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Abstract

While research in computer vision often assumes simple il-
lumination models, real-world illumination is highly com-
plex, consisting of reflected light from every direction as
well as distributed and localized primary light sources.
One can capture the illumination incident at a point in
the real world from every direction photographically in the
form of a spherical illumination map. This paper illus-
trates, through analysis of photographically-acquired, high
dynamic range illumination maps, that real-world illumi-
nation shares many of the statistical properties of natural
images. In particular, the marginal and joint wavelet coeffi-
cient distributions, directional derivative distributions, and
harmonic spectra of illumination maps resemble those doc-
umented in the extensive literature on natural image statis-
tics. However, illumination maps differ from standard nat-
ural images in that illumination maps are statistically non-
stationary and may contain localized light sources which
dominate their power spectra. Our work provides a foun-
dation for statistical models of real-world illumination that
may facilitate robust estimation of shape, reflectance, and
illumination from images.

1. Introduction

In an effort to design vision systems which function ro-
bustly outside the laboratory, researchers have recently de-
voted a great deal of effort to capturing the statistics of the
world. They have studied statistics of natural optical im-
ages [10, 7, 21, 19], range images [9] and Gestalt grouping
factors [15]. These statistics have proven useful for explain-
ing the architecture of biological visual systems [7, 13],
developing efficient image coding schemes [21], denois-
ing images [18], setting parameters for grouping algo-
rithms [15], and more generally providing models for prob-
abilistic or Bayesian modeling.

The focus of this paper is to understand the statistics of
natural illumination. In traditional computer vision, illu-
mination often refers to luminous sources alone. For ex-
ample, shape from shading calculations typically assume
a single point light source at infinity or a uniform hemi-
spherical source. In the real world, however, illumination
is much more complicated. Consider the rendering equa-
tion in computer graphics. The total reflected radiance of a

surface patch in the view direction (8., ¢,.) is given by:
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where I(6;, ¢;) is the radiance of illumination incident from
direction (6;, ¢;). In other words, the appearance of a sur-
face patch is affected by illumination incident from all di-
rections. Illumination includes not not only direct illumi-
nation from the sun, sky, or indoor lights, but also indirect
illumination, by light reflected from other surfaces in the
environment.

One can measure the illumination I(6;, ¢;) incident from
every direction at a particular point in the real world using a
camera whose optical center is located at the point of inter-
est. By combining photographs representing illumination
from every direction, one can compose a spherical illumi-
nation map describing I(6;, ¢;). Such spherical images are
used as environment maps in computer graphics [4]. If all
sources of direct and indirect illumination are relatively dis-
tant, the illumination map changes little as the hypothetical
camera moves through space.

An illumination map is a type of image. However, ac-
curate real-world illumination maps differ from the pho-
tographs studied in the natural image statistics literature
in several regards. First, illumination maps cover a much
wider view angle. While previously studied photographs
have typically cover a narrow view angle near the horizon-
tal, illumination maps ideally cover the entire sphere. Sec-
ond, accurate illumination maps possess a much higher dy-
namic range than previously analyzed photographs. In fact,
they may contain localized primary light sources such as
incandescent lights or the sun itself.

Researchers have found that normal photographs of in-
door and outdoor scenes display a great deal of regularity,
particularly in power spectra and distributions of wavelet
coefficients [7, 19, 10]. We wish to determine the similar-
ities and differences of these statistics to those of high dy-
namic range, photographically-acquired illumination maps.
Working with two sets of illumination maps, we therefore
analyze marginal and joint distributions of illumination in-
tensity (Sections 4 and 6), distributions of directional in-
tensity derivatives (Section 5), spherical harmonic power
spectra (Section 7), and marginal and joint wavelet coef-
ficient distributions (Section 8). When possible, we com-
pare our results to those of Huang and Mumford [10], who



analyzed a set of over 4000 restricted-angle outdoor pho-
tographs collected and calibrated by van Hateren and van
der Schaaf [24]. Like Huang and Mumford, we typically
work with log pixel intensities and subtract out the mean of
the log of each image to normalize for overall brightness.

We find that the statistics of illumination are surpris-
ingly similar to those of more typical photographs. We en-
countered several significant differences, however, some of
which are due to the marked non-stationarity of illumination
statistics and to the presence of concentrated light sources
which can dominate power spectral measures.

Our work provides a foundation for an understanding of
illumination statistics that may serve several practical pur-
poses. First, prior statistical information about real-world
illumination is necessary for Bayesian estimation of surface
reflectance properties [6]. The problem of recovering a sur-
face BRDF from an image by inverting equation Eq. 1 is
ill-posed under unknown illumination, but can be solved by
exploiting such prior information. A statistical description
of illumination can also improve the recovery of illumina-
tion fields from incomplete data, an important problem in
computer graphics [14]. Finally, an accurate description
of illumination statistics may facilitate the development of
shape-from-shading algorithms which function robustly un-
der complex, unknown illumination.

2. Datasets
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Figure 1: Examples of the illumination maps we used,
shown in equal-area cylindrical projection. (a) and (c) are
drawn from Teller’s data set, while (b) and (d) are drawn
from Debevec’s. Pixel values have been passed through a
compressive nonlinearity for display purposes.

We worked with two different data sets, each consisting
of high dynamic range images that represent the radiance
incident from all directions at a point in the real world. The
first data set consisted of 95 illumination maps based on
imagery acquired by Teller et al. [23] in the environs of the
MIT campus (http://city.Ics.mit.edu/data). The second set

consisted of nine maps from Debevec’s Light Probe Image
Gallery (http://www.debevec.org/Probes/) [3]. Debevec’s
maps represent diverse lighting conditions from four indoor
settings and five outdoor settings. Two examples from each
data set are shown in Figure 1.

The images in both data sets were acquired by combin-
ing photographs at multiple exposures to obtain pixel values
which are linear in luminance, using the technique of De-
bevec and Malik [5]. We converted them all to gray-scale
images that are logarithmic in luminance. Debevec’s illu-
mination maps, which were computed from photographs of
a chrome ball, cover the entire sphere. Teller’s illumination
maps were each mosaiced from multiple calibrated narrow
field of view images. These mosaics cover the entire upper
hemisphere as well as a band below the equator.

3 Spherical projection

Whereas image statistics have previously been analyzed on
a planar domain, illumination maps are naturally defined
on a sphere. We will describe our handling of this issue
in each of the following sections. We found that storing
the illumination map in an equal area cylindrical projection
[2] facilitated certain computations. To construct this pro-
jection, one places the sphere at the center of a vertically
oriented cylinder and projects each point on the spherical
surface horizontally outward to the surface of the cylinder
(Figure 2). One then unwraps the cylinder to obtain a rect-
angular map of finite extent. Regions of equal area on the
sphere map to regions of equal area on the cylinder.® Fig-
ure 1 displays illumination maps in equal-area projection
with k& = % where k is the ratio of the radius of the cylin-
der to the radius of the sphere.

4. lllumination Intensity Distribution

To compute the distribution of illumination intensities inci-
dent from all directions, one must take into account the solid
angle corresponding to each pixel of the illumination map.
For an equal area projection, this solid angle is constant,
S0 we can estimate the distribution with a simple pixel his-
togram. Figure 3 shows total illumination intensity distribu-
tions for the 95 Teller images and for the 9 Debevec images.
Huang and Mumford [10] noted asymmetry in their single
pixel distribution due to the presence of sky in many of their
images. Our distributions exhibit more striking asymme-
tries, partly because both the Teller and Debevec data sets
contain not only sky but other localized light sources. The

LIn particular, an infinitesimal patch on the sphere at latitude 8 will
find itself expanded by a factor of kﬁ in the horizontal direction and
reduced by a factor of cos 6 in the vertical direction. Because the product
of these two factors is a constant k, this projection preserves areas, even
though it heavily distorts angles near the poles.



Figure 2: To produce the equal area cylindrical projection
of a spherical map, one projects each point on the surface
of the sphere horizontally outward onto the cylinder, then
unwraps the cylinder to obtain a rectangular map.

distribution for the Teller set is particularly asymmetric due
to the presence of the sun in many images and to undersat-
uration in the imaging system at very low light intensities.
Our distributions are also much noisier than Mumford’s be-
cause we averaged over fewer images. Pixel intensity distri-
butions vary much more from image to image than wavelet
statistics or power spectra (Sections 8 and 7).

Following Huang and Mumford [10], we computed the
standard deviation o, skewness S, kurtosis «, and differen-
tial entropy .2 For the Teller images, we found o = 1.04,
S = —0.02, k = 4.04, and # = 2.06. For the Debevec
images, we have 0 = 1.32, S = 0.36, x = 12.49, and
‘H = 2.21 for the Debevec images. Huang and Mumford
found ¢ = 0.79, S = 0.22, Kk = 4.56, and H = 1.66.
Hence our illumination maps have a higher variance and en-
tropy, and a much larger kurtosis. This difference is due to
the higher dynamic range of our images and to the inclusion
of bright localized light sources, including the sun.
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Figure 3: lllumination intensity distribution: log histogram
of In(I(0;, ¢;))—mean(In(I)). Left: statistics for 95 Teller
images. Right: statistics for 9 Debevec images.

2These distributions have mean 0, because we subtract out the mean
log value before processing.

4.1. Non-stationarity

Illumination statistics vary with direction. Figure 4(a) and
(b) show mean luminance as a function of elevation. As ex-
pected, illumination generally increases with elevation. In-
terestingly, the mean intensity reaches a local minimum at
the horizontal view direction because both data sets contain
illumination maps in which the ground reflects a significant
amount of light from above, while visible surfaces in the
horizontal direction are shadowed (e.g., Figure 1b). Panels
(c) and (d) of Figure 4 each show two histograms at different
ranges of elevations. The histograms for higher view direc-
tions have not only a larger mean but heavier positive tails,
reflecting the larger probability of bright localized sources
at higher elevations. Lack of statistical stationarity is sel-
dom reported in the natural image literature due to the lim-
ited field of view of the images analyzed. It has, however,
been observed in range data [9].
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Figure 4: Dependence of illumination on elevation. (a) and
(b) show mean luminance as a function of elevation for the
Teller and Debevec images respectively. (c) and (d) each
show two histograms, one for a range of angles near the
vertically upward direction, the other for a range of angles
at a lower elevation.
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5. Derivative Statistics

Following Huang and Mumford, we approximate horizon-
tal derivatives as differences between horizontally adjacent
samples and compute their marginal distribution. We define
the horizontal direction in the global coordinate frame, such
that horizontal derivatives correspond to differences along
lines of latitude. Because lines of latitude differ in length,
we define horizontally adjacent positions as being separated
by a fixed distance on the sphere. This distance is chosen



such that the equator is divided into 512 parts.
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Figure 5: Solid lines indicate distribution of horizontal
derivatives for log luminance illumination maps. Dashed
lines are generalized Laplacian fits.

Figure 5 shows the resulting marginal distributions of
horizontal derivatives for the two datasets. Both distribu-
tions, like that of Huang and Mumford, are symmetric with
very high kurtoses. We found « = 15.9 for the Teller im-
ages and k = 341.86 for the Debevec images, while Huang
and Mumford found x = 17.4.3 Interestingly, the variance
of our distributions (¢ = 0.45 for the Teller images and
o = 0.26 for the Debevec images) is also similar to that
reported by Huang and Mumford (o = 0.26), even though
the angular distance between their adjacent samples is ap-
proximately seven times smaller than ours.

We fit generalized Laplacian distributions of the form
Po(z) o exp(—|z/s|*) to both histograms using a
maximume-likelihood criterion, obtaining a = 0.53 and s =
0.055 for the Teller images and &« = 0.56 and s = 0.034
for the Debevec images (Figure 5). While these parame-
ters are similar to those of Huang and Mumford, who found
a = 0.55, our distributions are not as well modeled by
generalized Laplacians as theirs. The shapes of our dis-
tributions differ somewhat from each other and from that
of Huang and Mumford, possibly because of the different
distribution of luminous sources in each.

6. Joint Distribution of I[llumination
from Two Adjacent Directions

Again following Huang and Mumford, we computed the
joint distribution of log intensities at horizontally adjacent
positions in the illumination maps. Specifically, we com-
pute the joint distribution of p; and p,, where p; and p-
represent log luminances at positions on the sphere which
are horizontally adjacent as defined in Section 5. Figure 6
shows a contour plot of the resulting distribution over all
of Teller’s illumination maps. The distribution has a shape
similar to that of Huang and Mumford, who also found
some asymmetry between the upper right and lower left

3As Huang and Mumford point out, the computed kurtoses are very
sensitive to outliers; this is particularly true for the Debevec data set, which
consists of a small number of images.
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Figure 6: Joint histogram of horizontally adjacent positions
in Teller’s illumination maps.

quadrants. In our case, the increased extent of the joint dis-
tribution in the upper right quadrant compared to the lower
left reflects the asymmetry of the marginal distribution il-
lustrated in Figure 3.

In agreement with Huang and Mumford, we found that
while p; and p, are highly correlated, p; + p2 and p; — p»
are more nearly independent. In particular, the mutual in-
formation of p; and ps is 2.41 bits, while that of p; +p- and
p1 — p= is only .103 bits. Hence, the percentage difference
between the luminance incident from two horizontally ad-
jacent spatial directions is roughly independent of the mean
luminance from those two directions.

7. Spherical harmonic power spectra

Much early work on natural image statistics focused on the
regularity of power spectra. A number of authors [7, 19]
have observed that two-dimensional power spectra of nat-
ural images typically fall off as 1/f2*7, where f repre-
sents the modulus of the frequency and n is a small constant
which varies from scene to scene.

The natural equivalent of the Fourier transform on the
sphere is a spherical harmonic decomposition. The spher-
ical harmonics form a countable orthonormal basis for
square integrable functions on the sphere. Associated with
each basis function is an order L, a nonnegative integer
analogous to frequency. The 2L + 1 spherical harmonics
of order L span a space that is closed under rotation [11].

Just as planar white noise has a flat two-dimensional
power spectrum, white noise on the sphere produces equal
power in every spherical harmonic. Similarly, if the regular-
ities observed in the natural image statistics literature carry
over to spherical illumination maps, the average power of
the spherical harmonics at order L will fall off as 1/L?*7.

We computed spherical harmonic coefficients up to or-
der 256 for the illumination maps in both data sets using the
formulas given by Inui [11]. We obtained average power
at each order L as the mean of squares of the coefficients
at that order. Teller’s data lacks information about the low-
est portion of the illumination hemisphere. We applied a
smooth spatial window to these illumination maps before
transforming them to the spherical harmonic domain.
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Figure 7: Spherical harmonic power spectra (solid lines) of
illumination maps (a), (b), (c), and (d) in Figure 1, with
pixel value proportional to log luminance. The dotted lines
of slope —2 correspond to power spectra of the form k/L2.

Figure 7 shows the relationship between average power
and harmonic order for the four illumination maps of Fig-
ure 1, when pixel value is proportional to log luminance. All
four images have power spectra which lie close to a straight
line of slope —2 on log-log axes, corresponding to a power
spectrum of the form k/L2. The great majority of images
in both data sets exhibit similar behavior.

We obtain very different results for the same illumi-
nations when we compute power spectra for illumination
maps whose pixel values are linear in luminance. lllumina-
tion maps such as those of Figure 1a and b, which lack con-
centrated primary light sources, have spherical harmonic
spectra that are well approximated as k/L?*" for small 5.
On the other hand, illumination maps that contain intense,
localized light sources have smooth power spectra which
remain flat at low frequencies before falling off sharply at
higher frequencies. The illuminations of Figure 1c and d
both display this behavior; the power spectrum of a linear
luminance version of Figure 1c is shown in Figure 7. In
these images, one or a few luminous sources, such as the
sun or incandescent lights, dominate the power spectrum.
Because these light sources approximate point sources, their
spectrum is flat at low frequencies. If one clips the brightest
pixel values in these images, the power spectra return to the
familiar k/L?*" form (Figure ??).

Previous work on natural images has reported 1/f2+7
power spectra whether pixel values are linear or logarith-
mic in luminance [19]. These results on linear luminance
images differ from ours because most previous researchers
have avoided photographs of point-like luminous sources

and have used cameras of limited dynamic range, such that
a few maximum intensity pixels could not dominate the im-
age power spectra. A natural illumination map may be dom-
inated by light sources occupying a small spatial area. Once
the relative strength of such sources is reduced through
clipping or a logarithmic transformation, illumination maps
have power spectra similar to those of typical photographs.
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Figure 8: Left, the spherical harmonic power spectrum of
illumination map (c) with pixel value linear in luminance.
Right, the corresponding spectrum after the pixel values
corresponding to the sun have been clipped to a luminance
value only slightly greater than that of the sky.

8. Wavedlet Statistics

Perhaps the most powerful characterizations of natural im-
ages in the current literature are in the wavelet domain. Dis-
tributions of wavelet coefficients at various scales and orien-
tations share a great deal of structure from image to image,
as do joint distributions of wavelet coefficients at different
scales, orientations, or spatial positions. A number of au-
thors have used properties of these distributions for image
denoising [18, 22], texture characterization [8, 17], or re-
flectance classification [6].

Prior analysis of natural images and textures has as-
sumed that the data is defined on a planar domain. One
could use spherical wavelets [20] to analyze the statistics of
spherical illumination maps. In order to better compare our
results with those of the natural image statistics literature,
however, we elected to use planar wavelets. In particular,
spherical wavelets lack the natural sense of orientation of
planar wavelets. We experimented with several projections
of the sphere to the plane for the purpose of wavelet anal-
ysis and obtained similar results. The plots shown in this
section are based on equal area cylindrical projections, with
k= % of spherical log-luminance illumination maps.

Figure 9a shows marginal distributions of horizon-
tally oriented Haar wavelet coefficients at three succes-
sive scales, together with maximum likelihood generalized
Laplacian fits. Each marginal distribution is highly kurtotic
and fits the generalized Laplacian closely. The marginal
distributions increase in variance at successively coarser
scales. Figure 9b shows the corresponding distributions
for vertically oriented wavelets. The generalized Laplacian
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Figure 9: Distributions of Haar wavelet coefficients at suc-
cessive scales (thick lines), along with generalized Lapla-
cian fits (thin lines). Left, horizontal bands. Right, verti-
cal bands. Parameters of fits are: horizontal, finest scale,
a = 0.58, s = 0.043 second finest scale, o = 0.52,
s = 0.056, third finest scale, o = 0.5036, s = 0.1007
vertical, finest scale, @ = 0.54, s = 0.043 second finest
scale, « = 0.48, s = 0.052 third finest scale, a = 0.43,
s = 0.067.

fit is poorest at the finest scale; this particular distribution
corresponds approximately to the distribution of horizontal
pixel-wise differences in Figure 5a. The poor fit may be due
to noise at the finest scale.

Figure 10 shows contour plots of joint distributions of
wavelet coefficients with various relationships. In these
plots, “horizontal component”, *“vertical component”, and
“diagonal component” refer to the wavelet coefficients of
different orientations at a given scale and spatial position.
“Upper brother”, “left brother”, and “upper left brother” re-
fer to a wavelet coefficients which are horizontally, verti-
cally, or diagonally spatially adjacent at the same scale and
orientation. “Parent” and “child” refer to wavelet coeffi-
cients of the same spatial position and orientation at suc-
cessive scales. In order to compare our results to those of
Huang and Mumford, we used the same wavelet decompo-
sition (Haar) and plotted distributions of the same pairs of
coefficients. We obtained contour plots with structure sim-
ilar to those of Huang and Mumford. Huang and Mumford
found that cross sections through the origin of these two-
dimensional histograms can be accurately fit with general-
ized Laplacian curves. While we also found this to be the
case for most cross sections, we found some cross sections
with shapes reminiscent of the marginal distribution of Fig-
ure 5a.

Haar wavelets often perform poorly in practical image
processing because of artifacts associated with their lack of
smoothness and their lack of localization in the frequency
domain. In order to test whether the structure of the dis-
tributions of Figure 10 is an artifact of the Haar basis, we
repeated the decomposition using an eight-tap quadrature
mirror filter [12]. The contour plots maintained their struc-
ture. Figure 11 illustrates the two plots that changed the
most, corresponding to the second row of Figure 10.
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Figure 10: Contour plot of the log(histogram) of finest
scale wavelet coefficient pairs for the Teller data set. We
have chosen coefficient pairs corresponding to those which
Huang and Mumford computed for their set of photographs.
Note that the horizontal axes of the bottom two plots are
compressed by a factor of two.
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Figure 11: Contour plot of the log(histogram) of coefficient
pairs corresponding to those in the second row of Figure 10,
but using a QMF basis rather than a Haar basis. These are
the two contour plots which change most significantly.



9. Discussion

We have found that most of the regularities observed
through earlier studies of low dynamic range, restricted
view field photographs carry over to natural illumination
maps, providing a solid foundation for statistical mod-
els of illumination. However, there are some significant
differences. Illumination statistics are significantly non-
stationary due to their elevation dependence. The pres-
ence of bright point sources can significantly alter the power
spectrum, so that a &/ 2" model does not suffice in gen-
eral for natural illumination unless it is passed through a
compressive nonlinearity. Generalized Laplacian distribu-
tions model the distributions of wavelet coefficients and
derivatives reasonably well, but the fits are not as close as
those observed for more typical photographs.

In order to describe fully the statistics of illumination,
one must understand how an illumination maps changes as
the camera recording it moves in space. In other words,
one must analyze the five-dimensional plenoptic function,
which describes all the rays of light passing through every
point in a three-dimensional volume [1]. Because image-
based rendering involves resampling the plenoptic func-
tion [16], statistical priors on this function could enable
image-based rendering with sparse data.
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