Design and implementation of an
Intentional naming system

William Adjie-Winoto Elliot Schwartz
Hari Balakrishnan Jeremy Lilley

MIT Laboratory for Computer Science
http://wind.lcs.mit.edu/

SOSP 17, Kiawah Island Resort
December 14, 1999

Environment

Heterogeneous network with devices,
sensors and computers

Dynamism

— Mobility

— Performance variability

— Services “come and go”

— Services may be composed of groups of nodes
Example applications

— Location-dependent mobile apps

— Network of mobile cameras

Problem: resource discovery

Design goals and principles

- Names are intentional; apps know

EXxpressiveness
what, not where

Integrate name resolution and

Responsiveness ‘ . -
P message routing (late binding)

Robustness - Decentralized, cooperating
resolvers with soft-state protocol

Name resolvers self-configure

Easy configuration m into overlay network

Naming and service discovery

* Wide-area naming
— DNS, Global Name Service, Grapevine
Attribute-based systems
— X.500, Information Bus, Discover query routing
e Service location

— |IETF SLP, Berkeley service discovery service
e Device discovery

— Jini, Universal plug-and-play
* |Intentional Naming System (INS)

— Mobility & dynamism via late binding

— Decentralized, serverless operation
— Easy configuration

INS architecture

Client Service

O Name resolver /<> Name

Late binding
Name with
message

Intentional IntentioN\ Overlay network of
multicast anycast <> resolvers

Message routing using intentional names

Name-specifiers

Expressive name language (like XML)
Resolver architecture decoupled from language
Providers announce descriptive names

Clients make queries
— Attribute-value matches

— Wildcard matches
— Ranges

[vepace= lcsmitedu/cameral
[building = ne43
[room = 510]]

[resolution=800x600]]
[access Ppublic]

[status = ready]

[vspace mit.edu/thermometer]
[building = ne43
[flooxs =
[room = *]]

[temperature < 60°F]

data

Name lookups

oot

service location entity node
@ receiver

@ camera @536 @ transmitter @r @a @b @c

e Lookup

— Tree-matching algorithm

— AND operations among orthogonal attributes
e Polynomial-time in number of attributes

— O(n9) where n is number of attributes and d is the
depth

Resolver network

Resolvers exchange routing information
about names

Multicast messages forwarded via resolvers
Decentralized construction and maintenance

Implemented as an “overlay” network over
UDP tunnels
— Not every node needs to be a resolver

— Too many neighbors causes overload, but need a
connected graph

— Overlay link metric should reflect performance
— Current implementation builds a spanning tree

Spanning tree algorithm

* Loop-free connectivity

e Construct initial tree; evolve towards optimality

— Select a destination and send a
discover_bottleneck message along current path

UDP tunnel

Late binding

Mapping from name to location can change
rapidly

Overlay routing protocol uses triggered
updates

Resolver performs lookup-and-forward
— lookup(name) is a route; forward along route

Two styles of message delivery
— Anycast
— Multicast

Intentional anycast

lookup(name) yields all matches

Resolver selects location based on
advertised service-controlled metric

— E.g., server load
Tunnels message to selected node

Application-level vs. IP-level anycast

— Service-advertised metric iIs meaningful to the
application

Intentional multicast

Use intentional name as group handle

Each resolver maintains list of neighbors for a
name

Data forwarded along a spanning tree of the
overlay network
— Shared tree, rather than per-source trees

Enables more than just receiver-initiated
group communication

Robustness

« Decentralized name resolution and routing In
“serverless” fashion

 Names are weakly consistent, like network-
layer routes

— Routing protocol with periodic & triggered updates
to exchange names

e Routing state is soft
— EXxpires if not updated
— Robust against service/client failure
— No need for explicit de-registration

Performance and scalability

e Lookup performance

1000
900
800
700

600
Lookups per,,,

second 40
300

200

100

0

0 5000 10000 15000
Number of names

e Spawn INR on a new node to shed load

Routing Protocol Scalability

Name-tree at resolver

vspace=camera ce=5th-floor

Routing updates Delegate this to
for all names another INR

e vspace = Set of names with common
attributes

 Virtual-space partitioning: each resolver now
handles subset of all vspaces

INR Implementation

Overlay Network Route
Manager Monitor Manager

Client
Manager

_—
_—
—
—
_—
—

—_—
—_—
—

_—
_—
—
—
—
—_—
—

vspace

neighbors Forwarder

Intentional anycast{
multicast _
‘Communicator)

Mobility
Sockets
_ J

NameTreeSet

(ONON)

A
Incoming message‘ < TCP/UDP

Applications

Location-dependent mobile applications
— Floorplan: An map-based navigation tool

— Camera: A mobile image/video service

— Load-balancing printer

— TV & jukebox service

Sensor computing
Network-independent “instant messaging

Clients encapsulate state in late-binding
applications

Status

e Java implementation of INS & applications

— Several thousand names on single Pentium PC,;
discovery time linear in hops

— Integration with Jini, XML/RDF descriptions in
progress

o Scalability

— Wide-area implementation in progress
 Deployment

— Hook in wide-area architecture to DNS

— Standardize virtual space names (like MIME for
devices/services)

Conclusion

INS Is a resource discovery system for
dynamic, mobile networks

EXxpressiveness: names that convey intent

Responsiveness: late binding by integrating
resolution and routing

Robusthess: soft-state name dissemination
with periodic refreshes

Configuration: resolvers self-configure into an
overlay network

