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Abstract
Voxel occupancy is one approach for reconstruct-

ing the 3-dimensional shape of an object from multi-
ple views. In voxel occupancy, the task is to produce
a binary labeling of a set of voxels, that determines
which voxels are filled and which are empty. In this
paper, we give an energy minimization formulation of
the voxel occupancy problem. The global minimum
of this energy can be rapidly computed with a single
graph cut, using a result due to Greig, Porteous and
Seheult [7]. The energy function we minimize contains
a data term and a smoothness term. The data term is
a sum over the individual voxels, where the penalty for
a voxel is based on the observed intensities of the pixels
that intersect it. The smoothness term is the number
of empty voxels adjacent to filled ones. Our formu-
lation can be viewed as a generalization of silhouette
intersection, with two advantages: we do not compute
silhouettes, which are a major source of errors; and
we can naturally incorporate spatial smoothness. We
give experimental results showing reconstructions from
both real and synthetic imagery. Reconstruction using
this smoothed energy function is not much more time
consuming than simple silhouette intersection; it takes
about 10 seconds to reconstruct a one million voxel vol-
ume.

1 Introduction
Reconstructing an object’s 3-dimensional shape

from a set of cameras is a classic vision problem. In
the last few years, there has been a great deal of in-
terest in it, partly due to a number of new appli-
cations (such as [13]) that require good reconstruc-
tions. Voxel occupancy is a well-known approach to
this problem, dating back at least to the early 1980’s

[11]. In voxel occupancy, the scene is represented as
a set of 3-dimensional voxels, and the task is to label
the individual voxels as filled or empty. In this paper,
we present an energy minimization formulation of the
voxel occupancy problem, where the exact global min-
imum can be rapidly computed with by finding the
minimum cut on an associated graph.

We begin with a review of related work. In section 3
we formulate the voxel occupancy problem as the task
of finding the binary labeling of voxels that minimizes
an energy which depends both upon the observations
and the smoothness of the shape. Section 4 shows
that the labeling whose energy is the global minimum
can be rapidly computed using a single graph cut. We
present experimental results in section 5, using both
real and synthetic imagery.

2 Related work
Most work on the voxel occupancy problem uses

silhouettes (in fact, the problem is sometimes called
shape-from-silhouettes). These methods work by com-
puting the object’s silhouette from each camera, typ-
ically via image differencing. Each silhouette is back-
projected into the voxels, to yield a set of voxels that
may be occupied. The silhouettes from the different
cameras are then intersected (the algorithm is some-
times referred to as silhouette intersection). Of course,
additional processing may be done on the resulting set
of voxels, such as representing them with an octree
[17]. Another related problem is to reconstruct the
shape from a single camera, for example by placing
the object on a turntable [4, 19, 16].

In silhouette intersection, the silhouettes essentially
act as hard constraints (i.e., the object’s volume must
lie within its silhouette). The silhouette computation



can obviously contain errors (for instance, if some pix-
els on the object happen to have a similar intensity
to the background). A single pixel error in an indi-
vidual silhouette will typically lead to a hole through
the reconstructed object. In practice some kind of lo-
cal morphological operator [15] is usually applied as
a cleanup phase, either to the 2D silhouetted images
or to the 3D volume. Unfortunately, these operators
tend to introduce noticeable artifacts.

Our method, in contrast, does not explicitly com-
pute silhouettes from each image, and allows global
spatial smoothness to be incorporated. We essentially
replace the silhouettes’ hard constraint with a soft con-
straint, which is that the energy (which contains both
a data term and a smoothness term) must be min-
imized. This allows voxels where the observed data
is ambiguous to take on a value that is consistent
with their neighbors’ values. In silhouette intersec-
tion, ambiguous data creates difficulties, because the
silhouette computation must make a binary decision;
if this binary decision is incorrect, it is extremely diffi-
cult for the morphological cleanup operator to obtain
good answers. In fact, our method can be viewed as a
generalization of silhouette intersection; we will show
at the end of section 3 that with the appropriate data
term and smoothness term, minimizing the energy is
equivalent to intersecting the silhouettes.

The voxel occupancy problem that we address is
significantly simpler than the related problem of voxel
coloring [5, 9, 14]. In voxel coloring, the task is to
label every voxel with its color plus its transparency.
Voxel coloring requires handling difficult issues, such
as visibility relationships and non-lambertian surfaces.
One advantage of voxel coloring is that the shape of
the object can be estimated more accurately, since a
mis-match in camera intensities can be used to prune
away empty voxels. In addition the resulting voxel col-
ors can be directly used to generate new views. Voxel
occupancy, on the other hand, is an easier problem to
solve. It is also much less sensitive to the geometric
and photometric calibration of the camera system.

It is important to note that the views of an object
from multiple cameras do not uniquely determine the
shape of the object. This is true even with an infinite
number of cameras. The visual hull of an object [10] is
defined to be the maximal object that gives the orig-
inal object’s silhouette from any viewpoint. It is im-
possible to distinguish two different objects that have
the same visual hull by relying purely on silhouettes.

One can however introduce prior information about
the shape of objects in order to disambiguate the true
object shape among the infinite set of objects which

may have generated the observed silhouettes. Sullivan
and Ponce introduce a smoothness term (using the for-
malism of splines) over the space of objects and show
how to find the smoothest object which is consistent
with the observation [16]. Their approach represents
the object’s shape analytically which avoids many of
the difficulties of a voxel based solution. While our
approach is similar in motivation, the formalization
and algorithm we propose are quite different.

3 Problem formulation
Our input consists of k images from calibrated cam-

eras. In addition, for each camera there is a back-
ground image I ′, which was taken with no object
present. We will denote the set of all pixels in all
images as P . There will be a 3-dimensional set of vox-
els V, with a neighborhood system N ⊂ V × V that
connects a voxel with the adjacent voxels.

Our output will be a binary labeling of V, where
a voxel is labeled with 1 if it is occupied and 0 if it
is empty. We will write a labeling as f , and for any
voxel v ∈ V we will write the label that f assigns to v
as fv.

A pixel p corresponds to a solid angle, which in-
tersects a set of voxels denoted V (p). We will assign
a voxel v to be an element of V (p) if p’s solid angle
contains more than 1

2 of v’s volume. The intensity dif-
ference ∆(p) = I(p) − I ′(p) between the observed in-
tensity and the background gives us information about
which voxels are occupied and which are empty.
3.1 Energy minimization

To set this up as an energy minimization func-
tion, we will obtain from the observed intensity data
a penalty for assigning a particular label fv to a par-
ticular voxel v. We will write this penalty as Dv(fv).
In addition, there will be a penalty of λ for assigning
different labels to a pair of adjacent voxels. We seek
the binary labeling that is both consistent with the
observed data and spatially smooth. Specifically, we
wish to obtain the labeling f∗ that minimizes

E(f) =
∑
v∈V

Dv(fv) + λ
∑

v,v′∈N (v)

(1− δ(fv − fv′)). (1)

Here, δ is the unit impulse function which is 1 at the
origin and 0 elsewhere. The constant λ (often called
the regularization parameter) controls the degree of
spatial smoothness.

There are many ways to define Dv(fv), and our
method does not depend upon its exact form. In gen-
eral we expect that if fv = 1 there will be large in-
tensity differences in O(v), while if fv = 0 there will
be small intensity differences in O(v). More details



regarding this function are given in the experimental
section.
3.2 Relationship with silhouette intersec-

tion
It is easy to see that our problem formulation gener-

alizes the silhouette intersection algorithm. In silhou-
ette intersection (at least in the standard algorithm)
there is no notion of spatial smoothness, so we let
λ = 0. The term Dv(fv) will be binary valued. If
there is some pixel p such that v ∈ V (p), and the
pixel p lies outside the silhouette in p’s image, then
Dv(fv) = fv; otherwise, Dv(fv) = 1− fv.

With this choice of λ and Dv, there is a unique
global minimum of E at a labeling f∗ where E(f∗) =
0. The labeling f∗ is precisely the labeling computed
by silhouette intersection.

4 Fast exact energy minimization
We now face the task of minimizing the energy E

given in equation 1. The form of this equation is typ-
ical of the regularization-based energy functions that
arise in early vision (see [12] for some additional exam-
ples). In general, minimizing these energy functions is
intractable [18], and so one has to rely on local search
heuristics or simulated annealing. However, there are
some interesting classes of energy functions which can
be exactly minimized using graph cuts [2, 7, 8], and it
turns out that E is in one of these classes.
4.1 Graph cuts

Let G be an undirected weighted graph with two
distinguished terminal vertices {s, t} called the source
and sink. A cut C = S, T is a partition of the vertices
into two sets such that s ∈ S and t ∈ T . The cost of
the cut, denoted |C|, equals the sum of the weights of
the edges between a vertex in S and a vertex in T .

The minimum cut problem is to find the cut with
smallest cost. This problem can be solved very effi-
ciently by computing the maximum flow between the
terminals, according to a theorem due to Ford and
Fulkerson [6]. There are a large number of fast algo-
rithms for this problem (see [1], for example). The
worst case complexity is low-order polynomial; how-
ever, in practice the running time is nearly linear.
4.2 Minimizing the energy

Greig, Porteous and Seheult showed in [7] that the
global minimum can be rapidly computed for certain
energy minimization problems via graph cuts. The
class of energy functions they address, expressed in
our notation, is as follows. Let V be a set of variables,
with some neighborhood system N ⊂ V × V, and let
L = {0, 1}. The task is to find the binary labeling
f : V �→ L that minimizes the energy. Let D : V ×L �→

�+ be arbitrary, and let C : V × L × V × L �→ �+

obey C(v, 0, v′, 1) = C(v, 1, v′, 0) and C(v, 0, v′, 0) =
C(v, 1, v′, 1) = 0 for all v, v′ ∈ V. Then the energy to
be minimized is

E(f) =
∑
v∈V

D(v, f(v)) +
∑

v,v′∈N
C(v, f(v), v′, f(v′)).

Obviously, the energy minimization problem given in
equation 1 is a special case of the one addressed by
[7].

The graph G is constructed as follows. For every
voxel v ∈ V there will be a node in G. The only
other nodes are the terminals. There will be links
with weight λ between any voxel v and its neighbors
in N . Finally, there will be links between each voxel
v and the terminals. The weight of the link between
v and s will be Dv(0), while the weight of the link
between v and t will be Dv(1).

There is a natural correspondence between cuts on
G and labelings. If C = S, T is a cut, then the corre-
sponding labeling fC is defined by

fC(v) =

{
1 if a ∈ S,

0 if a ∈ T

The following theorem is the central result of [7].

Theorem 1 If C = S, T is the minimum cut on G,
then the corresponding labeling fC is the global mini-
mum of the energy E.

The proof follows trivially from the construction of
G and the mapping between cuts and labelings.

5 Experimental results
A number of experiments, involving both synthetic

and real data, were performed to demonstrate this al-
gorithm. In order to simplify the subsequent descrip-
tion, both the synthetic and real experiments were
performed with the same number of cameras, in the
same positions, with the same sized volume, and using
the same camera and volume resolutions.
5.1 Acquisition environment

We have constructed a 16 camera 3D scanning
suite which can scan volumes approximately 2 me-
ters square, large enough to reconstruct the human
body (see Figure 1). The cameras are distributed in a
“girdle-like” fashion outside of the volume looking in-
ward: four of the cameras are 2 meters above the floor
and look slightly downward, four are 70 centimeters
above the floor and look slightly upward, 8 are roughly
one meter high and look directly inward. There are
no cameras directly above or below the volume. The



Figure 1: The 3D volume acquisition area. The ac-
quisition volume is roughly 2 meters square, and is
surrounded by 16 cameras. The camera which are vis-
ible in this image are highlighted with red circles.

cameras are connected to frame-grabbers in 8 comput-
ers which can synchronously acquire up to 30 frames
per second. The cameras capture images at a reso-
lution of 320 by 240 pixels (see Figure 2 for example
images).

Since the cameras can be flexibly repositioned, they
must be calibrated before data acquisition. This is
performed using conventional calibration fiducials as
well as a fine-scale refinement procedure. The result-
ing camera calibration are accurate to less than a cen-
timeter.

5.2 Implementation details
The reconstructed volume is 1.5 meters wide, 1.5

meters deep, and 2 meters high. It is represented at a
resolution of 2.5 centimeters. A graph is constructed
containing one node for each voxel and the two ter-
minal nodes, which we will call object (the source s)
and background (the sink t). The voxel nodes are each
connected to 6 neighbors using a weight of λ. Each
voxel node is also connected both to the object and
background node. The weight from object to a voxel
v is Dv(0), and the weight from v to background is
Dv(1).

The minimum cut algorithm cuts the minimal set
of edges so that object and background are left uncon-
nected. Since each voxel is connected to both of these
nodes, either the object or the background edge must
be cut. As a result it is only the difference between
these weights that affects the final answer. In the ex-
periment below the background edges (i.e., Dv(1)) are

always set to 300. The object edge’s weight (Dv(0))
is made larger if each of the cameras sees a large dif-
ference from the background. Intuitively, Dv(0) is the
cost of labeling a voxel as empty, which is large in this
case.

Since there is a great deal of flexibility in selecting
these weights, some of the experiments described be-
low are designed to explore this choice. The voxel con-
nection weight, λ, is of equal importance to the quality
of the reconstructed volume. Intuitively it plays two
roles. It determines whether a single voxel v may be
occupied if its neighbors aren’t; this is only possible
if 6λ is less than the difference between Dv(0) and
Dv(1). It also determines the smoothness of the re-
sulting reconstruction. Narrow filaments are likely to
be removed as λ is increased. In all of the experiments
λ is 30.

The minimum cut is found using the max-flow
code1 due to Cherkassky and Goldberg [3]. The com-
putation time of the 3D volume in all of the exper-
iments is the same, roughly 9 seconds on a 500Mhz
Intel PIII. The time is divided into three computa-
tions: the graph is prepared from the images (7 secs),
the max-flow of the graph is computed (1.1 secs), the
minimum cut labeling of the voxels is computed from
the max-flow (1 sec). Note, the preparation of the
graph involves a loop over every voxel where it is pro-
jected into each of the 16 images. This is the same sort
of operation required to compute a simple silhouette
intersection. The additional computation required to
find the minimum energy voxel occupancy is minimal.
5.3 Synthetic experiment

Surprisingly the “quality” of silhouette intersection
is often worse for synthetic objects than for real ob-
jects like the human body or a flower vase. Upon vi-
sual inspection, the silhouette intersection reconstruc-
tion of a cylinder using 16 images is poor (see Fig-
ure 3). The key difficulty is that while a cylinder is
defined by its large flat ends and its straight, parallel
sides, the reconstruction has none of these properties.
Since this data is synthetic and perfect silhouettes are
available, this poor reconstruction is due entirely to
the fundamental limitations of silhouette intersection.

In order to demonstrate the value of a spatial
smoothing , a simplified experiment was performed
on this data. Using perfect silhouettes, reconstruc-
tion was performed using λ = 30,background = 300
and object = 400N

16 where N is the number of cam-
eras which believe this voxel is inside of the silhouette.
Since the total number of cameras is 16, this weight

1See http://www.star-lab.com/goldberg/soft.html for the
source code.



Figure 2: Left: Eight of the 16 images captured using within the acquisition volume. Right: Silhouettes computed
from these images. Notice that there has been no attempt to artificially simplify the image processing necessary
to compute silhouettes. The lighting and background is complex and uncontrolled. The subject is also wearing
natural clothing which often matches the color of the background.

has a maximum value of 400. Our reconstruction is
shown in Figure 3. Notice that the surfaces of this
object are much flatter.
5.4 Real Experiments

Several real datasets were acquired using the multi-
camera system (see Figure 2 for one example). Re-
construction proceeds much as above using λ =
30, Dv(1) = 300, except the edge weights between ob-
ject and a voxel v is a function of O(v), the observed
differences in intensities at pixels that intersect v

Dv(0) =

∑
∆∈O(v) min(∆2, 400)

16
.

This cost function uses a truncated quadratic function
to determine the significance of the pixel differences.

If the difference is small in many images Dv(0) will be
small. If ∆(p) is very large in one or a few images,
the Dv(0) will still be relatively small. Only in the
case where ∆(p) is large in most of the images will the
weight be large.

Figure 4 shows several 3D reconstructions from the
images in Figure 2. The top reconstruction is per-
formed using our method. Notice that the shape is
quite smooth. One apparent artifact in the reconstruc-
tion is a swelling of the abdomen. This swelling is in
fact the pre-natal child of one of the authors!

The middle reconstruction is performed using con-
ventional silhouette intersection. Silhouettes were
found by thresholding the difference images, followed
by an erode and dilate operation. The low quality of



Figure 3: Ground truth voxel reconstruction of a synthetic cylinder (left), silhoutte intersection reconstruction
(middle), and our reconstruction (right).

this reconstruction is due to the inaccuracies of the sil-
houettes, which is in turn related to the quality of the
original images. Looking back at these images, notice
that they are very “realistic”. There is no artificial
lighting, the backgrounds are quite complex, and the
subject is wearing colors which appear in the back-
ground. All these issues conspire to make estimation
of the silhouette difficult with simple algorithms.

The reconstruction at the bottom of the figure uses
a heuristic mechanism to improve silhouette intersec-
tion. Classic silhouette intersection requires that each
occupied voxel project to within the silhouette of ev-
ery image. The heuristic reconstruction labels a voxel
occupied if it projects into the silhouette of 3 out of
4 cameras. This heuristic does a good job of filling
the holes, but it often yields reconstructions which are
much larger than they should be.

A second reconstruction is shown in Figure 5. In
this case the reconstructed volume was limited to the
area of the torso.

6 Conclusions
This paper presents a new formulation of the voxel

occupancy task. The classic formulation, silhouette in-
tersection, often yields unsatisfactory results because
of silhouette ambiguity and a lack of spatial smooth-
ness. The new formulation never computes a silhou-
ette, so it can handle noise in the original images as
a well as situations where the object and background
are of similar colors. The new formulation also natu-
rally incorporates spatial smoothness which can im-
prove the final results. An algorithm is presented
which is based on graph cuts that can efficiently deter-
mine the 3D shape with lowest cost – the smoothest
shape which is consistent with the observations. Fi-

nally a number of experiments demonstrate that the
approach can rapidly and effectively reconstruct 3D
volumes of real objects.
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