
Lazy Type Changes in
Object-oriented Database

Shan Ming Woo and Barbara Liskov

MIT Lab. for Computer Science

December 1999

Background

wBehavior of OODB apps compose
of behavior of persistent obj

wBehavior of objects governed
their types

wType changes needed to update
OODB apps

wHow to execute type change?

Requirements

wA type change may affect other types

w An upgrade consists of a set of reed
type changes

w Upgrades are ordered

w Execution of an upgrade have to b
atomic w.r.t. app transactions to
prevent type errors

Na ve Execution

wStep 1: shut down the database

w Step 2: transform objects

w Step 3: restart the database

w Drawback: database availability sufers

w Not suitable for large-scale databases
and mission-critical databases

w Solution: lazy type changes

Lazy Type Changes

wObjects transformed lazily, i.e. just
before use

w Database availability not affected

w Workload of an upgrade:
1. Spread effectively over time
2. Distributed fairly among apps

w Suitable for all databases including
large-scale and mission-critical ones

Theory

wType change: CT =<T, T , f T>

w Upgrade: U =<n, {Ci }>

Pre-type Post-type Transform
function

Serial # Set of type changes

Theory (cont.)

wTransform functions:
n Act on one object at a time

n Preserve object identities, i.e.
object references survive type changes

n Should not modify any data

w Upgrades have to be complete, i.e.
should not affect other types

Implementation Design (1)

w Based on Thor
[ECOOP99]
n Distributed client/server
OODBMS

n Optimistic concurrency
control

n Servers store objects,
validate transactions

n Clients cache objects,
operate on cached
objects on behalf of apps

n Object identity partly
location dependent

n Objects in client cache
indexed by a resident
object table (ROT)

n Each ROT entry stores a
dispatch vector pointer
and a field pointer for
object

n Pointers in an empty
entry are null

n Pointers in a full entry
are up-to-date

Implementation Design (2)

w Single Server
n Upgrades stored at
the server and
pushed to clients

n Objects transformed
by clients before
used by apps

n Objects
transformations are
regarded as
modifications

n Invariant: All full ROT
entries represent up-to
date objects.

n At receipt of new
upgrade, client

w aborts running
transaction if it used
affected objects to
guarantee atomicity

w scans ROT and empties
affected entries to
preserve invariant

Implementation Design (3)

w Single server continued
n Special client cooperate
with garbage collector to
transform rarely used
objects

n Upgrades complete in
order: when all objects
affected by the oldest
upgrade has been
transformed, it is
discarded

n Problem: objects change
sizes across
transformations

n Size decreases---
overwrite original obje

n Size increases---find
space on the same serve
page:
w If succeed, update page
offset table

w Otherwise, write to
another page and
replace original object
with surrogate

n Reference through
surrogate is shortcut
when the referring obje
is modified

Implementation Design (4)

w Multiple servers
n A master server stores
the master copy of all
upgrades

n Upgrades pushed from
master server to other
servers

n Each server sends
upgrades to its clients
and each client processes
upgrades as in the single
server implementation

n Problem: need to
maintain consistency
when a client talks to
multiple servers---an
upgrade may arrive at
one server before
another

n Client acts as relay to
restore consistency: ea
commit request is tagge
with serial number of
newest upgrade at clien

Conclusion

w Lazy type changes preserve database
availability and can be efficiently
implemented---essential for large-scale
mission-critical databases

Future work
w Project focused on persistent objects: how
avoid recompiling applications? Universal
application framework?

w How to extend to non-database environment

