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Environment
• Heterogeneous network with devices,

sensors and computers
• Dynamism

– Mobility
– Performance variability
– Services “come and go”
– Services may be composed of groups of nodes

• Example applications
– Location-dependent mobile apps
– Network of mobile cameras

• Problem: resource discovery



Responsiveness Integrate name resolution and
message routing (late binding)

Robustness

Easy configuration Name resolvers self-configure
into overlay network

Expressiveness

Decentralized, cooperating
resolvers with soft-state protocol

Design goals and principles

Names are intentional; apps know
what, not where



Naming and service discovery
• Wide-area naming

– DNS, Global Name Service, Grapevine

• Attribute-based systems
– X.500, Information Bus, Discover query routing

• Service location
– IETF SLP, Berkeley service discovery service

• Device discovery
– Jini, Universal plug-and-play

• Intentional Naming System (INS)
– Mobility & dynamism via late binding
– Decentralized, serverless operation
– Easy configuration



INS architecture
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Name-specifiers

[vspace = mit.edu/thermometer]

[building = ne43

    [floor = 5

        [room = *]]

[temperature < 600F]

data

[vspace = lcs.mit.edu/camera]

[building = ne43

[room = 510]]

[resolution=800x600]]

[access = public]

[status = ready]

• Expressive name language (like XML)
• Resolver architecture decoupled from language
• Providers announce descriptive names
• Clients make queries

– Attribute-value matches
– Wildcard matches
– Ranges



Name lookups

• Lookup
– Tree-matching algorithm
– AND operations among orthogonal attributes

• Polynomial-time in number of attributes
– O(nd) where n is number of attributes and d is the

depth



Resolver network

• Resolvers exchange routing information
about names

• Multicast messages forwarded via resolvers
• Decentralized construction and maintenance
• Implemented as an “overlay” network over

UDP tunnels
– Not every node needs to be a resolver
– Too many neighbors causes overload, but need a

connected graph
– Overlay link metric should reflect performance
– Current implementation builds a spanning tree



UDP tunnel

new

Spanning tree algorithm

• Loop-free connectivity
• Construct initial tree; evolve towards optimality

– Select a destination and send a
discover_bottleneck message along current path

max

A B



Late binding

• Mapping from name to location can change
rapidly

• Overlay routing protocol uses triggered
updates

• Resolver performs lookup-and-forward
– lookup(name) is a route; forward along route

• Two styles of message delivery
– Anycast
– Multicast



Intentional anycast

• lookup(name) yields all matches
• Resolver selects location based on

advertised service-controlled metric
– E.g., server load

• Tunnels message to selected node
• Application-level vs. IP-level anycast

– Service-advertised metric is meaningful to the
application



Intentional multicast

• Use intentional name as group handle
• Each resolver maintains list of neighbors for a

name
• Data forwarded along a spanning tree of the

overlay network
– Shared tree, rather than per-source trees

• Enables more than just receiver-initiated
group communication



Robustness

• Decentralized name resolution and routing in
“serverless” fashion

• Names are weakly consistent, like network-
layer routes
– Routing protocol with periodic & triggered updates

to exchange names

• Routing state is soft
– Expires if not updated
– Robust against service/client failure
– No need for explicit de-registration



Performance and scalability
• Lookup performance

• Spawn INR on a new node to shed load
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vspace=camera vspace=5th-floor

Delegate this to 
another INR

Routing updates 
for all names

Routing Protocol Scalability

• vspace = Set of names with common
attributes

• Virtual-space partitioning: each resolver now
handles subset of all vspaces

Name-tree at resolver



INR Implementation
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Applications

• Location-dependent mobile applications
– Floorplan: An map-based navigation tool
– Camera: A mobile image/video service
– Load-balancing printer
– TV & jukebox service

• Sensor computing
• Network-independent “instant messaging”
• Clients encapsulate state in late-binding

applications



Status

• Java implementation of INS & applications
– Several thousand names on single Pentium PC;

discovery time linear in hops
– Integration with Jini, XML/RDF descriptions in

progress

• Scalability
– Wide-area implementation in progress

• Deployment
– Hook in wide-area architecture to DNS
– Standardize virtual space names (like MIME for

devices/services)



Conclusion

• INS is a resource discovery system for
dynamic, mobile networks

• Expressiveness: names that convey intent
• Responsiveness: late binding by integrating

resolution and routing
• Robustness: soft-state name dissemination

with periodic refreshes
• Configuration: resolvers self-configure into an

overlay network


