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Abstract

We present an approach for image retrieval using
a very large number of highly selective features and
efficient online learning. Our approach is predicated
on the assumption that each image is generated by a
sparse set of visual “causes” and that images which
are visually similar share causes. We propose a mech-
anism for computing a very large number of highly
selective features which capture some aspects of this
causal structure (in our implementation there are over
45,000 highly selective features). At query time a user
selects a few example images, and a technique known
as “Boosting” is used to learn a classification func-
tion in this feature space. By construction, the boost-
ing procedure learns a simple classifier which only re-
lies upon 20 of the features. As a result a very large
database of images can be scanned rapidly, perhaps
1,000,000 images per second. Finally we will describe
a set of experiments performed using our retrieval sys-
tem on a database of 3000 images.

1 Introduction

In the image retrieval task a user must search a
database of many thousands, or millions, of images.
User goals vary, in some cases the task is to find a par-
ticular image, in other cases any image from a class
will do. The optimal interface would provide a very
flexible query mechanism, perhaps through a natu-
ral language interface. In fact, many “stock photo
houses” currently provide such an interface to their
collections. Advertisers and publishers present a de-
scription of their requirements: “an image of the beach
with athletic people playing volleyball”. Human clerks
then scan many images by hand using keywords.

Recently a large number of automated image re-
trieval systems have appeared [6, 10, 13, 8]. Rather

than describe an image using text, in these systems
an image query is described using a set of example
images. In some of these systems a user’s only inter-
action with the retrieval engine is through example
images, in others the user is also asked to weight a
set of “intuitive” features, such as color, texture and
shape.

Image retrieval differs from the more common task
of classification which includes tasks such as face de-
tection and character recognition. In retrieval the
number of potential image classes is extremely large
and the number of example images is very small. For
example, a user may wish to retrieve example images
of “cars on the road” using perhaps three example im-
ages. Conventional machine learning methods, such as
neural networks or support vector machines, are not
well suited to this task because they often require a
small number of classes and a large set of labeled data
(see [15, 12] for example).

An effective solution to this problem hinges on the
discovery of a simplifying structure in the distribution
of images. A learning algorithm can then take advan-
tage of this structure to learn an image class from a
small number of examples.

When a human clerk is shown three example images
containing “a car on the road”, he concludes that other
images must contain both “car” and “road”. A photo-
graph chosen at random from the Web might contain
a “car”, a “road”, the “Eiffel Tower”, the “Taj Ma-
hal”, or any one of a thousand other objects. But,
while there are a very large number of objects which
might be present in any one image, any particular im-
age will contain at most a few of these objects. This
is not unlike the structure of English text: there are
over 100,000 possible English words, but any given



sentence will contain roughly 6 words. The clerk’s ac-
tions in the above example are justified because the
probability of a car and a road appearing by random
chance in all three images is quite low.

The distribution of natural images is simplified by
the fact that the objects which cause images are rare.
In other words the causal structure of images is sparse.

Placed in this context, previous feature based re-
trieval approaches face a daunting task. There are
usually just a few types of features used in such
schemes, such as color, and oriented edges. These fea-
tures are likely to appear in a large percentage of im-
ages. Since both the Eiffel Tower and the Taj Mahal
have vertical edges, these features clearly cut across
the boundaries of the causal structure. Learning the
concept of “Eiffel Tower” from example images using
these features will require the learning algorithm to
stake out a complex region in this feature space. Many
systems attempt to learn conjunctive concepts, such
as a histogram. Stated simply a histogram encodes
the relative frequencies of primitive properties (e.g.,
there are 1.3 times as many vertical edges than there
are horizontal edges). Since it is likely that the back-
ground of an image will also contain vertical edges,
these ratios are sensitive to changes in background.

In contrast we will define a very large set of highly
selective visual features. A highly selective feature
will respond to only a small percentage of images in
the database — such a feature might return a large nu-
merical value for only 5% of images. One could not
hope to define such a large set of features by hand, in-
stead an algorithm for automatically generating plau-
sible features is given. Because these features are so
rare, they are also very unlikely to occur at random in
the background of an image.

Given a set of highly selective features query learn-
ing can be greatly simplified. Only a few features will
respond to the set of example images. A learning al-
gorithm which can rapidly select a set of 20 to 50 fea-
tures which distinguishes these images is presented.
The algorithm is an adaptation of “AdaBoost”[7]. Af-
ter query learning, each image in the database can be
evaluated rapidly by examining only 20 to 50 features.
As a result over one million images can be scanned per
second.

2 Creating Highly Selective Features
Highly selective features are a natural extension of
the simple features used in other image database sys-
tems. Given a set of “first order” features such as
oriented edges or color (see Figure 1), highly selective
features measure how these first order features are ge-
ometrically related. By finding arrangements of first

order features, a set of second order features can be
defined. Arrangements of second order features form
third order features.

The process starts out by first extracting a feature
map for each type of simple feature (there are 25 sim-
ple linear features including “oriented edges”, “center
surround” and “bar” filters shown in Figure 1). Each
features map is then rectified and down-sampled by
two. The 25 feature maps are then used as the input
to another round of feature extraction (yielding 25 x
25 = 625 feature maps). The process is repeated again
to yield 15,625 feature maps (over the red, green, and
blue color channels, this yields 46,875 feature maps).
Three levels of filtering were possible for the resolution
of our images. Finally each feature map is summed to
yield a single feature value.

FEach level of processing discovers arrangements of
features in the previous level. Thus a second order
feature might be sensitive to diagonal arrangements
of horizontal features — a feature visible as a staircase
pattern. One example feature is shown in Figure 2.
It might be called a tiger stripe feature. The first
low-pass filter smoothes the image and removes high-
frequency noise. The second order feature finds verti-
cal edges. The third order feature detects a horizontal
arrangement of these vertical edges. The feature map
demonstrates the selectivity of a particular feature on
the image of a tiger and a waterfall. Notice that the
response in the final feature map is peaked over the
tiger’s stripes, while there is no discernible peak in
the waterfall image. Figure 3 shows another filtering
sequence that is more difficult to explain intuitively.
Nevertheless it is selective for images of churchs and
responds very weakly to the image of the field.

More formally these features are computed from an
image as:

Gigke= D, Mijre (1)

pizels

where M is the feature map, ¢, j and k are indices over
primitive features, and c indexes the different color
channels of the image. The definition of M is:

M; = |2 (|fi®X]) (2)
M;; = |2 (|f; ® M) (3)
M = l2 (|fx ® M;;|) (4)

where X is the image, f; is the ith filter and |5 is the
down-sample by two operation. Because the feature
maps are down-sampled before the next level of filter-
ing, the support of the filters over the image plane are
effectively enlarged. This enables the features to cap-
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Figure 1: The 25 primitive filters used in comput-
ing the feature maps. In practice, these are efficiently
computed with separable horizontal and vertical con-
volutions.

ture complex arrangements of low-level features (i.e.
global structure).

We conjecture that these features do in fact reflect
some of the sparse causal structure of the image for-
mation process. One piece of evidence which supports
this conclusion is the statistical distribution of the
highly selective feature values. Evaluated across an
image database containing 3000 images, these features
are very sparse. The average kurtosis is approximately
8 and some of the features have a kurtosis as high as
120 (the Gaussian has a kurtosis of 3). Observing this
type of distribution in a filter is extremely unusual
and hence highly meaningful. It is well known that
the response of certain linear filters (such as Lapla-
cian or wavelet filters) are somewhat sparse and have
higher kurtosis than Gaussian [1, 17]. The sparse re-
sponse of the highly selective features is much more
significant. Recall that each highly selective feature
response is a summation across the entire image, and
that the sum of a number of independent random vari-
ables tends quickly toward Gaussian. The pixel-wise
kurtosis of the feature maps, before this summation,
can be as high as 304 ! . In contrast, the distribution
of the summation of a rectified Laplacian filter across
the image database is Gaussian.

1t is not unusual to observe high kurtosis in the distribution
of a non-linear feature. For example one could easily square a
variable with Gaussian distribution in order to yield a higher
kurtosis. The highly selective features do not contain these sorts
of non-linearities. At each level only the absolute value of the
feature map is computed.

input image

0= O

Figure 2: Responses of an image of a tiger and a wa-
terfall to a particular filter sequence. The final fea-
ture map has a strong peak at the arrangement of the
stripes on the body of the tiger, whereas there is a
weak response to the waterfall image.

input image

Figure 3: Responses of an image of a church and a
field to a particular filter sequence. The final feature
map selectively responds strongly to the church image
and weakly to the field image.
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Figure 4: A histogram of the tiger stripe feature re-
sponses to a set of 500 images. The response for the
tiger image (marked in red) is more than twice that of
the waterfall image (marked in blue).
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Figure 5: A histogram of feature responses to a set
of 500 images. One particular image of a church has
a strong response (marked in red), while an image of
a field has a weak response (marked in blue). The
histogram is super-Gaussian with a kurtosis of 7.8.

Figure 4 shows a histogram of the tiger stripe fea-
ture’s response to 500 images. Notice that observation
of the tiger’s strong response (red point) would be con-
sidered much more statistically significant than obser-
vation of the waterfall’s weak response (blue point).
Figure 5 shows the histogram of a more kurtotic fea-
ture that responds strongly to images of churches and
weakly to images of fields.

Further evidence for the significance of these highly
selective features is a theorem from the projection pur-
suit literature, which states that random projections
of a high dimensional random variable are almost al-
ways Gaussian [5]. This holds even when the high
dimensional random variable does in fact have signif-
icant statistical structure, as is the case for natural
images.

2.1 Relationship to Wavelets

There is a superficial similarity between the highly
selective feature approach and retrieval based upon
a set of wavelet coefficients [9]. In a wavelet ap-
proach images are represented and retrieved using
their wavelet coefficients. Like our features, many of
the wavelet coefficients of an image are close zero. But
unlike our approach, these coefficients are very sensi-
tive to changes in the image. For example, wavelet
coefficients are very sensitive to a small shift in the im-
age plane. A wavelet based approach is best thought
of as a very efficient approximation to template match-
ing (because distance in the image space is a simple
function of the distance in wavelet feature space).

3 Query Learning with Boosting

At first it might seem that the introduction of
tens of thousands of features could only make the
query learning process infeasible. How can a prob-
lem which is difficult given ten to twenty features be-
come tractable with 10,0007 Two recent results in
machine learning argue that this is not necessarily a
terrible mistake: support vector machines (SVM) [3]
and boosting [7]. Both approaches have been shown
to generalize well in very high dimensional spaces be-
cause they maximize the margin between positive and
negative examples. Boosting provides the closer fit to
our problem because we can use it to greedily select a
small number of features from a very large number of
potential features.

In its original form, the AdaBoost learning algo-
rithm is used to boost the classification performance
of a simple learning algorithm (e.g., it might be used to
boost the performance of a simple perceptron). It does
this by combining a collection of weak classification
functions to form a stronger classifier. In the language
of boosting the simple learning algorithm is called a



weak learner. So, for example the perceptron learning
algorithm searches over the set of possible perceptrons
and returns the perceptron with the lowest classifica-
tion error. The learner is called weak because we do
not expect any single perceptron to classify the train-
ing data well (perhaps the perceptron may only clas-
sify the training data correctly 51% of the time). In
order for the weak learner to be boosted, it is called
upon to solve a sequence of learning problems. In each
subsequent problem examples are re-weighted in order
to emphasize those which were incorrectly classified by
the previous weak classifier. The final strong classifier
is a weighted combination of weak classifiers.

One important goal for image database query learn-
ing is that the final classifier depend only on a small
number of complex features. A classifier which de-
pends on few features will be more efficient to eval-
uate on a very large database. In addition, a simple
classifier which depends on few features will be more
likely to generalize well.

In support of this goal, we design our weak learn-
ing algorithm to select the single highly selective fea-
ture along which the positive examples are most dis-
tinct from the negative examples. For each feature,
the weak learner computes a Gaussian model for the
positives and negatives, and returns the feature for
which the two class Gaussian model is most effective.
In practice no single feature can perform the classifica-
tion task with 100% accuracy. Subsequent weak learn-
ers are forced to focus on the remaining errors through
example re-weighting. In the experiments below, the
algorithm is typically run for 20 iterations, yielding a
strong classifier which depends upon 20 features. Ta-
ble 1 shows the learning algorithm.

4 User Interface

The user interface of our query engine has two
phases: an initial browsing phase, and a relevance
feedback stage.

The user begins a new query by browsing the
database to select a few positive examples. Users
found that it was somewhat tedious to hand pick neg-
ative examples. Instead we randomly choose 100 im-
ages from the database to form a set of generic neg-
ative examples. This is a reasonable policy because
the the number of images which satisfy any partic-
ular query is very small. Nevertheless, this policy
for selecting negatives is somewhat risky because it
is possible that the negative set may contain true pos-
itives. Typically we run AdaBoost for 20 iterations
which is usually sufficient to achieve zero training er-
ror?. Since the number of positive training examples

20ne might be concerned that attaining zero training error

e Given example images (x1,y1),---,(Tn,Yn)
where y; = 0,1 for negative and positive
examples respectively.

o Initialize weights wy; = ﬁ, % for y; = 0,1 re-

spectively, where m and [ are the number of neg-
atives and positives respectively.

e Fort=1,...,T:

1. Train one hypothesis h; for each feature j
using wy, with error €; = Pr;" [h;(z;) # vi).

2. Choose h¢(-) = hg(-) such that Vj # k, e <
€; (i.e., the hypothesis with the lowest error).
Let €¢; = €.

3. Update:

Wiy1i = weif ¢

where e; = 0,1 for example x; classified cor-

rectly or incorrectly respectively, and §; =

€4 : . Wt41,4
. Normalize wiy1,; s

that w41 is a distribution.

e The final hypothesis is:

T 1 X
h(zx) = Zatht(a:) > 3 Zat
t=1

t=1

where a; = log i

Table 1: The boosting algorithm for learning a query
online. T hypotheses are constructed each using a sin-
gle feature. The final hypothesis is a weighted linear
combination of the T hypotheses where the weights
are inversely proportional to the training errors.

is typically smaller than the number of negative exam-
ples, we initially weight them higher so that the sum of
the weights of the positives and negatives are equal.
This encourages correct classification of the positive
examples at the outset.

Each image in the database can then be classi-
fied by the strong classifier. Alternatively, since the
strong classifier is itself a perceptron, the images can
be ranked by their margin. The first goal of an image
retrieval program is to present the user with useful im-
ages which are related to the query. Since the learning
algorithm is most certain about images with a large

would lead to poor performance on the test set. In fact for
the boosting algorithm this is usually not the case, since the
margin between the negatives and positives typically increases
even after there is zero error on the training set [16].



positive margin, a set of these images are presented.
Without further refinement this set of images often
contains many false positives.

Retrieval results can be improved greatly if the user
is given the opportunity to select new training exam-
ples [11, 4]. Recall that images are classified as posi-
tive if the final hypothesis (i.e., weighted combination
of the weak learners) exceeds the AdaBoost thresh-
old (i.e., decision boundary): % Z?:l ay (see Table 1).
This defines a margin such that images highly above
threshold are considered most positive while images
well below threshold are labeled most negative.

Following a query, three sets of images are pre-
sented to the user: (7) test set images with large posi-
tive margin; ) the randomly selected negative images
which are close to the decision boundary; and (444) test
set images which are close to the boundary. The first
set is intended to allow the user to select new nega-
tive training examples which are currently labeled as
strongly positive. The landscape and leopard image
in Figure 7 are obvious false positives that the user
can add as negative examples. The second set allows
the user to discard randomly chosen negatives which
are not true negatives. The third set allows the user
to refine the decision boundary by labeling examples
which determine the margin. In Figure 7, the last row
(green frame) contains three images of cars which are
close to the decision boundary. The user can add these
as positive examples to update the query.

In every case the final query is produced by run-
ning AdaBoost for 20 iterations. This yields a strong
classifier which is a simple function of 20 complex fea-
tures. Since image databases are very large, the com-
putational complexity of the final classifier is a critical
aspect of retrieval performance.

5 Results

Experimental verification of image retrieval systems
is a very difficult task. There are few if any standard
datasets, and there are no widely agreed upon evalu-
ation metrics.

To test the retrieval performance of the system
we constructed five classes of natural images (sun-
sets, lakes, waterfalls, fields, and mountains) using the
Corel Stock Photo 3 image sets 1, 26, 27, 28, and 114
respectively [2, 14]. Each class contains 100 images.

Figure 6 shows the average recall and average pre-
cision for the five classes of natural images. Recall is
the ratio of the number of relevant images returned to
the total number of relevant images. Precision is the

3This publication includes images from the Corel Stock
Photo images which are protected by the copyright laws of the
U.S., Canada and elsewhere. Used under license.
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Figure 7: Race cars: The top row shows the positive
examples followed by the top twenty retrieved images
in the middle portion (red frame). The first row of
the bottom portion (blue frame) shows the negative
images in the training set which are close to the deci-
sion boundary. The second row (green frame) shows
images in the test set which are near the boundary.

ratio of the number of relevant images returned to the
total number of images returned.

Figures 7 to 9 show results from queries for race
cars, flowers, and waterfalls, cloudy skies, and jet
planes in a 3000 image data set (using Corel image
sets 1 to 30).

6 Summary and Conclusions

We have presented a framework for image retrieval
based on representing images with a very large set
of highly selective features. Queries are interactively
learned online with a simple boosting algorithm. The
selectivity of the features allow effective queries to be
formulated using just a small set of features and a
small number of training examples. This supports our
observation of the “sparse” causal structure of images.
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Figure 6: Average recall and average precision for the five classes of natural images. Essentially perfect perfor-
mance was achieved on the mountains (mt) class. Closer inspection shows that the images in this class are fairly
homogeneous especially when compared to images in the fields (fd) and lakes (lk) classes. These results were
averaged over five trials, each using five randomly selected positive and four negative training examples (one from

each negative class).

It also makes training the classifier simple, and re-
trieval on a large database efficient.
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