Wireless Networks of Device Resource Discovery

WilliamAdjieWinoto, Elliot Schwartz Anit ChakraborțyTeremy Lilley Hari Balakrishnāphn Guttag

MIT Lab for Computer Science http://windcsmit.edu/

November 1999

Application: Locationdependent wireless service

- Spontaneous networking
- Automatically obtain map region & discover device services and people ther
 Access, control services communicate with them
- Handle mobility & group
 - communication
- Locate other usefulisesv

(e.g., nearest café)

App should be able to convenient specify a resource and access

Challenges

- Configuration
- Routing
- Discovery
- Adaptation
- Security & privacy

Dynamic, mobile environment with no pre-config support for internetworking or service lo

Today

- Mostly static topol
 & services
- Deploying new servi cumbersome
- Applications cannot learn about network
- Failures are common
- High management cos

Resource discovery

- Why is this hard?
 - Dynamic environment (mobility, performanc changes, etc.)
 - No pre-configured support, no centralized servers
 - Must be easy to deploy ("ZERO" manual configuration)
 - Heterogeneous seirces & devices
- Approach: a new naming systemo Lutiesn architecture using intentional naming

Design goals

Names must be descriptive signifying applicationt

Name resolvermust track rapid changes

Robustness

System must overcome resolveænd service failu

Easy configuration

Expressivenes

Responsivenes.

Name resolvensust self-configure

Intentional Naming System (IN principles

- Names areintentionabased on attributes
 - Apps know WHAT theywant, not WHERE
- INS integrates resolution and diogwar
 - Late binding names to nodes
- INS resolverseplicate and cooperate
 - Soft-state name exchange protocol withcperiod refreshes
- INS resolverself-configure
 - Form an application-level overlay network

INS service model

What's in a name?

- Expressive name language (like XML)
- Resolve architecture decoupfice language
- Names are descriptive
 - Providers annouen names
- Names arequeries
 - Attribute-vælunatches
 - Range querse
 - Wildcard matches

[vspace #etgroup [department = arch-lab [stateo*egon [city #illsboro]]]

data

```
[vspace= camera]
[buildingne-43
```

[room = 504]]

[resolution=800x600]]

```
[access public]
```

[status = ready]

```
[vspace = thermometer]
[buildingne-43
  [room = *]]
[tomporature (200 El
  data
```

Responsiveness: Late bindir

- Mapping from name to location(s) can change rapidly
- Integrate resolution and messaging to track change
 - INR resolves name by upoaknd-forward, not by returning address
 - lookup(namels a route
 - Forward along route
- A name can map to one locationas(") or to many ("multicast")

Late binding services

- Intentionahycast
 - INR picksne of several possible locations
 - Choice based **service-controlled metric** [contrast withangcast
 - Overlay used to exchange nameesro
- Intentional multicast
 - INR pickalloverlay neighbors that "sexpres interest" in name
 - Message flows along spanning tree
 - Overlay used to transfatear too

Robustness: Names as soft-sta

- Resolution via networkpbfcarted resolvers
- Names are weakly conststelike network-layer routes
 - Routing protocol to exchange names
- Fate sharing with issues, not NRs
 - Name unresolved only ificseabsent
- Soft-state with expiration against service/client failure
 - No need for explicit de-accipatr

Self-configuringsolvers

- INRs configure using a distributed topology formation protocol
- DSR (DNS++) maintains list of candidat and active Rs
- INR-to-INR "ping" experiments" fonk weights"
- Current implementation forms (evolving spanning tree
- INRs self-terminate if load is low

Efficient name lookups

• Data structure

- Lookup
 - AND operationsmang orthogonal attributes
 - For values pick the va) transformed the lookup
- Polynomial-time worst case

Scaling issues

- Two potential problems
 - Lookup overhead
 - Routing protocol overhead
- Load-balancing by spawning new INR handles lookup problem
- Virtual space partitioning handles routing p problem
 - Just spawning new INR is insufficient

WIND Applications

- Location-dependent mobile cappilons
- FloorplanA navigation & discovery
- Camera: An image/video service
- Printer: A smart print spooler
- TV & jukebox
- Location-support system barsed o intelligent beacons

WIND

LCS

Status & performance

- Java implmentation of SIN& applications
- PC-basedresolveperformance
 - 1 resolver: several thobusames @100-1000 lookups/s
 - Discovery time ainen hops
- Scalability
 - Virtual spacertpiations for load-shedding
 - Wide-areadesign in frateu
- Deployment
 - Hook in wide-armachitecture to DNS
 - Standardize virtupalces name (like MIME)
- Paper at SOSP 17

Related work

- Domain NameSystem
 - Differences expressivess and architecture
- Service Location Protocol
 - More centralized,s lapsontaneous
- Jini
 - INS can be udefor self-organizationult-tolerant discovery
- Universal Plangd-Play & SSDP
 - XML-based descriptions; INS fields w
- Intentionalmes in othecontexts
 - Semantic filæstems, adapive web cacgin DistributedDirector

Conclusion

- Achieving self-organizing netexprises a flexible naming system for researchiscovery
 - INS works in dynamic, between networks
 - Expressiveness: names convey intent
 - Responsiveness: late binding
 - Robustness: soft-state names
 - Configuration: Resolated for configure
- Application-level overlay networkgeoad way to build flexible, self-organizing network appli

