Image Database:

Texture-Based Statistical Models for Object Detection

Tom Rikert, Mike Jones, and Paul Viola

Approach

- Cluster texture vectors from many example
- · Retain clusters which best discriminate between target object and background.
- •Evaluate probability of a test image using a Gaussian mixture model built from the minimal set of clusters.

Advantages

- Detection using both texture and high-level structure.
- Compact representation extracted from 1000's of example images.
- · Robust to shape deformations.
- · Handles large variations in illumination and

Disadvantages

- · Not real-time (currently).
- Requires many examples of both target and background images.

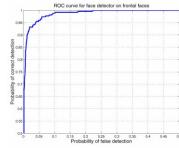
Progress:

- ·High detection rate for faces and cars.
- •Finding faster methods for evaluating test

Next Steps:

- shape (i.e. pedestrians, clothing).

Finding faces in an image database

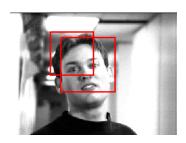

Training Set

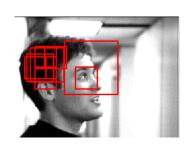
Current: positive detection

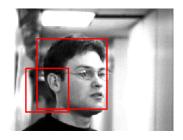
Next step: rotation invariance

Note scale of axes

Finding cars in an image database







Finding faces in the Gatekeeper

Training Set

- •Interfacing with the Gatekeeper.

- Build models of objects with highly variable
- ·Build rotation-invariant model.
- Apply hierarchy of simple models to improve