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Abstract| In early 1997, our group initiated a project to
develop jupiter, a conversational interface that allows users
to obtain worldwide weather forecast information over the
telephone using spoken dialogue. It has served as the pri-
mary research platform for our group on many issues re-
lated to human language technology, including telephone-
based speech recognition, robust language understanding,
language generation, dialogue modelling, and multilingual
interfaces. Over a two year period since coming on line
in May 1997, jupiter has received, via a toll-free number
in North America, over 30,000 calls (totalling over 180,000
utterances), mostly from naive users. The purpose of this
paper is to describe our development e�ort in terms of the
underlying human language technologies as well as other sys-
tem related issues such as utterance rejection and content
harvesting. We will also present some evaluation results on
the system and its components.
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I. Introduction

F
OR more than a decade, our group has been involved
in the development of conversational interfaces, inter-

faces that enable a user to interact with a computer as if it
were a conversational partner. To realize such interfaces,
several human language technologies must be developed
and integrated. On the input side, speech recognition must
be augmented with natural language processing, so that ut-
terances can be understood, in the context of the preceding
dialogue. On the output side, language generation must be
integrated with speech synthesis, so that the information
sought by the user, as well as any clari�cation dialogue gen-
erated by the system, can be verbalized. In 1989, we �rst
demonstrated such a conversational interface in the form of
the voyager urban navigation and exploration system [1].
In 1994, we introduced pegasus, a spoken language in-
terface to the on-line EasySabre reservation system [2].
Pegasus evolved from our DARPA Air Travel Informa-
tion Service (atis) common task system, but included a
far more sophisticated dialogue model.
Increasingly, we have found our research agenda being

shaped by a strong desire to develop human language tech-
nologies and utilize them in a way that will enable univer-
sal information access. This has led to our introduction of
the galaxy client-server architecture [3], [4], in which the
client can be light-weight, relying on remote servers to per-
form the compute and knowledge intensive tasks. A logical
outgrowth of this research direction is to make use of the
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most light-weight of all clients: the telephone. Telephone-
based information access and delivery is important because
the telephone is so much more pervasive when compared
to PCs equipped with Internet access. By using the tele-
phone as a means of accessing information, we can em-
power a much larger population. In the scenario that we
envision, a user can conduct virtual browsing in the infor-
mation space without ever having to point or click, or even
be tethered to a PC.

Telephone-based interactions pose several research chal-
lenges. For example, telephone speech is often hard to rec-
ognize and understand due to the reduced channel band-
width and the presence of noise. In addition, displayless
interaction relies on only the human auditory channel to
receive the information, and thus potentially increases the
cognitive load. Such a setting demands a high-quality ver-
bal response. Perhaps even more importantly, the language
generation and dialogue management components of the
system must work in concert to present the information
in digestible chunks, so that the user can easily absorb it.
Furthermore, near real-time performance is necessary, since
prolonged delay over the phone can be quite annoying to
users and render the system unusable.

In 1997, we began to develop jupiter, a conversational
interface which allows users to access and receive on-line
weather forecast information for over 500 cities worldwide
over the phone. Jupiter utilizes the client-server archi-
tecture of galaxy. It can give a weather report for a
particular day or several days, and answer speci�c ques-
tions about weather phenomena such as temperature, wind
speed, precipitation, pressure, humidity, sunrise time, ad-
visories, etc. Over a two year period since coming on line
in May 1997, jupiter has received over 30,000 calls (to-
talling over 180,000 utterances) via a toll-free number in
North America, mostly from naive users.

Jupiter also represents our �rst attempt at content pro-
cessing. Increasingly, we see the need to utilize human lan-
guage technologies for understanding the content in order
to manipulate and deliver the information to the user, since
so much of the available content (e.g., in newspapers, radio
broadcasts, or Web pages) is linguistic in nature. Jupiter
addresses several key issues in content processing, includ-
ing information selection, sampling, redundancy reduction,
and semantic representation. The linguistic information
that exists on-line often contains much more detail than
the user would like. In the case of jupiter, for exam-
ple, the weather information for a given city can be quite
extensive, whereas the user may only be interested in the
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jupiter: Hi! Welcome to jupiter, the MIT Lab for Computer Science weather information system. This call is being recorded for
system development. You may hang up or ask for help at any time. How can I help you?

User: CAN YOU TELL ME WHAT'S THE WEATHER LIKE IN BOSTON TODAY
jupiter: In Boston this afternoon. Partly sunny early. Then becoming cloudy with 30 percent chance of showers toward evening.

Tonight: rain. Possibly heavy at times. Near 100 percent chance of rain. Can I help you with something else?
User: YES WHAT ABOUT SAN FRANCISCO

jupiter: In San Francisco today: patchy fog near the ocean morning. Otherwise mostly sunny. Tonight: areas of coastal fog and
low clouds. Otherwise fair. Is there something else I can do for you?

User: YES HOW COLD IS IT IN DALLAS TEXAS TODAY
jupiter: In Dallas today: high upper 40s. Tonight: lows near 32. What else would you like to know?

User: I'D LIKE TO KNOW WHETHER IT'S SNOWING IN DETROIT
jupiter: I'm sorry, I didn't understand you. Please rephrase your query.

User: WHAT IS THE WEATHER IN DETROIT
jupiter: In Detroit this afternoon: occasional light rain and drizzle. Tonight: rain showers likely. Becoming snow showers by late

tonight. 70 percent chance of precipitation.

Fig. 1. Example spoken dialogue between jupiter and a user.

temperature. To be able to provide information on demand

and deliver just the information that a user needs, jupiter
must fully understand the information it is presenting to
the user, so that it will be able to select a subset relevant to
the question and avoid boring the user with long and pos-
sibly irrelevant monologues. Furthermore, jupiter's fore-
casts are obtained from multiple sites on the World Wide
Web, whose information content complement one another.
It must recognize when two sources are providing overlap-
ping information, and select one or the other based on qual-
ity considerations. Finally, by representing all linguistic
data in a language-transparent semantic frame format, the
notion of translating the weather reports into other lan-
guages becomes far more feasible.

The purpose of this paper is to describe our develop-
ment e�ort, and to present some evaluation results on the
system and its components. The paper is organized as fol-
lows. We �rst provide a system overview. This is followed
by a discussion of the human language technology devel-
opment e�ort. We then describe our data collection e�ort,
and present some evaluation results. We conclude with a
discussion of lessons learned and future work.

II. System Overview

To access jupiter, a user calls a toll-free number in
North America.1 After a connection has been established,
jupiter speaks a greeting message. After the greeting, the
user is free to engage in a conversation with jupiter, in-
quiring about weather forecasts for selected cities. The
system signals the completion of its turn by playing a
brief high tone, indicating its readiness to accept new in-
put. When the system detects that the user has stopped
talking, it plays a brief low tone, indicating that it is no
longer recording. At this writing, users can only interrupt
jupiter by pressing the \*" key; verbal barge-in has not
yet been implemented. Figure 1 gives an example of inter-
actions between jupiter and a real user.

1The number is 1-888-573-8255. For overseas calls, the number is
1-617-258-0300. For more information about the system, users can
also access jupiter's home page, http://www.sls.lcs.mit.edu/jupiter.

A. System Architecture

The initial implementation of jupiter makes use of
our galaxy conversational system architecture [3]. Since
its introduction in 1994 as a client-server architecture,
galaxy has served as the testbed for our research and
development of human language technologies, resulting in
systems in di�erent domains and languages, and with dif-
ferent access mechanisms. In 1996, we made our �rst sig-
ni�cant architectural redesign to permit universal access
via any Web browser. The resulting WebGalaxy system
made use of a hub to mediate between a Java GUI client
and various compute and domain servers [4].
In 1998, galaxy was designated as the �rst reference

architecture of the newly launched DARPA Communica-
tor initiative in the US. As a result, we have developed a
new version of the galaxy architecture, this time with the
speci�c goals of promoting resource sharing and plug-and-
play capability across multiple sites [5]. To enable mul-
tiple system developers to experiment with di�erent do-
mains, components, and control strategies, we made the
hub \programmable," i.e., a scripting language controls the
ow through each dialogue, such that the same executable
can be specialized to a variety of di�erent system con�g-
urations. The hub communicates with the various servers
via a standardized protocol.
In January, 1999, we switched jupiter to this new, con-

�gurable hub architecture, illustrated in Figure 2. As illus-
trated in the �gure, human language technology servers
communicate through the programmable hub using a
scripting language. The audio server interacts with the user
over the phone line. The turn management server inter-
prets the user query and prepares the system response. The
turn manager communicates with the application back-end
via a module-to-module subdialogue mediated by the hub.
The application back end server retrieves database tuples
from a relational database using SQL.

B. Creating the Content

Jupiter can provide weather forecast information for
more than 500 cities worldwide. It currently obtains its
information from several complementary weather sources
available either from the Web, including CNN, the National
Weather Service, and USA Today, or through direct satel-
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Fig. 2. Illustration of the galaxy-II architecture.

lite feeds from WSI. Weather information from the Web is
updated three times a day, by polling the various sources
for any changes in predictions. Some web sites, such as
CNN and USA Today, provide multi-day weather related
information on a large number of domestic and interna-
tional cities, although the information is limited to general
weather conditions (e.g., sunny, partly cloudy, etc.) and
temperature ranges. The satellite feed provides up-to-the-
minute weather information on such things as temperature
and humidity.
The National Weather Service provides detailed weather

forecasts for 279 jupiter cities in unrestricted and unfor-
matted text. Since they provide a rich description of the
weather, including predictions of amounts of precipitation,
advisories for hurricanes, oods, etc., we feel it is worth
the extra e�ort to process them. Extraction of the infor-
mation is done using our natural language understanding
component, tina, described in Section 3.2.2.

III. Human Language Technologies

In this section, we briey describe jupiter's human lan-
guage technology servers shown in Figure 2. These include
speech recognition, frame construction (i.e., language un-
derstanding), language generation, and turn management.2

A. Speech Recognition

For speech recognition, we use the summit segment-
based speech recognition system developed in our group [6],
[7]. Some of the relevant aspects of the recognizer are de-
scribed below.

A.1 Vocabulary

Jupiter's vocabulary has evolved with our periodic
analyses of the growing corpus. It currently contains 1,957
words, including 650 cities and 166 countries; nearly half
of the vocabulary contains geography-related words. The

2We omit text-to-speech generation, which is currently imple-
mented using a commercially available text to speech system,
DECtalk.

design of the geography vocabulary was based on the cities
for which we were able to provide weather information, as
well as commonly asked cities. Other words were incorpo-
rated based on frequency of usage and whether or not the
word could be used in a query which the natural language
component could understand. Jupiter currently has an
out-of-vocabulary (OOV) rate of 1.9% on a 2,507 utter-
ance test set (vs. 1.3% on training data).

A.2 Phonological Modelling

In the current jupiter recognizer, baseform pronuncia-
tions for words are represented using 62 di�erent phonetic
units. After drawing the pronunciations for the jupiter
vocabulary from the LDC pronlex dictionary, alternate
pronunciations are explicitly provided for some words.3 In
addition to the standard pronunciations for single words
provided by pronlex, the baseform �le was also aug-
mented with commonmulti-word sequences which are often
reduced, such as \gonna," \wanna," etc.
A series of phonological rules were applied to the pho-

netic baseforms to expand each word into a graph of al-
ternate pronunciations. These rules account for many dif-
ferent phonological phenomena such as place assimilation,
gemination, epenthetic silence insertion, alveolar stop ap-
ping, and schwa deletion. These phonological rules primar-
ily utilize phonetic context information when proposing al-
ternate pronunciations, although syllabi�cation and stress
information can also be used. We have made extensive
modi�cation to these rules, based on our examination of
the jupiter data.
Arcs in the pronunciation graph are augmented with

probabilities which give preference to more likely pronun-
ciations and penalize less likely pronunciations. Currently,
these probabilities are maximum likelihood estimates taken
from forced alignments of the training data. The addition
of pronunciation graph probabilities reduced error rates by
nearly 9% (1% absolute) on a 2,500 utterance development
set.
In addition to the basic set of 62 units, we have also

explored the use of larger inventories of units which incor-
porate stress information, or which represent larger pho-
netic sequences which are highly coarticulated (e.g., \or,"
\all"). However, we have thus far been unable to achieve
consistent gains with these more complex inventories. We
plan to continue exploring alternative representations in
the future.

A.3 Language Modelling

The jupiter system makes use of both class bigram and
trigram language models. Nearly 200 classes were de�ned
to improve the robustness of the bigram. When trained on
a set of nearly 54,000 utterances and evaluated on a test
set of 2,507 utterances, the word-class bigram and trigram
had perplexities of 20.8 and 18.7, respectively. These are
slightly lower than the respective word bigram and trigram
perplexities of 21.6 and 19.9. Note that the class bigram

3Vocabulary words missing from the pronlex dictionary were en-
tered manually.
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also improved the speed of the recognizer, as it has 20%
fewer connections to consider during the search.
During recognition, the class bigram language model is

used in the forward Viterbi search. The class trigram lan-
guage model was originally deployed in a second pass as
part of a backwardsA� search which used the bigram scores
as a lookahead estimate. However we observed that the A�

search was susceptible to severe thrashing when there were
signi�cant di�erences between the bigram and trigram lan-
guage models. We subsequently modi�ed the search to �rst
use the backwards class bigram to produce an intermedi-
ate word graph representation. This word graph is then
rescored with class trigram language model scores and can
be converted to N -best outputs if desired. This strategy
signi�cantly reduced the worst-case latency of a develop-
ment set from 12 seconds to 2 seconds, with a median la-
tency under 1 second.

A.4 Acoustic Modelling

For acoustic modelling, the current jupiter con�gura-
tion makes use of context-dependent landmark-based di-
phone models which require the training of both transi-

tion and internal diphone models [6]. Internal diphones
model the characteristics of landmarks occurring within the
boundaries of a hypothesized phonetic segment, while tran-
sition diphones model the characteristics of landmarks oc-
curring at the boundary of two hypothesized phonetic seg-
ments. Since there is not enough data to compute acoustic
models for all possible diphones, a set of equivalence classes
are used to pool data. The current set of 715 classes was de-
termined manually, since they perform slightly better than
the automated methods we have explored.
For each landmark, 14 MFCC averages were computed

for 8 di�erent regions surrounding the landmark, creating
a 112 dimensional feature vector. This feature set was re-
duced to 50 dimensions using principal component analysis.
The 715 class diphone models were trained with mixture
Gaussian models, with up to 50 components per class. The
current models were trained on over 58,000 utterances, col-
lected during system interactions with jupiter. There are
nearly 18,000 Gaussian components in total.

A.5 Lexical Access

We have recently re-implemented the lexical access
search components of summit to use weighted �nite-state
transducers with the goals of increasing recognition speed
while allowing more exibility in the types of constraints.
We view recognition as �nding the best path(s) through the
composition A Æ U , where A represents the scored (on de-
mand) acoustic segment graph and U the complete model
of an utterance from acoustic model labels through the lan-
guage model. We compute U = C Æ P Æ L Æ G, where C
maps context-independent labels on its right to context-
dependent (diphone in the case of jupiter) labels on its
left, P applies phonological rules, L is the lexicon mapping
pronunciations to words, andG is the languagemodel. Any
of these transductions can be weighted. A big advantage
of this formulation is that the search components operate

on a single transducer U ; the details of its composition are
not a concern to the search. As such, U can be precom-
puted and optimized in various ways or it can be computed
on demand as needed. This use of a cascade of weighted
�nite-state transducers is inspired by work at AT&T [8],[9].

We have achieved our best recognition speed by precom-
puting U = C Æ minimize(determinize((P Æ L) Æ G)) for
G, a word-class bigram. This yields a deterministic (mod-
ulo homophones), minimal transducer that incorporates all
contextual, phonological, lexical, and language model con-
straints [9]. For the current version of the jupiter recog-
nizer, U has 84,357 states and 562,361 arcs.

For greater system exibility, we can compute U =
(C Æ minimize(determinize(P Æ L))) Æ G, performing the
composition with G \on the y" during the search. For ex-
ample, the use of a dynamic language model that changes
during a dialogue would require this approach. However,
with on-the-y composition we have found that the system
runs about 40% slower than for the fully composed and
optimized U .

B. Language Understanding

Tina, a natural language understanding system devel-
oped in our group, is used to transform the words into a
meaning representation [10]. Tina is used in jupiter in
two distinct ways. It parses user queries into a semantic
frame for interpretation by the system, to perform query

understanding. It also parses weather reports into a mean-
ing representation for purposes of content understanding.

B.1 Query Understanding

For processing user queries, our tina system selects the
most promising candidate hypothesis from a recognizer
word graph. It makes use of a manually constructed gram-
mar that encodes both syntactic and semantic information
in the parse tree. The �nal selection process takes into
account both the recognition and parse scores, as well as
the prior dialogue context. For example, if the system has
just listed a set of cities that it knows in California, it will
prefer a hypothesis that contains one of the cities on this
list.

The grammar attempts to cover all the legitimate ways
people could ask questions about weather, but also sup-
ports robust parsing through a mechanism that allows
unimportant words to be skipped and that can parse se-
quences of phrase-level units with full connectivity [11].
Probabilities for both the full parse and robust parse so-
lutions are jointly trained on a large corpus of utterances
from our data collection, using a completely automatic pro-
cedure. In our experience, the evidence of a complete well-
formed sentence is a reliable cue, and therefore we have
implemented the algorithm to prefer a full parse solution
over a robust parse candidate with a superior score. In
some cases tina is unable to produce a solution, even with
robust parsing options. For these utterances, the system
backs o� to a keyword spotting algorithm, which simply ex-
tracts all signi�cant keywords that appear suÆciently often
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Very heavy rain likely where storms occur and there is a chance
1 or 2 storms may bring damaging wind or hail.
Mixing with or changing to rain or sleet before tapering o� to
patchy light rain or snow this afternoon.
Near record low temperatures with a low from upper 20s north
portions to near 40 south sections near del Rio.
The national weather service continues the heat advisory for
heat index values 100 to 105 today and around 80 tonight.
Mainly east to southeast winds 10 to 20 mph and gusty this
morning becoming west to northwest 5 to 15 mph this afternoon.

Fig. 3. Example sentences obtained from National Weather Service
weather reports. These sentences are all covered by our grammar.

in the top ten recognizer hypotheses derived from the word
graph.

B.2 Content Understanding

Three times daily, tina automatically parses the con-

tent, i.e., the weather reports, into semantic frames. Most
of our data sources produce outputs in a highly predictable
format which are easily covered by a small grammar. How-
ever, the National Weather Service reports are prepared
manually by expert forecasters. As a consequence, they
often contain complex linguistic forms. Some sample sen-
tences are given in Figure 3. During the �rst few months of
weather harvesting, we invested considerable e�ort in writ-
ing parse rules to cover these constructs. Subsequently, our
e�orts have dropped down to a maintenance level, with the
rule base growing very slowly over time. As of this writing,
the parse failure rate has been reduced to a fraction of one
percent, and is predominantly due to spelling errors.

The parsing process produces semantic frames, which are
then sorted into categories based on the meaning. As illus-
trated in Figure 4, each weather report is �rst converted to
an indexed list of semantic frames, one for each sentence.
The indices are then entered into the relational database
under appropriate topicalized categories. To retrieve the
answer to a particular user request, the system �rst re-
trieves the indices of the relevant sentences in the weather
report via an SQL query, then orders them sequentially,
and �nally paraphrases each of the corresponding seman-
tic frames in turn, to compose a verbal response. Delays
are minimal, since the system has preprocessed all current
information into semantic frames in a local cache.

Index Sentences Categories

1 Wednesday [date]
2 Becoming very windy and

turning colder with a 60 per-
cent chance of snow.

[weather] [snow] [wind]

3 Near blizzard conditions and [weather] [snow]
dangerous wind chills devel-
oping.

[temperature]

4 High around 20 with tem-
perature falling into the sin-
gle digits by late afternoon.

[temperature]

5 Northwest winds increasing
to 25 to 45 mph.

[wind]

Fig. 4. Extract from an on-line weather report maintained by the
National Weather Service, indexed and annotated for categories.

User: WILL IT SNOW TODAY IN NORTH DAKOTA
SQL: select distinct city from geo, event where

event.apt code = geo.apt code and event.snowspk is
not null

jupiter: The forecast indicates snow for the following places
in North Dakota: Bismarck, Dickinson, Devil's
Lake, Fargo, Grand Forks, Williston, James-town,
and Minot. Please select one.

User: HOW ABOUT FARGO
SQL: select distinct dayspk, snowspk from event, geo

where geo.city = `Fargo' and event.apt code =
geo.apt code and event.day = 0 and event.snowspk
is not null

jupiter: In Fargo in North Dakota today: becoming windy
with light snow developing. Wind east increasing
to 20 to 30 miles per hour producing drifting snow.
Can I help you with something else?

Fig. 5. Example of a short dialogue between a user and jupiter,
showing the database query and the �ltered responses.

The �nal step of processing occurs when the user requests
information. At this time, the selected parse frames are
converted into natural English using our genesis language
generation system (next section). The response is then
a paraphrase of selected portions of the original weather
report.
An example of selective database retrieval is given in

Figure 5. The user �rst asked whether it would snow that
day in North Dakota. The SQL query returned all the
cities in North Dakota for which some mention of snow
was made. A follow-up query asks for the particular con-
ditions in Fargo, and the system replies with all parts of
that day's weather report that mention snow, which turns
out to include a sentence mainly about the wind speed.

C. Language Generation

Language generation in jupiter makes use of gene-
sis, MIT's language generation module [12]. Jupiter uses
genesis for three very di�erent types of output. In each,
the input to genesis is a semantic frame, produced by
either tina, the jupiter turn manager (next section), or
a combination of both. The outputs are either a response
to be spoken to a user, an SQL query for accessing the
weather database, or a set of keyword-value pairs to aid in
interpretation of user queries.
Control for genesis is con�gured into three distinct com-

ponents: a lexicon, a set of message templates, and a
set of rewrite rules. The lexicon's main role is to specify
the surface form of a semantic frame entry, including the
construction of inectional endings (gender, case, number,
etc.). Message templates are used to recursively construct
phrases describing the topics, predicates, and clauses of a
semantic frame. Finally, the rewrite rules are intended to
capture surface phonotactic constraints and contractions.
In English we use rewrite rules to generate the proper form
of the inde�nite articles \a" or \an", or to merge \a other"
into \another." Jupiter utilizes a separate set of control
�les for each of its three languages (i.e., English, SQL, and
keyword-value).
The system response in jupiter is typically composed

from a list of frames, with each frame in the list corre-
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{c weather_response
:continuant {c something_else4 }
:db_tlist ({c weather_event

:input "saturday"
:city {p in

:topic {q city :name "new york city" }}
:pred {p month_date

:topic {q date :day "saturday" }}}
{c weather_event
:topic {q weather_act

:conditional "mostly"
:name "sunny"
:and {q iwind :name "brisk" }}

:input "mostly sunny and brisk" }
...
{c weather_event
:topic {q weather_act

:pred {p temp_qual :topic "chilly" }}
:and {c weather_event

:conjn "with"
:topic {q lows

:pred {p from_value
:qualifier "around"
:topic {q value

:name 40 }}}}
:input "chilly with a low around 40" })

:domain "Jupiter" }

Fig. 6. Excerpts from a response frame for the query \What is the
weather going to be like tomorrow in New York?" The response
by the system was \In New York City Saturday, mostly sunny and
brisk, ..., chilly with lows around 40. What other information can
I give you?" Note: \c..." = clause, \p..." = predicate, and \q..."
= quanti�ed noun phrase.

sponding to a part of the weather forecast that answers
the speci�c user query. If the user asked about rain, for ex-
ample, what would then follow are the clause frames from
the weather database dealing with precipitation (including
references to accumulation, rain mixed with snow, etc.). A
phrase containing the reference city and date is inserted
prior to the list of frames, to provide contextual grounding
for the user. Thus, for example, the response to a query
regarding New York City might start with \In New York
City, tomorrow." An example of a frame used to construct
a user response can be found in Figure 6.

Jupiter's parsed weather forecast data are stored in a
relational database. When the jupiter turn manager is
ready to access this database, it �rst sends a request to
genesis for a well-formed SQL query. The semantic frame
representing the user input is included along with this re-
quest, as well as a key designating that the output language
is SQL. Genesis treats SQL as it does any other language,
returning a paraphrase of the semantic frame in SQL, as it
would in English or Chinese.

The turn manager makes use of one other language for
processing user queries, a attened representation of the
keys and values from the input semantic frame. Para-
phrases in this \keyword-value" language are used by the
dialogue control module in the turn manager, as well as by
the evaluation module to assess understanding accuracy.
Figure 7 shows an example of the semantic frame con-
structed from user input and the corresponding English,
SQL, and keyword-value representations for that query.

SEMANTIC FRAME:
{c wh_query
:topic {q weather

:quantifier "which_def"
:pred {p month_date

:topic {q date
:name "tomorrow" }}

:pred {p in
:topic {q city

:name "new york city" }}}
:domain "Jupiter" }

ENGLISH: what is the weather in New York tomorrow?

SQL: select distinct geo.apt_code, source, day, dayspk,
city, state, country, region, weathrspk, tempspk from
weather, geo where geo.city = `New York City' and weathrspk
is not null and day = 1 and weather.apt_code = geo.apt_code

KEYWORD-VALUE:
TOPIC: weather CITY: New York City DATE: tomorrow

Fig. 7. Example semantic frame and various paraphrases for the
query \What is the weather going to be like tomorrow in New
York?"

D. Turn Management

By monitoring log �les from our user interactions with
jupiter, we have become increasingly aware of the bene�ts
of letting real users inuence the design of the interaction.
We have discovered several interesting issues with regard
to appropriate response planning to accommodate users'
requests. One of the critical aspects of any conversational
interface is the need to inform the user of the scope of the
system's knowledge. For example, jupiter has informa-
tion about a small subset (approximately 500) of the cities
in the world, and users need to be directed to select rel-
evant available data when their explicit request yields no
information. Even for the cities it knows, jupiter does
not necessarily have the same knowledge for all cities.

Jupiter has a separate geography table organized hier-
archically, enabling users to ask questions such as \What
cities do you know about in the Caribbean?" This table is
also used to provide a means of summarizing a result that
is too lengthy to present fully. For example, if the user
asks where it will be snowing in the United States, there
may be a long list of cities expecting snow. The system
then climbs a geographical hierarchy until the list is re-
duced to a readable size. For example, jupiter might list
the states where it is snowing, or it might be required to
reduce the set even further to broad regions such as \New
England," and \Northwest." We try to restrict the size of
an enumerated list to under 10 items, if possible.

During our data collection sessions, we noticed consid-
erable frustration among users seeking information about
sunrise and sunset times, when such information did not
exist for the cities they requested. We realized that the sys-
tem needs to distinguish between the general set of cities it
knows, and the particular knowledge associated with each
of those cities. Based on these observations, we decided
to augment the system with the capability of suggesting a
list of alternative cities in the same geographic region for
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which the requested data are available. This even applies
for cities that are completely unknown to jupiter, as long
as the user has given additional information that can be
used to infer a neighborhood. Thus, if the user asks for the
weather in an incompatible<city> <state> pair (e.g., due
to an out-of-vocabulary word or misrecognition), jupiter
will respond with a list of the cities that it does know for
that state.

In addition to these general considerations, several phe-
nomena required special attention. For example, we had
calls after midnight when users, asking for \tomorrow's"
weather, really wanted \today's" weather, de�ned from
midnight to midnight. We also had foreign callers who
wanted temperature information presented in degrees Cel-
sius rather than Fahrenheit. We have augmented the sys-
tem to take these issues into account. Converting temper-
ature to Celsius turned out to be a fairly complex process
for the frequent cases where temperature was expressed in
qualitative terms such as \highs mid to upper 80s." Fi-
nally, to encourage the user to continue the dialogue after
each exchange, we implemented a simple mechanism to al-
ternate among a set of continuation phrases, such as \Can
I help you with something else?" Figure 1 shows an ac-
tual dialogue between a user and jupiter, illustrating this
behavior.

At the highest level, jupiter's dialogue module is con-
trolled by a \dialogue control table," which is external to
the code. This mechanism is used by all of our galaxy
domains, and we have found it to be very e�ective in help-
ing system developers to visualize the program ow in the
turn manager. The strategy �rst evolved out of our expe-
rience in developing the pegasus ight reservation system
[2], where it quickly became apparent that complex nest-
ings of subroutine calls led to intractable systems. The
mechanism is intended to accomplish two major goals: (1)
to transform the hierarchical, organization of nested sub-
routine calls into a linear sequence of operation calls, and
(2) to provide a mechanism to succinctly outline the entire
system's activities in one or two pages of text.

Each of our turn managers is controlled by a dialogue
control table which speci�es a sequence of operations which
will �re whenever the speci�ed conditions are met. The
conditions consist of arithmetic, string, and logical tests
on variables. Upon �ring, each operation typically alters
the state of one or more variables, and can return one of
three possible outcomes: \continue," \stop," and \restart."
Typically the early rules in the table concern veri�cation
that the query is complete and well-formed. Once a query
is prepared, a database call produces a result table. The
latter half of the dialogue control table is then concerned
with interpreting the table and preparing a user response
frame.

Jupiter invokes the \restart" action whenever it deter-
mines that the query may be over-speci�ed. For example,
when the user asks, \Are there any advisories?" the dis-
course component assumes any region speci�ed in a preced-
ing query. Once the query is evaluated and no advisories
are found, jupiter drops the region constraint and reissues

the request, by returning program control to the top of the
dialogue control table. Jupiter would then summarize
advisories found anywhere in the United States. Similarly,
if the user asks for sunrise time in a particular city, and
jupiter discovers that it does not have that information,
it restarts with a request for sunrise time in the state as-
sociated with that city, after adding to the response frame
a comment about the missing information. The resulting
response string would be \I have no sunrise information for
<city>. I have sunrise information for the following cities
in <state>: <list of cities with sunrise information>."

E. Con�dence Scoring

A deployed system can produce many unanticipated con-
sequences. In examining the jupiter corpus, we were sur-
prised to �nd that users sometimes asked questions that
were completely outside of the weather domain, such as
\What is today's lottery number?" and \Are there any
restaurants in Cambridge?" We decided to augment the
vocabulary with support for the most frequently asked out-
of-domain queries, replying with a speci�c apology. It be-
came clear, however, that we also needed a sophisticated
form of rejection of misunderstood or unanticipated out-
of-domain utterances. This would be far preferable to pro-
viding a possibly lengthy, incorrect response. To this end,
we developed a con�dence scoring algorithm, with the goal
of providing a mechanism to eliminate incorrectly under-
stood sentences as much as possible, while continuing to
accept as many as possible utterances which were correctly
understood.
Di�erent system components can reject a user utterance.

The speech recognition component can make use of the
likelihood of the acoustic models for a hypothesized word
sequence. Phenomena such as out-of-vocabulary or partial
words, extraneous noise, and poor signal-to-noise ratio are
often mismatched with the acoustic models and can be a
source of recognition error. A poor acoustic score can there-
fore potentially signal an unreliable recognizer hypotheses.
Another indicator of an unreliable hypothesis can be pro-
vided by the language model score. Often when confronted
by out-of-vocabulary items, the recognizer will hypothesize
an unlikely sequence of words in an attempt to match at
the acoustic-phonetic level. Finally, when N -best outputs
are computed, the relative scores of successive hypotheses
can be an indication of recognizer con�dence. In addition
to the speech recognizer, the natural language component
can also provide valuable information. For example, it is
extremely useful to know if the utterance can be parsed.
To carry out this research [13], we �rst developed a pro-

cedure that automatically tags an utterance as either ac-
cept or reject, based on a semantic-frame comparison
between the recognized and transcribed orthographies. On
an evaluation set of more than 2,000 utterances, our au-
tomatic algorithm achieved a better than 90% agreement
with manual annotation.
Once a suÆcient number of utterances has been correctly

tagged, we can investigate the usefulness of various features
for utterance rejection. We have thus far concentrated on
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utterance-level features, because such features are easily
computed and can alleviate the need to combine individ-
ual word con�dence scores into a meaningful rejection score
for the entire utterance. In addition to recognition-based
features (e.g., the acoustic and language model scores, the
number of words and phones in the hypotheses, and the
number of N -best hypotheses), we also investigated the use
of linguistic and application-speci�c features (e.g., parse
probability, and the quality of the parse), as well as seman-
tic features (e.g., the relative weights of the word classes).
Next, a Fisher linear discriminant analysis (LDA) clas-

si�er was used iteratively to select the best feature set for
the classi�cation task. On each iteration, N feature sets
from the previous iteration were each augmented with one
additional feature from the set of M unused features. The
N �M new feature sets were scored using LDA classi�ca-
tion on a development set, and the top N feature sets were
retained for the next iteration. The LDA threshold for each
classi�er was set to maintain a false rejection rate of 2%
on a development set. The procedure terminated when no
additional improvement was found. Using this method, we
selected a set of 14 features for utterance rejection, which
had a correct rejection rate of 60%.

IV. The Jupiter Corpus

A. Data Collection

Several di�erent methods have been employed to collect
data for jupiter. We created an initial corpus of approxi-
mately 3,500 read utterances collected from a variety of lo-
cal telephone handsets and recording environments. This
data set was augmented with over 1,000 utterances col-
lected in a wizard environment [14]. These data were used
to create an initial version of jupiter, which naive users
could then call via a toll-free number to ask for weather
information. The bene�t of this eventual setup is that it
provides us with a continuous source of data from inter-
ested users. Over the past two years, we have collected
over 180,000 utterances from over 30,000 calls, all without
widely advertising the availability of the system. At this
writing, we average over 100 calls per day. Figure 8 shows
the amount of data collected each month over a two year
period starting from May 1997.
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Fig. 8. A plot of the amount of jupiter data collected from naive
users via a toll-free number each month over a two year period
starting from May 1997.

Tools have been developed so that incoming data can be
transcribed on a daily basis [15]. The transcriber starts

with the orthography hypothesized by the recognizer dur-
ing the call, and makes corrections by listening to the wave-
form �le. The transcribed data are also marked for obvious
non-speech sounds, spontaneous speech artifacts, speaker
type (male, female, child), and other characteristics as ap-
propriate (e.g., speaker phone, heavily accented speech).
The transcribed calls are then bundled into sets containing
approximately 500 utterances and are added to the train-
ing corpus as they become available (with sets periodically
set aside for testing).

B. Data Analysis

Data analysis is based on approximately 59,000 utter-
ances from over 10,000 calls. A breakdown of the live data
shows that just over 70% of callers are males and approx-
imately 21% females. The remainder of the utterances in
the corpus were spoken by children. A portion of the utter-
ances was from non-native speakers, although the system
performs adequately on speakers whose dialect or accent
does not di�er too much from general American English.
Callers with strong accents constituted approximately 7%
of the calls and 14% of the utterances. A small fraction
(0.1%) of the utterances included talkers speaking in a for-
eign language (e.g., Spanish, French, German, or Chinese).
The signal quality of the data varied substantially de-

pending on the handset, line conditions, and background
noise. It is clear that speaker phones were used in ap-
proximately 5% of the calls due to the presence of multiple
talkers in an utterance. Less than 0.5% of the calls was
estimated to be from cellular or car phones.
Over 11% of the utterances contained signi�cant noises.

About half of this noise was due to cross-talk from other
speakers, while the other half was due to non-speech noises.
The most common identi�able non-speech noise was caused
by the user hanging up the phone at the end of a recording
(e.g., after saying good bye). Other distinguishable sources
of noise included (in descending order of occurrence) tele-
vision, music, phone rings, touch tones, etc.
There were a number of spontaneous speech e�ects

present in the recorded data. Over 6% of the utterances
included �lled pauses (uh, um, etc.) which were explicitly
modeled as words in the recognizer, since they had con-
sistent pronunciations, and occurred in predictable places
in utterances. Utterances contained partial words another
6% of the time, although approximately two thirds of these
were due to clipping at the beginning or end of an utter-
ance. The remaining artifacts were contained in less than
2% of the utterances and included phenomena such as (in
descending order of occurrence) laughter, throat clearing,
mumbling, shouting, coughing, breathing, sighing, sneez-
ing, etc.

V. Performance Evaluation

Jupiter is a system that is under constant development.
From time to time, we evaluate its performance on un-
seen test sets. In this section, we will report a snapshot of
jupiter's performance both at the component and system
level.
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A. Speech Recognition

The recognition test data, consisting of 2,507 utterances,
represents a collection of calls randomly selected over our
data collection period. Of these, 2,003 were free of arti-
facts such as partial words, cross-talk, etc, and a further
subset of 1,793 were considered to be \in vocabulary" in
that they contained no out-of-vocabulary words. The 504
utterances containing an artifact and the other 210 utter-
ances containing an out-of-vocabulary word were combined
to create a 714 utterance \out of vocab" set. About 72% of
the in-vocabulary utterances (1,298) were from male speak-
ers, about 21% (380) were from females, and 7% (115) from
children.
Figure 9 details jupiter's recognition performance on

the test set. The word and sentence error rates (WER
and SER) for the entire test set are 20.4% and 40.2%,
respectively. The error rates decreased by approximately
25% when utterances containing crosstalk or other non-
speech artifacts were removed. For the in-vocabulary sub-
set, WER and SER are reduced to 10.4% and 24.8%, re-
spectively. Closer examination of the in-vocabulary utter-
ances reveals that error rates for females are somewhat
higher than those for males, and the error rates for chil-
dren are signi�cantly worse. This is probably a reection
of the lack of training material for females and children,
although there may be other factors.
Performance on speakers judged to have a strong foreign

accent is more than twice as bad as that for male speak-
ers. Finally, the system has considerable trouble (57.3%
WER) with utterances containing out-of-vocabulary words
and artifacts. This rate may be arti�cially high, however,
due to the nature of the alignment procedure with refer-
ence orthographies.4 It is reassuring, however, to observe
that the system performs extremely well on \expert" callers
(i.e., mainly sta� in our group) who have considerable ex-
perience using the jupiter system, but were not used for
training or testing. This behavior is typical of users who be-
come familiar with the system capabilities (a case of users
adapting to the computer!).
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Fig. 9. Detailed analysis of the speech recognition results. (IV=In
Vocabulary)

4Partial words always caused an error due to the nature of our mark-
up scheme. Noise artifacts may or may not have caused an error since
they were excluded from the alignment transcription (making perfect
sentence recognition possible). They typically produced one or more
insertion errors however (e.g., during cross-talk).

B. Language Understanding

Language understanding was evaluated using two mea-
sures analogous to word and sentence error rates which we
have called keyword and understanding error rates. Key-
word error rate (KER) was designed to be similar to word
error rate and uses the same metrics of substitution, inser-
tion, and deletion. Keyword error rate is computed on a
set of keyword-value pairs that are automatically generated
for each utterance with a parsable orthographic transcrip-
tion. We have developed a special language within genesis
for evaluation, one that captures the salient semantic con-
cepts from an utterance in a attened representation using
the format keyword: value. For example, the utter-
ance, \Will it rain tomorrow in Boston" would be para-
phrased into the string \topic: rain; date: tomorrow;
city: Boston" for evaluation. The recognition hypothesis
\Will it rain tomorrow in Austin" would produce a similar
paraphrase, with one substitution, on the city key. The
keyword error rate reported in this paper is computed by
summing insertions, deletions, and substitutions, and di-
viding that number by the total number of keys generated
from the parsed utterances. An utterance is considered to
be understood if all the keyword-value pairs between the
hypothesis and reference agree. This is measured by the
understanding error rate (UER).
Numbers for understanding error are divided into three

categories, based on how the utterance was treated at data
collection time and the parse status of the transcription
string. Utterances that were answered at run-time and
whose transcription strings parse are scored fully for un-
derstanding. These utterances may include out-of-domain
words or other non-speech artifacts, but they are included
here if their orthographic transcription parses. Utterances
that were rejected by the con�dence-scoring module are
scored separately. The understanding score of these utter-
ances is irrelevant for overall system performance, since the
jupiter turn manager did not generate an answer, but it
is useful as a way of evaluating the con�dence-scoring mod-
ule. Finally, utterances whose transcriptions do not parse
cannot be automatically evaluated for understanding since
there is no way to automatically create a reference meaning
representation.
Table I shows the speech understanding evaluation per-

formed on the same evaluation test set that was used for
speech recognition. Out of a total of 2,507 recorded utter-
ances, 269 contained no speech, and were eliminated from
further consideration for this evaluation. Jupiter was able
to answer nearly 80% (1,755 out of 2,238) of the remain-
ing utterances. The word and sentence recognition error
rates for this subset were 13.1% and 33.9%, respectively.
Keyword error rate for this subset is 14.5%, and the cor-
responding utterance understanding error rate is 21.2%.
Note that many utterances containing recognition errors
were correctly understood. Approximately 5% (105 out
of 2,238) of the utterances were rejected, and these utter-
ances have much higher error rates. Had these utterance
not been rejected, the understanding error rate for them
would have been 41.9%. The remaining utterances (17%,
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# Utts WER SER KER UER

Accept 1,755 13.1 33.9 14.5 21.2
Reject 105 27.1 72.4 30.0 41.9
No Ref. 378 56.0 93.4 N/A N/A

TABLE I

Performance summary for word (WER), sentence (SER),

keyword (KER), and understanding (UER) error rates (in

percent) for the 2,507 utterance test set. WER and SER

are for recognition only. KER is based on the

keyword-value evaluation, while UER measures

understanding error at the utterance level.

or 378 out of 2,238) did not have a reference parse, and
thus are not \evaluable" using the automatic procedure
that we developed. Some of these utterances may have
been answered correctly, but we have no automatic way of
evaluating them. The word and sentence error rates were
very high on these data however.

C. Content Understanding

On a typical day, our natural language system, tina,
parses 20,000 sentences from the US National Weather Ser-
vice. Shortly after we began parsing these weather reports,
we decided to maintain a careful record of parse coverage
over time so that we could determine if the system was
reaching convergence in its ability to process content. From
an initial parse coverage of 89% during the �rst week, the
system rapidly achieved a parse coverage of over 99% by
the eleventh week. Due to the seasonal nature of weather
events (e.g., summer hurricanes, winter snow storms), we
occasionally encountered previously unseen weather fore-
casts during the �rst year of jupiter development, re-
quiring new grammar rules to accommodate them. In re-
cent months, however, the number of sentences that cannot
be parsed hovers around 40 per day, or 0.2%. These sen-
tences are typically set aside and dealt with by the system
developers on a monthly basis.

D. Utterance Rejection

Utterance rejection was evaluated using 25,000 utter-
ances collected from naive users during the �rst part of
1998. Our utterance rejection algorithm incorrectly re-
jected 2.8% and correctly rejected 63.3% of all utterances,
for a total of 82.7% correct accept/reject decision.
Table II show the classi�cation results in greater detail.
Closer examination of incorrectly accepted utterances re-
veals that there were often misrecognized city names con-
tained in the recognizer hypothesis, or the utterance con-
tained out-of-vocabulary city names, non-speech events, or
out-of-domain requests.
The system responses to rejection are conditioned on

the preceding dialogue's rejection pattern. The response
to a �rst rejection is simply, \I'm sorry I didn't under-
stand you." Subsequent rejections elicit increasingly de-
tailed \help" messages, intended to encourage the user to

Reference
System Accept Reject Total

Accept 14,075 (97.2%) 3,980 (36.7%) 18,055
Reject 412 (2.8%) 6,879 (63.3%) 7,291

TABLE II

Evaluation results for jupiter's utterance rejection

algorithm. Confidence scoring results: the correct decision

was made in 82.7% of the cases ((14,075 + 6879)/ 25,346).

speak sentences within the domain. We have analyzed a
corpus of over 6,500 queries to see what e�ect the prior
rejection pattern has on the likelihood of rejection of sub-
sequent utterances. As might be anticipated, the system
is signi�cantly more likely to accept an utterance subse-
quent to a previously correctly accepted utterance (80%)
rather than subsequent to a single correctly rejected ut-
terance (56%). After the second contiguous rejection, the
system recovers somewhat, but to only a 64% acceptance
rate, still far short of the performance after a correct ac-
ceptance. This is in spite of the detailed \help" message
that has been provided at this point. In general, system
performance is the worst (in terms of recognition and un-
derstanding) after multiple failures { if the system is having
trouble understanding the user, it continues to have trouble
(an example of users not adapting to the system!).

VI. Discussion

Jupiter is an example of a new generation of speech-
based interfaces that combines several human language
technologies to help users access information using a con-
versational paradigm. Many speech-based interfaces can be
considered conversational (e.g., [16],[17],[18],[19]), and they
di�er primarily in the degree with which the system main-
tains an active role in the conversation. For most of the
conversational interfaces deployed commercially today, the
computer takes control of the interaction by requiring that
the user answer a set of prescribed questions, much like
the DTMF implementation of interactive voice responses
(IVR) systems. In contrast, systems like jupiter can deal
withmixed-initiative, goal-oriented dialogue, in which both
the user and the computer participate to solve a problem
interactively.
Jupiter's content is more complex than data stored in

regularized tables. The original weather reports are linguis-
tically diverse, and therefore natural language processing
is an integral part of content creation. Besides, the infor-
mation is dynamic, requiring frequent updates. Finally,
the knowledge base of the weather domain (e.g., humidity,
temperature, weather advisories, etc.) is conceptually rich
and can potentially lead to a wide variety of ways users can
query the system.
Jupiter is a manifestation of our ongoing research strat-

egy of developing human language technologies within real

applications, rather than relying on mock-ups, however re-
alistic they might be. We believe that this strategy will
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force us to confront critical technical issues that may oth-
erwise not require our attention, such as dialogue mod-
elling, new word detection/learning, con�dence scoring, ro-
bust recognition of accented speech, and portability across
domains and languages. We also believe that working on
real applications has the potential bene�t of shortening the
interval between technology demonstration and its deploy-
ment. Above all, real applications that can help people
solve problems will be used by real users, thus providing
us with a rich and continuing source of useful data. These
data are far more useful than anything we could collect in
a laboratory environment.

Figure 10 shows, over a two-year period, the cumulative
amount of data collected from real users and the corre-
sponding word error rates (WER) of our recognizer. Before
we made the system accessible through a toll-free number,
the WER was about 10% for laboratory collected data.
The WER more than tripled during the �rst week of data
collection. As more data were collected, we were able to
build better lexical, language, and acoustic models. As a
result, the WER continued to decrease over time. This neg-
ative correlation suggests that making the system available
to real users is a crucial aspect of system development. If
the system can provide real and useful information to users,
they will continue to call, thus providing us with a constant
supply of useful data. These data have provided a fertile
playground for our sta� and students to explore di�erent
aspects of spoken language research [20],[21],[22],[23].
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Fig. 10. Comparison of recognition performance and the number
of utterances collected from real users over time. Note that the
x-axis has a nonlinear time scale, reecting the time when new
versions of the recognizer were released.

Figure 10 suggests that domain-speci�c data are crucial
for good recognition performance. This is also the case for
other components, such as language understanding. Until
we can make language technology components domain in-
dependent, or the knowledge acquisition process automatic,
building conversational systems for real-world applications
will continue to be labor intensive. The development of
tools that facilitate knowledge acquisition is an important
aspect of the research infrastructure. Even if we can solve
these problems, there are a myriad of issues that needs
attention, including content processing (e.g., dealing with
changes in the format of an html document), audio cap-
ture (e.g., enabling multiple audio streams), and keeping
the system constantly available. Many of these issues have
little to do with the development of human language tech-
nologies. Nonetheless, they represent a signi�cant part of

the system development overhead.

Over the past year, we have begun to utilize jupiter as
the domain in which to conduct research on multi-lingual
conversational interfaces, including German, Japanese,
Mandarin Chinese, and Spanish. Our approach is predi-
cated on the assumption that the users' queries in di�erent
languages can be represented using a common semantic
frame [24]. In the case of jupiter, this appears to be the
case. We have begun an e�ort to paraphrase the weather
responses in English into these other languages. For each
of these languages, a native speaker who is also uent in
English is preparing the corresponding genesis generation
rules. In addition, we are also incorporating weather re-
ports in foreign languages, so that region-speci�c informa-
tion (e.g., typhoons) can be made available. There were a
few instances in which the same word in English had to be
given a di�erent translation depending on the context. For
example, the word \light," translates di�erently into Man-
darin for the two phrases, \light wind" (\qinq1 feng1") and
\light rain" (\xiao3 yu3"). Genesis handles this situation
using a semantic grammar that can categorize the two cases
into di�erent adjective types.

To address the issue of portability, we are in the pro-
cess of developing other, similar on-line services as natu-
ral extensions to jupiter. There are a number of simi-
lar domains for which the information is dynamic and the
vocabulary is suÆciently limited to support practical con-
versational interfaces. These include ight status informa-
tion, traÆc information, and navigation information. Hav-
ing multiple application domains will also provide us with
the opportunity to explore strategies to navigate seamlessly
from one domain to another. We have had some success
in building recognizers in these domains using jupiter's
acoustic models.

Finally, jupiter represents our �rst attempt at building
conversational interfaces to serve real-world users. While
it addressed several important research issues such as
telephone-based speech recognition/understanding, virtual
browsing, and information on demand, the weather infor-
mation domain simply does not require extensive dialogue
management.5 To support dialogue research, we have re-
cently started the development of mercury, a conversa-
tional interface for travel planning, which requires tens of
turns to accomplish a typical task of making a round-trip
ight reservation [25].
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5An average conversation with jupiter lasts �ve to six turns.
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