine to inform the CM that nsent bytes were just transmitted on
 a given flow. This allows the CM to update its estimate of the
 number of outstanding bytes for the macroflow as well as for the
 flow. If a stream does not transmitany data upon a cmapp_send()
 callback invocation, it SHOULD call cm_notify(dst, 0) to allow the
 CM to permit other flows in the macroflow to transmit data.

 4.4 Querying

 If applications wish to learn about per-stream available bandwidth
 and round-trip time, they SHOULD use the CM's cm_query(u32 flowid,
 u64* rate, u32* srtt) call, which fills in the desired quantities.

5. CM Internals

 This section describes the internal components of the CM. It
 includes a Congestion Controller and a Scheduler, with well-defined
 interfaces exported by them.

 5.1 Congestion Controller

 Associated with each macroflow is a congestion control algorithm;
 the collection of all these algorithms comprises the Congestion
 Controller of the CM. The control algorithm decides when and how
 much data can be transmitted by a flow. It uses application
 notifications (Section 4.3) from concurrent streams on the same
 macroflow to build up information about the congestion state of the
 different network paths.

 The Congestion Controller MUST implement a "TCP-friendly" [4] congestion
 control algorithm. Several macroflows MAY (and indeed, often will)
 use the same congestion control algorithm but each macroflow
 maintains state about the network used by its flows.

 The congestion control module MUST implement the following
 interfaces (these are not directly visible to applications; they are
 within the context of a macroflow):

 - void query(u64 *rate, u32 *srtt): This function returns the
 estimated rate (in bits per second) and smoothed round trip time (in
 microseconds) for the macroflow.

 - void notify(u32 nsent): This function MUST be used to notify
 the congestion control module whenever data is sent by an application.
 The nsent parameter indicates the number of bytes just sent by the
 application.

 - void update(u32 nsent, u32 nrecd, u32 rtt, u32 lossmode):
 This function is called whenever any of the CM flows
 associated with a macroflow identifies that data has reached the
 receiver or has been lost en route. The nrecd parameter indicates the
 number of bytes that have just arrived at the receiver. The nsent
 parameter is the sum of the number of bytes just received and the
 number of bytes identified as lost en route. The rtt parameter is the
 estimated round trip time in microseconds during the transfer.
 The lossmode parameter provides an indicator of how a loss
 was detected (section 4.3).

 The congestion control module MUST also call the associated
 scheduler's schedule function (section 5.2) when it believes that
 the current congestion state allows an MTU-sized packet to be sent.

 5.2 Scheduler

 While it is the responsibility of the congestion control module to
 determine when and how much data can be transmitted, it is the
 responsibility of a macroflow's scheduler module to determine which
 of the flows should get the opportunity to transmit data.

 The Scheduler MUST implement the following interfaces:

 - void schedule(u32 num_bytes): When the congestion control
 module determines that data can be sent, the schedule()
 routine MUST be called with the number of bytes that can be sent. In turn,
 the scheduler MAY call the cmapp_send() function that CM applications
 must provide.

 - float query_share(u32 cm_flowid): This call returns the

 described flow's share of the total bandwidth available to the
 macroflow. This call combined with the query call of the congestion
 control provides the information to satisfy an application's
 cm_query() request.

 - void notify(u32 nsent): This interface is used to notify the
 scheduler module whenever data is sent by a CM application. The nsent
 parameter indicates the number of bytes just sent by the application.

6. Examples

 6.1 Example Applications

 The following describes the possible use of the CM API by an asynchronous
 application (an implementation of a TCP sender) and a
 synchronous application (an audio server).

 6.1.1 TCP

 A TCP MUST use the cmapp_send() callback API. TCP only identifies
 which data it should send upon the arrival of an acknowledgement or
 expiration of a timer. As a result, it requires tight control over
 when and if new data or retransmissions are sent.

 When the TCP sender desires to send a packet, it requests CM to schedule
 the transmission using cm_request(). When the CM decides to
 service a TCP send request, it performs a callback using
 cmapp_send() to the TCP send routine. The TCP send routine then
 transmits the minimum of the flow control window and one Maximum
 Segment Size (MSS) according to the TCP specification. The MSS
 should be determined using cm_mtu() (Section 4.1). The IP output
 routine MUST call cm_notify() to inform it how many bytes were actually
 transmitted, which could in general be smaller than MSS (e.g., when
 the TCP/CM sender performs silly window syndrome avoidance [8], or when
 the receiver's flow control window constrains the number of bytes.)

 The CM eliminates the need for tracking and reacting to congestion
 in TCP, because the CM and its transmission API ensure proper
 congestion behavior. Loss recovery is still performed by TCP based
 on fast retransmissions and recovery as well as timeouts. The TCP
 sender calls cm_update() on the arrival of every acknowledgement
 and when timeouts occur.

 6.1.2 Audio Server

 A typical audio application often has access to the sample in a
 multitude of data rates and qualities. The objective of the application
 is then to deliver the highest possible quality of audio (typically the
 highest data rate) its clients. The selection of which version of audio
 to transmit should be based on the current congestion state of the network.
 In addition, the source will want audio delivered to its
 users at a consistent sampling rate. As a result, it must send data a
 regular rate, minimizing delaying transmissions and reducing buffering
 before playback. To meet these requirements, this application can use the
 synchronous sender API (Section 4.2).

 When the source first starts, it uses the cm_query() call
 to get an initial estimate of network bandwidth and delay. It then
 chooses an encoding that does not exceed these estimates
 and begins transmitting data. The application also implements the
 cmapp_update() callback. When the CM determines that network
 characteristics have changed, it calls the application's cmapp_update()
 function and passes it a new rate and round-trip time estimate. The
 application MUST change its choice of audio encoding to ensure that it
 does not exceed these new estimates.

 To use the CM, the application must incorporate feedback from the
 receiver. In this example, it must periodically (typically once or
 twice per round trip time) determine how many of its packets arrived
 at the receiver. When the source gets this feedback, it MUST use
 cm_update() to inform the CM of this new information. This results in
 the CM updating ownd and may result in CM changing its estimates and
 calling cmapp_update() of the streams of the macroflow.

 6.3 Example Congestion Control Module

 To illustrate the responsibilities of a congestion control module, the
 following describes some of the actions of a simple TCP-like
 congestion control module that implements Additive Increase Multiplicative
 Decrease congestion control (AIMD_CC):

 - query(): AIMD_CC returns the current congestion window
 (cwnd) divided by the smoothed rtt (srtt) as its bandwidth
 estimate. It returns the smoothed rtt estimate as srtt.

 - notify(): AIMD_CC adds the number of bytes sent to its
 outstanding data window (ownd).

 - update(): AIMD_CC subtracts nsent from ownd. If the value of
 rtt is non-zero, AIMD_CC updates srtt using the TCP srtt calculation.
 If the update indicates that data has been lost, AIMD_CC sets cwnd to
 1 MTU if the loss_mode is CM_PERSISTENT and to cwnd/2 (with a minimum
 of 1 MTU) if the loss_mode is CM_TRANSIENT or CM_ECN. AIMD_CC also
 sets its internal ssthresh variable to cwnd/2. If no loss had occurred,
 AIMD_CC mimics TCP slow start and linear growth modes. It increments
 cwnd by nsent when cwnd < ssthresh (bounded by a maximum of
 ssthresh-cwnd) and by nsent * MTU/cwnd when cwnd > ssthresh.

 - When cwnd or ownd are updated and indicate that at least one
 MTU may be transmitted, AIMD_CC calls the CM to schedule a
 transmission.

 8.4 Example Scheduler Module

 To clarify the responsibilities of a scheduler module, the
 following describes some of the actions of a simple round robin
 scheduler module (RR_sched):

 - schedule(): RR_sched schedules as many flows as possible in
 round robin fashion.

 - query_share(): RR_sched returns 1/(number of flows in macroflow).

 - notify(): RR_sched does nothing. Round robin scheduling is
 not affected by the amount of data sent.

7. Security Considerations

 The provides many of the same services that the congestion control
 in TCP provides. As such, it is vulnerable to many of the same
 security problems. For example, incorrect reports of losses and
 transmissions will give the CM an inaccurate picture of the
 network's congestion state. By giving CM a high estimate of
 congestion, an attacker reduce the performance observed by
 applications. The more dangerous form of attack is giving CM a low
 estimate. This would cause CM to be overly aggressive and allow
 data to be sent much more quickly than sound congestion control
 policies would allow.

8. References

 1 Bradner, S., "The Internet Standards Process -- Revision 3", BCP
 9, RFC 2026, October 1996.
 2 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.
 3 Postel, J., "Transmission Control Protocol", RFC793, April 1997.
 4 Mahdavi, J. and Floyd, S., "The TCP Friendly Website",
 http://www.psc.edu/networking/tcp_friendly.html
 5 Clark, D. and Tennenhouse, D., "Architectural Consideration for
 a New Generation of Protocols", Proc. ACM SIGCOMM, September
 1990.
 6 Mogul, J. and Deering, S., "Path MTU Discovery", RFC 1191,
 November 1990.
 7 Ramakrishnan, K. and Floyd, S., "A Proposal to Add Explicit
 Congestion Notification to IPv6 and TCP", Internet Draft draft-
 kksjf-ecn-00.txt.
 8 Clark, D., "Window and Acknowledgement Strategy in TCP", RFC
 813, July 1982.

9. Acknowledgments

 Sally Floyd, Mark Handley, Steve McCanne and Vern Paxson provided
 useful feedback and suggestions that contributed to and improved the
 the CM architecture. We are grateful to them. We also thank
 Hariharan Rahul for his contributions to the design of the CM.

10. Authors' Addresses

 Hari Balakrishnan
 Laboratory for Computer Science
 545 Technology Square
 Massachusetts Institute of Technology
 Cambridge, MA 02139
 hari@lcs.mit.edu
 http://wind.lcs.mit.edu/~hari/

 Srinivasan Seshan
 30 Saw Mill River Rd.
 Hawthorne, NY 10532

 srini@watson.ibm.com
 http://www.research.ibm.com/people/s/srini/

Full Copyright Statement

 "Copyright (C) The Internet Society (date). All Rights Reserved.
 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain
 it or assist in its implementation may be prepared, copied,
 published and distributed, in whole or in part, without restriction
 of any kind, provided that the above copyright notice and this
 paragraph are included on all such copies and derivative works.
 However, this document itself may not be modified in any way, such
 as by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards process
 must be followed, or as required to translate it into the final
 draft output.

