Lazy Type Changes 1in
Object-oriented Database

Shan Ming Woo and BarHamrskov
MIT Lab. for Computer Science
December 1999



Background

M

wBehavior of OODB apps compose
of behavior of persistent obj

wBehavior of objects governed
their types

w Type changeseeded to update
OODB apps

wHow to execute type change?



Requilrements

M

L

WA type change may affeer Dymhes

wAn upgradeonsists of a setedf re
type - changes

w Upgrades are ordered

w Execution of an upgrade have to |
atomic w.r.t. app trarssdaiil
prevent type errors




Na ve ExXecution

M

L

wStep 1: shut down the database

wStep 2: transform objects

wStep 3: restart the database
w Drawback database availabilfigrs su

wNot suitable for laegdatabases
and mission-cridatsdases

wSolutiodazy type changes



Lazy Type Changes

M
\

wObjects transformedr,lazel just
before use

wDatabase availabilo@&f fierted

wWorkload of an upgrade:
1. Spread effect eyt ime

2. Distributed dmand vapps

wSulitable for all dataldasBsign
large-scale and misdomrelcranes




M

Theory

w Type change€.=<T, T , £ >

T T A TN

Pre-type Post-type Transf?rm
function

wUpgrade: H<n, {Gs>

T

Serial # Set of type changes




M

Theory (cont.)

w Transform functions:
n ACt on one obpdcta time

n Preserve object ileentite.

object references survickarggse
n-Should -not-modify-+-any--data

w Upgrades have tocbmplete 1.e.
should not afferr diypes




4

Implementation Design (1)

M

J
w Based on Thor n Objects in client cache

[ECOOP99] indexed by a resident

. Distributed client/server ©OPJject table (ROT)
OODBMS n Each ROT entry stores a

n Optimistic concurrency dispatch vector pointer
control and a field pointer for

n Servers store objects, object
validate transactions » Pointers irempty

n Clients cache objects, entry are null

operate on cached

n Point ifuaént
objects on behalf of apps OlNLELs ntry

, , . are up-to-date
n Object i1dentity partly

location dependent



4

Implementation Design (2)

M

L

W Single Server n Invarian&tl full ROT
entries represent up-to

date objects.

n Upgrades stored at
the server and

: n At receipt of ne
pushed to clients P v

upgrade, client

n Objects transformed w aborts running

by clients before transaction if it used
used by apps affected objeécts
: uarantee atomicit
n Objects 7 Y
: w scans ROT and emptie
transformations are .
affected entroes
regarded as preservenvariant

modifications



Implementation

M

L

w Single server continued Size decreases---

n

Special client cooperate
with garbage collector to

transform rarely used
objects

Upgrades complete in
order: when all objects
affected by the oldest
upgrade has been

transformed, it 1is
discarded

Problem: objects change
sizes across
transformations

n

(3)

Design

overwrite original obje

Size 1ncreases---find
space on the same serve
page:

w If succeed,
offset table

w Otherwise, write to
another pagad
replace origimbject
with surrogate

upgaoe

Reference through
surrogate 1s shortcut
when the referring obje
1s modified



Implementation

M

L

w Multiple servers n

n A master server stores
the master copy of all
upgrades

n Upgrades pushed from
master server to other
servers

n Each server sends
upgrades to its clients
and each client processes
upgrades as 1n the single
server 1lmplementation

Design (4)

4

Problem: need to
maintain consistency
when a client talks to
multiple servers---an
upgrade may arrive at
one server before
another

Client acts as relay to
restore consistency: ea
commit request 1s tagge
with serial number of

newest upgrade at clien



M

Conclusion

L

w Lazy type changes preserve database
avallability and can b&lgfficie
implementedessential for large-scale
mission-critical databases

Future work

w Project focused pmipeent objects: how
avold recompillingagpbns? Unilversal
application framework?

w How to extendnom-database environment



