
Design and implementation of an
intentional naming system

William Adjie-Winoto Elliot Schwartz
Hari Balakrishnan Jeremy Lilley

MIT Laboratory for Computer Science
http://wind.lcs.mit.edu/

SOSP 17, Kiawah Island Resort
December 14, 1999

Environment
• Heterogeneous network with devices,

sensors and computers
• Dynamism

– Mobility
– Performance variability
– Services “come and go”
– Services may be composed of groups of nodes

• Example applications
– Location-dependent mobile apps
– Network of mobile cameras

• Problem: resource discovery

Responsiveness Integrate name resolution and
message routing (late binding)

Robustness

Easy configuration Name resolvers self-configure
into overlay network

Expressiveness

Decentralized, cooperating
resolvers with soft-state protocol

Design goals and principles

Names are intentional; apps know
what, not where

Naming and service discovery
• Wide-area naming

– DNS, Global Name Service, Grapevine

• Attribute-based systems
– X.500, Information Bus, Discover query routing

• Service location
– IETF SLP, Berkeley service discovery service

• Device discovery
– Jini, Universal plug-and-play

• Intentional Naming System (INS)
– Mobility & dynamism via late binding
– Decentralized, serverless operation
– Easy configuration

INS architecture

Name Name resolverresolver

Overlay network of
resolvers

ClientClient

Intentional
anycast

Intentional
multicast

Message routing using intentional namesMessage routing using intentional names

Name

Name

ServiceService

Late bindingLate binding
Name with Name with
messagemessage

Name-specifiers

[vspace = mit.edu/thermometer]

[building = ne43

 [floor = 5

 [room = *]]

[temperature < 600F]

data

[vspace = lcs.mit.edu/camera]

[building = ne43

[room = 510]]

[resolution=800x600]]

[access = public]

[status = ready]

• Expressive name language (like XML)
• Resolver architecture decoupled from language
• Providers announce descriptive names
• Clients make queries

– Attribute-value matches
– Wildcard matches
– Ranges

Name lookups

• Lookup
– Tree-matching algorithm
– AND operations among orthogonal attributes

• Polynomial-time in number of attributes
– O(nd) where n is number of attributes and d is the

depth

Resolver network

• Resolvers exchange routing information
about names

• Multicast messages forwarded via resolvers
• Decentralized construction and maintenance
• Implemented as an “overlay” network over

UDP tunnels
– Not every node needs to be a resolver
– Too many neighbors causes overload, but need a

connected graph
– Overlay link metric should reflect performance
– Current implementation builds a spanning tree

UDP tunnel

new

Spanning tree algorithm

• Loop-free connectivity
• Construct initial tree; evolve towards optimality

– Select a destination and send a
discover_bottleneck message along current path

max

A B

Late binding

• Mapping from name to location can change
rapidly

• Overlay routing protocol uses triggered
updates

• Resolver performs lookup-and-forward
– lookup(name) is a route; forward along route

• Two styles of message delivery
– Anycast
– Multicast

Intentional anycast

• lookup(name) yields all matches
• Resolver selects location based on

advertised service-controlled metric
– E.g., server load

• Tunnels message to selected node
• Application-level vs. IP-level anycast

– Service-advertised metric is meaningful to the
application

Intentional multicast

• Use intentional name as group handle
• Each resolver maintains list of neighbors for a

name
• Data forwarded along a spanning tree of the

overlay network
– Shared tree, rather than per-source trees

• Enables more than just receiver-initiated
group communication

Robustness

• Decentralized name resolution and routing in
“serverless” fashion

• Names are weakly consistent, like network-
layer routes
– Routing protocol with periodic & triggered updates

to exchange names

• Routing state is soft
– Expires if not updated
– Robust against service/client failure
– No need for explicit de-registration

Performance and scalability
• Lookup performance

• Spawn INR on a new node to shed load

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000

Number of names

Lookups per
second

vspace=camera vspace=5th-floor

Delegate this to
another INR

Routing updates
for all names

Routing Protocol Scalability

• vspace = Set of names with common
attributes

• Virtual-space partitioning: each resolver now
handles subset of all vspaces

Name-tree at resolver

INR Implementation

Overlay
Manager

Network
Monitor

Route
Manager

Client
Manager

Forwarder
vspace

neighbors

NameTreeSet

Communicator
Mobility
Sockets

TCP/UDP

lookup

Intentional anycast,
multicast

Incoming message

Applications

• Location-dependent mobile applications
– Floorplan: An map-based navigation tool
– Camera: A mobile image/video service
– Load-balancing printer
– TV & jukebox service

• Sensor computing
• Network-independent “instant messaging”
• Clients encapsulate state in late-binding

applications

Status

• Java implementation of INS & applications
– Several thousand names on single Pentium PC;

discovery time linear in hops
– Integration with Jini, XML/RDF descriptions in

progress

• Scalability
– Wide-area implementation in progress

• Deployment
– Hook in wide-area architecture to DNS
– Standardize virtual space names (like MIME for

devices/services)

Conclusion

• INS is a resource discovery system for
dynamic, mobile networks

• Expressiveness: names that convey intent
• Responsiveness: late binding by integrating

resolution and routing
• Robustness: soft-state name dissemination

with periodic refreshes
• Configuration: resolvers self-configure into an

overlay network

