
Wireless Networks of Devices

Resource Discovery

William Adjie-Winoto, Elliot Schwartz

Anit Chakraborty,Jeremy Lilley

Hari Balakrishnan,John Guttag

MIT Lab for Computer Science

http://wind.lcs.mit.edu/

November 1999

Application: Location-

dependent wireless services

• Access, control services

communicate with them

• Handle mobility & group

communication

• Spontaneous networking

• Locate other useful services

(e.g., nearest café)Where?

App should be able to conveniently

specify a resource and access it

App should be able to conveniently

specify a resource and access it

• Automatically obtain map

region & discover device

services and people ther

Challenges

• Configuration

• Routing

• Discovery

• Adaptation

• Security & privacy

Dynamic, mobile environment with no pre-config

support for internetworking or service loca

Dynamic, mobile environment with no pre-config

support for internetworking or service loca

Today

Routers

DNS

Hostname

Address

• Mostly static topol

& services

• Deploying new servi

cumbersome

• Applications cannot

learn about network

• Failures are common

• High management cos
Servers

Clients

Resource discovery

• Why is this hard?

– Dynamic environment (mobility, performance

changes, etc.)

– No pre-configured support, no centralized

servers

– Must be easy to deploy (“ZERO” manual

configuration)

– Heterogeneous services & devices

• Approach: a new naming system & resolution

architecture using intentional naming

Design goals

Responsiveness Name resolvers must

track rapid changes

Robustness System must overcome

resolver and service failu

Easy

configuration

Name resolvers must

self-configure

Names must be descriptive

signifying application intent
Expressiveness

INS architecture overview

[building = ne-43

[room = 510]]

[entity = camera]

Intentional name

Intentional Name Resolvers (INR)

form a distributed overlay

Integrate resolution and message routingIntegrate resolution and message routing

image

Lookup

camera510.lcs.mit.edu

INR

self-configuration

Intentional Naming System (IN

principles

• Names are intentional, based on attributes

– Apps know WHAT they want, not WHERE

• INS integrates resolution and forwarding

– Late binding of names to nodes

• INS resolvers replicate and cooperate

– Soft-state name exchange protocol with periodic

refreshes

• INS resolvers self-configure

– Form an application-level overlay network

INS service model

INRINR

Self-organizing app-level

overlay network

formed based on

performance

Soft-state name

dissemination

applicationapplication

Early bindingEarly binding

Late bindingLate binding queryquery

set of namesset of names

Intentional

anycastIntentional

multicast

[vspace = thermometer]

[building = ne-43

[room = *]]

[temperature < 620F]
data

[vspace = netgroup]

[department = arch-lab

 [state = oregon

 [city = hillsboro]]]

[rank = admin]
data

What’s in a name?

• Names are queries

– Attribute-value matches

– Range queries

– Wildcard matches

[vspace = camera]

[building = ne-43

[room = 504]]

[resolution=800x600]]

[access = public]

[status = ready]

• Names are descriptive

– Providers announce names

• Expressive name language (like XML)

• Resolver architecture decoupled from language

Responsiveness: Late bindin

• Mapping from name to location(s) can change

rapidly

• Integrate resolution and message routing to track

change

– INR resolves name by lookup-and-forward, not

by returning address

– lookup(name) is a route

– Forward along route

• A name can map to one location (“anycast”) or to

many (“multicast”)

Late binding services

• Intentional anycast

– INR picks one of several possible locations

– Choice based on service-controlled metric

[contrast with IP anycast]

– Overlay used to exchange name-routes

• Intentional multicast

– INR picks all overlay neighbors that “express

interest” in name

– Message flows along spanning tree

– Overlay used to transfer data too

Robustness: Names as soft-sta

• Resolution via network of replicated resolvers

• Names are weakly consistent, like network-layer

routes

– Routing protocol to exchange names

• Fate sharing with services, not INRs

– Name unresolved only if service absent

• Soft-state with expiration is robust against

service/client failure

– No need for explicit de-registration

Self-configuring resolvers

• INRs configure using a distributed

topology formation protocol

• DSR (DNS++) maintains list of candidat

and active INRs

• INR-to-INR “ping” experiments for “link

weights”

• Current implementation forms (evolving

spanning tree

• INRs self-terminate if load is low

Efficient name lookups

• Data structure

• Lookup

– AND operations among orthogonal attributes

– For values pick the value(s) satisfying the lookup

• Polynomial-time in worst case

Scaling issues

• Two potential problems

– Lookup overhead

– Routing protocol overhead

• Load-balancing by spawning new INR handles

lookup problem

• Virtual space partitioning handles routing p

problem

– Just spawning new INR is insufficient

Virtual space partitioning

vspace=camera vspace=5th-floor

Delegate this to

another INR

Routing updates for each vspace

WIND Applications

• Location-dependent mobile applications

• Floorplan: A navigation & discovery

• Camera: An image/video service

• Printer: A smart print spooler

• TV & jukebox

• Location-support system based on

intelligent beacons

WIND

Status & performance

• Java implementation of INS & applications

• PC-based resolver performance

– 1 resolver: several thousand names @100-1000 lookups/s

– Discovery time linear in hops

• Scalability

– Virtual space partitions for load-shedding

– Wide-area design in future

• Deployment

– Hook in wide-area architecture to DNS

– Standardize virtual space names (like MIME)

• Paper at SOSP 17

Related work

• Domain Name System

– Differences in expressiveness and architecture

• Service Location Protocol

– More centralized, less spontaneous

• Jini:

– INS can be used for self-organization & fault-tolerant

discovery

• Universal Plug-and-Play & SSDP

– XML-based descriptions; INS fits well

• Intentional names in other contexts

– Semantic file systems, adaptive web caching,

DistributedDirector

Future Internet Architectur

Resource

management

Flexible IP

routers

Traffic

engineering

Congestion

Manager

Scheduling,

buffer mgmt

Middleware

...

Cache & replica

management
Self-configuring

overlays

INS

Media

transcoders

Performance

discoveryService

location Jini UPnP
E-speak T-spaces

Decentralized

security

Use each other

to add value

Conclusion

• Achieving self-organizing networks requires a flexibl

naming system for resource discovery

– INS works in dynamic, heterogeneous networks

– Expressiveness: names convey intent

– Responsiveness: late binding

– Robustness: soft-state names

– Configuration: Resolvers self-configure

• Application-level overlay networks are a good way to

build flexible, self-organizing network appli

