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Abstract

This paper examines the problem of reconstructing a
voxelized representation of 3D space from a series of images.
An iterative algorithm is used to find the scene model which
jointly explains all the observed images by determining
which region of space is responsible for each of the observa-
tions. The current approach formulates the problem as one
of optimization over estimates of these responsibilities. The
process converges to a distribution of responsibility which
accurately reflects the constraints provided by the observa-
tions, the positions and shape of both solid and transparent
objects, and the uncertainty which remains. Reconstruc-
tion is robust, and gracefully represents regions of space in
which there is little certainty about the exact structure due
to limited, non-existent, or contradicting data. Rendered
images of voxel spaces recovered from synthetic and real ob-
servation images are shown.

To Appear: International Conference on Computer Vision, 1999

1 Introduction

Given information from very many cameras, one
might hope that a completely veridical representation
for the 3D scene could be computed. Such a represen-
tation would necessarily contain information about
the shapes and locations of all objects, information
about the colors and reflectance properties of each sur-
face, and finally information about all light sources.

In this paper, we seek to compute a simpler model.
One which represents the transparency and color of a
voxelized representation of 3D space. While useful for
a number of tasks, this representation ignores some
of the more complex properties of image formation.
For example, there is no attempt to measure or esti-
mate the surface reflectance at each surface point, nor

is there any attempt to estimate the scene illumination.
Nevertheless, such a representation will contain infor-
mation about the shapes and locations of objects. It is
also contains information necessary to compute con-
vincing synthetic views.

2 Previous Work

Their are two distinct classes of previous research
on 3D volume reconstruction. Algorithms developed
within the vision community typically assume that
objects can be represented as completely opaque, and
the effects both of transparency and aliasing can be ig-
nored. In contrast, algorithms for medical imaging as-
sume that volumes contain only semi-transparent tis-
sue and the effects of occlusion can be ignored. In
each case, these assumptions can be exploited in the
design of special purpose volume reconstruction al-
gorithms. However, even within their respective do-
mains, these approximations are inaccurate. In nat-
ural imagery environments commonly contain trans-
parent objects and because of data limitations, their
exact locations can be uncertain; in medical imagery,
bone and other solid tissue can cause occlusions.

The estimation of structure from natural imagery
is a very diverse field which includes stereo, multi-
baseline stereo, and more general multiple camera ap-
proaches.1 We will limit this review to closely related
approaches.

The earliest approach which reconstructed a dis-
crete or voxelated representation of 3D space was
the cooperative stereo algorithm proposed by Marr

1Several reviews of stereo algorithms are available [1, 2].



and Poggio [5]. The Marr-Poggio approach was dis-
tinct in that it simultaneously represented and ma-
nipulated evidence for multiple disparities. This al-
lowed for the initial consideration of several hypothe-
ses which would eventually be pruned through sub-
sequent competition.

In much the same spirit, recent work on stereo by
Szeliski and Golland incorporates evidence for com-
peting correspondences but also adds an explicit rep-
resentation of partially transparent regions [8]. They
note that even in the ideal case, where all the objects
in the scene are completely opaque, a perfect vox-
elized representation requires transparency along the
boundaries of objects where the voxels are only par-
tially filled. In their approach to volume reconstruc-
tion, Szeliski and Golland use real valued transparen-
cies to represent voxels which are partially occupied
by opaque objects. An accurate model of partially oc-
cupied voxels is potentially useful for a wide range of
scene properties including very fine structures, such
as the hair or mesh and for the representation of semi-
transparent materials such as colored glass.

A different approach for 3D reconstruction can be
found in the computed tomography literature2. So-
lutions in this field typically ignore occlusion, as most
materials are only partially opaque. The simplification
allows reconstruction to be performed with efficient
linear methods [7, 4, 9]. However, in the presence of
opaque materials, this simplifying assumption leads
to “ghosts” or “shadows” – false signals caused by the
structures whose contributions should be occluded.

Recently, Seitz and Dyer have proposed an algo-
rithm which computes a set of occupied voxels that is
consistent with a large number of observed images [6].
Unlike Marr-Poggio, evidence for multiple correspon-
dences is not explicitly represented, nor do multiple
potential correspondences compete. Their approach,
however, is distinguished by its efficiency, simplicity,
and its explicit representation of occlusion.

The Seitz and Dyer algorithm makes a single pass
through voxel space, first computing the visibility of
each voxel and then its color. Their algorithm is based
on a simple yet critical insight: each camera must
agree on the color of an opaque voxel, but only when
that voxel is visible from that camera. This approach
yields fairly accurate 3D reconstructions, and the im-
ages rendered by this algorithm are quite impressive.

This paper presents a new approach for voxelized
reconstruction called the Responsibility Weighted 3D
Volume Reconstruction (Roxel) algorithm. The Roxel
algorithm is an attempt to combine the best properties
of all of the above approaches.

2This connection was pointed out to us by William Wells III

• The Roxel approach addresses two limitations of
the Seitz and Dyer approach: i) the assumption
that a pixel is either completely transparent or
completely opaque; and ii) the definitive nature
of the decision regarding this opacity which does
not take into consideration alternative hypothe-
ses which could better explain all the data simul-
taneously. In the Seitz and Dyer approach voxels
can be incorrectly labelled opaque because of er-
rors in calibration, image noise, and false corre-
spondences.

• The Roxel approach is simpler and perhaps more
efficient than the work of Szeliski and Golland.

• The Roxel approach can be used to reconstruct
opaque objects, which cannot be accurately re-
constructed with computed tomography algo-
rithms.

Here we present a framework for volume recon-
struction in which solid and transparent objects can be
accurately represented. Furthermore, because the cur-
rent approach formulates the problem as one of op-
timization over the the distribution of partial respon-
sibility within a volume, uncertainty – due to lack of
data, or perhaps contradictory data – can be captured
as well.

3 A Unified Framework for 3D Voxel
Models

To visualize a voxel space, one traces along a ray
cast from each pixel to determine the sequence of vox-
els which are visible. The observed pixel intensity is a
weighted combination of the colors along the ray and
the weights are a function of the voxel transparencies.

The voxel space, v(x, y, z), consists of a three
dimensional array of colors c(x, y, z) and opacities
α(x, y, z). Observed in isolation, the observed color is
a combination of the voxel’s color and the color which
lies behind:

cobs = v ∧ cb = α ∗ c + (1− α) ∗ cb (1)

An opaque voxel allows none of cb to pass; a transpar-
ent voxel is entirely invisible. An arbitrary image of
this volume can be computed:

Is
k(u, v) = v(< k, u, v, 0 >) ∧ v(< k, u, v, 1 > ∧ ...

... ∧ v(< k, u, v, n >) ∧ cbg (2)

where Is denotes a synthesized image and cbg the
background color. < k, u, v, i > is a ray casting op-
eration which computes the voxel (x, y, z) which in-
tersects a ray cast from pixel u, v in image k at depth
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i. The compositing operator, ∧, associates right to left.
The values taken on by < · > are not necessarily inte-
gral, in this case bi-linear interpolation is used to de-
termine values of c(< · >) and α(< · >).

3.1 Direct Reconstruction Algorithms

Given the straightforward relationship between
image obervations and voxel values one could directly
search for v(·) such that

Cost(v) =
∑

j

(Ij − Is
j )2

is minimized. While it may be theoretically possible
to directly minimize this function,we do not attempt
such a solution for two reasons: the predicted images
are highly non-linear functions of the c and α, and
there are a very large number of parameters. Instead
the Roxel algorithm minimizes this function using an
alternate decomposition.

Though this fact is somewhat hidden in the above
notation, the observed pixel intensity is a weighted
sum of the colors along the cast ray:

Ik(u, v) =
∑

i

rk(< k, u, v, i >)c(< k, u, v, i >)

where Ik is the kth image, and the weight

rk(< k, u, v, i >)

= α(< k, u, v, i >) ∗
∏
j<i

[1− α(< k, u, v, j >)](3)

and
rk(< k, u, v, 0 >) = α(< k, u, v, 0 >).

We will call these weights the responsibility of a voxel
for the observation at a pixel. In order to simplify
the notation in the remainder of this section the im-
age pixels can be collected into a column vector, the
colors into another column vector, and the respon-
sibilities into a matrix with one row for each pixel
and one column for each voxel: Ik = Rk ∗ C. If the
images are stacked into a single vector and the re-
sponsibilities stacked into a single matrix, the entire
multi-camera reconstruction problem may expressed
as: I = R ∗ C. While the representation of I and C
are reasonably straightforward, the size of R could
present problems. Recall however, that R is incredibly
sparse – the only non-zero responsibilities are those
along rays cast from the pixels. Nevertheless, any di-
rect approach for determining R and C is potentially
very difficult.

3.2 Efficient Solutions for Direct Inversion

Although they do not formulate their work in this
way, the Seitz and Dyer approach can be placed into
the direct reconstruction framework. Their algorithm
generates a binary responsibility matrix such that each
row of R contains only a single non-zero entry, be-
cause in their model the intensity of each pixel is at-
tributable to only a single voxel. The responsibility
matrix is computed using the opacity heuristic men-
tioned above: the responsibility of a voxel is 1 if each
of the cameras which can view the voxel agree on its
intensity, and 0 otherwise. This matrix can be inverted
trivially in order to find the voxel colors: the color for
a voxel is the average of the colors observed in the pix-
els for which it is responsible.

Computed tomography (CT) can also be easily
be expressed in this color/responsibility framework.
The close relationship between 3D voxel reconstruc-
tion and computed tomography has been pointed out
before[3]. In CT the responsibilities are fixed and have
a simple form: the value of each pixel is the sum of
color values along a cast ray. One approach for com-
puting the voxel colors is to use back-projection: Ĉ =
RT I [4, 9]. This amounts to projecting the values of
each pixel back out into the volume. While this is not
quite correct, since RT 6= R−1, the algorithm is quite
simple and the results are reasonable. A better ap-
proach, which produces images with sharper bound-
aries, computes Ĉ = (RT R)−1RT I and is known as fil-
tered back-projection. Because of the size of R, comput-
ing (RT R)−1 could potentially be very difficult. How-
ever, in the special case of CT scans acquired using
regular geometry (RT R)−1 can be expressed as a con-
volution. As a result, filtered backprojection is quite
efficient. Gering and Wells have directly applied fil-
tered back-projection to 3D voxel reconstruction with
some success [3]. The most salient drawback is that
occluding properties of surfaces are never accounted
for, and some of the “shadow” effects of standard CT
reonstruction are still observed.

As we have seen, these two approaches solve an ap-
parently intractible problem quite efficiently by mak-
ing use of simplifying assumptions.

4 The Roxel Algorithm

The responsibility weighted 3D volume reconstruc-
tion (Roxel) algorithm is a multi-step procedure which
alternates between estimation of the colors, estimation
of responsibilities, and estimation of opacities. Given
a set of images, I , and voxel responsibilities R, the
voxel colors, C may be computed by inverting the
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linear system (as in filtered backprojection). There is
of course, a symmetric relation in which the colors
and images can be used to compute responsibilities.
These two steps can be combined into a multi-step re-
construction algorithm which gradually improves ini-
tial estimates for R and C. If implemented naively
each of the steps in this process is prohibitively ex-
pensive. Simply inverting the linear system would
require work which is proportional to the cube of the
number of voxels. The Roxel reconstruction algorithm
attempts to solve the transparent voxel coloring prob-
lem while preserving some of the efficiencies of the
Seitz and Dyer algorithm and of filtered backprojec-
tion.

The Roxel algorithm is initialized with the simple
linear responsibility matrix used in computed tomog-
raphy. This corresponds to the notion that initially
each voxel along a cast ray is equally responsible for
that pixel.

In the first step of the algorithm agreement between
multiple observations is used to gain an initial esti-
mate of opacity; a voxel is likely to be responsible for
an observation, and therefore opaque, if it could be re-
sponsible for multiple observations.

Step 1: Color Estimation

The color estimate for each voxel is the average over
the pixels that can potentially observe it, weighted by
the responsibility of that voxel for the color observed
at each pixel:

C(x, y, z) =
∑

k rk(x, y, z)Ik(pk(x, y, z))∑
k rk(x, y, z)

,

where pk(x, y, z) projects a 3D voxel into the image
plane of camera k. Note that this is a generalization
of back projection. Since it is an estimate for the in-
verse of the linear system, it is most accurate when
the responsibility matrix is sparse.

Step 2: Computation of Agreements

The view specific disagreement at a voxel is the
squared difference between the voxel color estimate
and the pixel color in image k:

dk(< k, u, v, i >) =
(
Ik(u, v)− C(< k, u, v, i >)

)2

The view specific agreement at each voxel is:

ak(x, y, z) = e−
1

σ2 dk(x,y,z)

where σ is a free parameter expressing the belief about
the noise and calibration errors in the observations.

Using reasoning similar to that of Seitz and Dyer,
a large value for agreement can lead to the conclu-
sion that a voxel is opaque (since it is possible that
the voxel “caused” the observation). A large value for
agreement does not neccesarly imply opacity: agree-
ment may be due to false correspondences between
the observed images.

Step 3: Computation of Responsibilities

The next step in the Roxel algorithm is reminiscient of
the Marr-Poggio competition among disparities: the
agreements are normalized along observation rays so
that they sum to one. This forces the voxels on the ray
to jointly explain 100% of the observation. Voxels with
large agreement dominate the sum and “win out” in
the final competition for responsibility. Responsibility
is an inherently view dependent quantity.

Agreement is normalized to form a set of responsi-
bilities along each ray:

rk(< k, u, v, i >) =
ak(< k, u, v, i >)∑
j ak(< k, u, v, j >)

To understand the effect of these steps, consider
the case where one voxel, v(< k, u, v, i >), along the
ray has near perfect agreement, while the other vox-
els along the ray do not agree well. In this case the
responsibility for Ik(u, v) will fall almost entirely on
v(< k, u, v, i >) (equivaliently only one of the entries
in that row of R will be non-zero).

Step 4: Computation of Opacities

At this point the Roxel algorithm computes a set of
view dependent opacities which are consistent with
the view dependent responsibilities. Though the re-
lationship between observed intensity and opacity is
highly non-linear, there is a direct method for com-
puting a set of opacities from a set of responsibilities:

αk(< k, u, v, i >) =
rk(< k, u, v, i >)

1−
∑

j<i rk(< k, u, v, j >)
.

A globally consistent set of opacities is computed
by the weighted average of the individual view esti-
mates:

α(x, y, z) =
∑

k rk(x, y, z)αk(x, y, z)∑
j rj(x, y, z)

.

Step 5: Re-estimation of responsibilities

The final step in the procedure computes a new set
of responsibilites for each voxel using the aggregated
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opacities:

r′k(< k, u, v, i >) =

α(< k, u, v, i >)

1−
∏
j<i

α(< k, u, v, j >)

 (4)

These responsibilities are then used in subsequent it-
erations of the process.

The entire Roxel procedure is repeated until the
global opactiy estimate converges. At which point
the global color C and transparency α are extracted
and combined to form the final semi-transparent vox-
elated space.

4.1 Algorithm Discussion

The Roxel algorithm progresses from an initial es-
timate of the volume as entirely trasparent, toward
a state in which much of the volume is empty, and
the observations are explained by a collection of semi-
transparent and opaque structures.

In the initial phases of reconstruction, occlusions
cannot be accurately determined and each image can
potentially observe each voxel. However, because of
occlusion, it is typically the case that only a few im-
ages actually observe a given voxel. As a result of
this, intial estimates of voxel color agreement are inac-
curate because they rely on some observations which
are, in reality, occluded. Nevertheless, some voxels
are sufficiently visible so that initial agreement esti-
mates are reasonably accurate. Based on this informa-
tion, the opacity of some voxels will be realized. The
occlusions caused by these voxels are then incorpo-
rated into future color agreement estimates. As the
algorithm progresses, images which do not observe a
voxel because of occlusion are gradually phased out
of color agreement estimates. In the final iterations
accurate information about occlusion is available and
the calculation of colors becomes more accurate since
information from occluded viewpoints is disregarded
completely.

One important aspect of the Roxel algorithm is that
it equates transparency with uncertainty. This equiva-
lence is justifiable: a voxel which contains completely
opaque material with less than complete certainty is
equivalent to a voxel which contains semitransparent
material in that the expected observation of each is
identical.

Suppose reconstruction is performed from a set of
observed images which are completely white. From
this information, we can be certain that there is some-
thing white in the scene, however, we can not be cer-
tain of its location or shape. In fact, there are a very

large number of shapes which are consistent with this
data. Using a-priori information we might attempt to
pick the most likely shape, but this would only re-
flect our bias in the shape of the prior. Alternatively
we could choose to represent the entire distribution of
shapes explicitly, as a probability distribution. With
a sufficiently agnostic prior, the posteori probability
of each voxel being filled would be close to uniform.
Subsequent processing can then be performed using
the entire distribution. For example, one could render
the expected image of this distribution; in which case
each voxel is entirely repsonsible for a pixel some per-
centage of the time. In contrast, the Roxel algorithm
represents this volume as a semi-transparent white
fog. In this representation each voxel is responsible
for some percentage of the observed intensity. In both
interpretations the expected observations are indistin-
guishable.

Finally, it is clear that this paper is conspicuously
lacking a proof for the convergence of the Roxels al-
gorithm. While no proof currently exists, experiments
imply that the process does reliably converge (see Fig-
ure 6 for two examples). In fact we have encountered
no data set which has failed to converge. Unlike a gra-
dient descent procedure, the Roxel algorithm does not
require a “step size” parameter. Each step is direct al-
gebraic invocation of some constraint on the eventual
solution.

5 Experiments

Performance of the Roxel algorithm was examined
on a variety of real and synthetic data. While the algo-
rithm is quite general regarding the positions of cam-
eras, in our experiments we positioned the cameras
around a circle, pointed toward the center of the cir-
cle. The experiments used 36 camera positions.

In the first experiment a set of synthetic images
were generated using a POV-Ray, a public domain
graphics package. Thirty six 128x128 images were
generated of a scene containing two chess pieces, a red
rook and a white knight. The free parameter, σ, was
set to 3% of the maximum color difference. This value
for σ is realtively low, encompassing our knowledge
that there is little noise or calibration error in the input
images. The resulting volume contains 128x128x128
element and was computed using 3 passes through
the Roxel algorithm. Figure 1 contains three images:
an example input image, a horizontal cross-section of
α, and a view synthesized from the recovered voxel
space.3 While in many ways the chess pieces are an

3Synthesized views were also rendered using POV-Ray.
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“easy” synthetic dataset, it does serve to illustrate the
accuracy of the technique.

The second experiment was also synthetic: a white
ovoid and a transparent yellow box. All parameters
were the same as in the first experiment. Results are
displayed in Figure 2. The system is able to recover the
transparency of the box, and the opacity of the ovoid.
However, the structure is not recovered perfectly. We
believe that this is due to the current scheme for es-
timating voxel colors (as a simple weighted average).
We are currently working on improving these color es-
imates.

In order to facilitate experiments with real data, a
scanning device was constructed that automatically
captures images by rotating an inwardly pointing
camera around a stationary observation platform. The
radius of the circle swept out by the camera is 1.5 feet.
Images were acquired with a standard Pulnix color
camera equipped with a 35mm lens. For each experi-
ment, a set of 36 images were acquired from positions
distributed uniformly around the circle.

In the third experiment images of a plastic chil-
dren’s toy were acquired. The images are 320x240 and
reconstruction volume is 320x320x240. A larger value
of 8% was used for σ to compensate for noise in the
imaging system, and slight errors in angular position.
Four iterations of the Roxel algorithm was used to re-
cover the volume. Figure 3 contains an input image,
cross-section, and a synthesized view.

In the fourth experiment 160x120 images of a plas-
tic dinosaur were used to reconstruct a 160x160x120
volume. Once again σ was set to 8%. The results for
this scene are shown in Figure 4.

The fifth experiment was designed to demonstrate
the Roxel algorithm on a real transparent scene. A
set of lego bricks were placed inside of a frosted glass
jar. The images used are 160x120 and reconstruction
volume is 160x160x120. Parameters of the Roxel algo-
rithm: 5 iterations and σ = 8%. The results for this
scene are shown in Figure 5.

Finally, since this paper does not include a proof of
the convergence of the Roxels algorithm, the conver-
gence properties were tested on two of these image
sets. Figure 6 plots the change in α versus iteration for
the data shown in Figures 4 and 5. For each time step
the largest change in α across all the voxels is plotted.
Convergence is apparent after no more than a few it-
erations.

6 Conclusions

The Roxel reconstruction algorithm is able to recon-
struct volumetric representations of 3D space from a
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Figure 6. Convergence results for “Dinosaur”
and “Legos in a Jar”. At each point in time
the largest change in α across all voxels is
plotted.

collection of observed images. By incorporating infor-
mation from throughout the volume in determining
opacity, accurate reconstruction of opaque and trans-
parent materials can be performed. The Roxel algo-
rithm is able to reconstruct volumes from natural im-
agery which contain both opaque and partially trans-
parent materials. Reconstructions represent the ambi-
guity in regions of space in which there is little cer-
tainty about the exact structure due to limited, non-
existent, or contradicting data.
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