Variable Viewpoint Reality

Professor Paul Viola & Professor Eric Grimson

Collaborators: Jeremy De Bonet, John Winn, Owen Ozier, Chris Stauffer, John Fisher, Kinh Tieu, Dan Snow, Tom Rikert, Lily Lee, Raquel Romano, Huizhen Yu, Mike Ross, Nick Matsakis, Jeff Norris, Todd Atkins Mark Pipes

Viola & Grimson

MIT AI Lab
The BIG picture: User selected viewing of sporting events.

- show me that play from the viewpoint of the goalie
- ... from the viewpoint of the ball
- ... from a viewpoint along the sideline
- what offensive plays does Brazil run from this formation
- how often has Italy had possession in the offensive zone
The BIG picture: User selected viewing of sporting events.

- Let me see my son’s motion from the following viewpoint
- Let me see what has changed in his motion in the past year
- Show me his swing now and a week ago
- How often does he swing at pitches low and away
- What is his normal sequence of pitches with men on base and less than 2 outs
A wish list of capabilities

- Construct a system that will allow each/every user to observe any viewpoint of a sporting event.
- Provide high level commentary/statistics
 - analyze plays
A wish list of capabilities

• Search databases for similar events
• Recover human dynamics
VVR Spectator Environment

• Build an exciting, fun, high-profile system
 – Sports: Soccer, Hockey, Tennis, Basketball, Baseball
 – Drama, Dance, Ballet

• Leverage MIT technology in:
 – Vision/Video Analysis
 • Tracking, Calibration, Action Recognition
 • Image/Video Databases
 – Graphics

• Build a system that provides data available nowhere else…
 – Record/Study Human movements and actions
 – Motion Capture / Motion Generation
Window of Opportunity

• 20-50 cameras in a stadium
 – Soon there will be many more

• US HDTV is digital
 – Flexible, very high bandwidth digital transmissions

• Future Televisions will be Computers
 – Plenty of extra computation available
 – 3D Graphics hardware will be integrated

• Economics of sports
 – Dollar investments by broadcasters is huge (Billions)

• Computation is getting cheaper
For example …

Computed using a single view…

some steps by hand
ViewCube: Reconstructing action & movement

- Twelve cameras, computers, digitizers
- Parallel software for real-time processing
The View from ViewCube

Multi-camera Movie

Viola & Grimson
Robust adaptive tracker

Video Frames → Adaptive Background Model

Pixel Consistent with Background → X,Y,Size,Dx,Dy

Local Tracking Histories

Viola & Grimson

MIT AI Lab
Examples of tracking moving objects

• Example of tracking results
Dynamic calibration
Multi-camera coordination
Mapping patterns to groundplane
Projecting Silhouettes to form 3D Models

Real-time 3D Reconstruction is computed by intersecting silhouettes.
First 3D reconstructions ...
A more detailed reconstruction...
Finding an articulate human body

Human → Segment → 3D Model → Virtual Human

Viola & Grimson

MIT AI Lab
Automatically generated result:

Body Tracking Movie
Analyzing Human Motion

• Key Difficulty: Complex Time Trajectories
Complex Inter-dependencies

• Our Approach: Multi-scale statistical models
Detect Regularities & Anomalies in Events?
Example track patterns

• Running continuously for almost 3 years
 – during snow, wind, rain, dark of night, …
 – have processed 1 Billion images
• one can observe patterns over space and over time
• have a machine learning method that detects patterns automatically
Automatic activity classification
Example categories of patterns

- Video of sorted activities
Analyzing event sequences

Resulting classifier

people
(1993 total with 0.1% FP)

groups of people
(712 total with 2.2% FP)

clutter/lighting effects
(647 total with 10.5% FP)

cars
(1564 total with 3.4% FP)

Histogram of activity over a single day

Viola & Grimson

MIT AI Lab
...and this works for other problems

- Sporting events
- Eldercare monitoring
- Disease progression tracking
 - Parkinson’s
- … anything else that involves capturing, archiving, recognizing and reconstructing events!