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Abstract

In classical large information retrieval systems, the system responds

to a user initiated query with a list of results ranked by relevance.

The users may further re�ne their query as needed. This process

may result in a lengthy correspondence without conclusion. We

propose an alternative active learning approach, where the sys-

tem responds to the initial user's query by successively probing the

user for distinctions at multiple levels of abstraction. The system's

initiated queries are optimized for speedy recovery and the user

is permitted to respond with multiple selections or may reject the

query. The information is in each case unambiguously incorporated

by the system and the subsequent queries are adjusted to minimize

the need for further exchange. The system's initiated queries are

subject to resource constraints pertaining to the amount of infor-

mation that can be presented to the user per iteration. We also

provide preliminary theoretical results concerning the rate of infor-

mation acquisition.

1 Introduction

An IR system consists of a collection of documents and an engine that retrieves

documents described by users queries. In large systems, such as the Web, queries

are typically too vague, and hence, an iterative process in which the users re�ne their

queries gradually has to take place. Since much dissatisfaction of IR users stems

from long, tedious repetitive search sessions, our research is targeted at shortening

the search session. We propose a new search paradigm of active information retrieval

in which the user initiates only one query, and the subsequent iterative process is

led by the engine/system. The active process exploits optimum experiment design

to permit minimal e�ort on the part of the user.

Our approach is related but not identical to the interactive search processes called

relevance feedback. The primary di�erences pertain to the way in which the feedback

is incorporated and queried from the user. In relevance feedback, the system has to

deduce a set of "features" (words, phrases, etc.) that characterize the set of selected



relevant documents, and use these features in formulating a new query (e.g., [5, 6]).

In contrast, we cast the problem as a problem of estimation and the goal is to

recover the unknown document weights or relevance assessments.

Our system also relates to the Scatter/Gather algorithm of browsing information

systems [2], where the system initially scatters the document collection into a �xed

number k of clusters whose summaries are presented to the user. The user select

clusters from a new sub-collection, to be scattered again into k clusters, and so

forth, until enumerating single documents. In our approach, documents are not

discarded butg rather their weighting is updated appropriately. Like many other

clustering methods, the scatter/gather is based on hierarchical orderings. Overlap-

ping clusters were recently proposed to better match real-life grouping and allow

natural summarizing and viewing [4].

This short paper focuses on the underlying methodology of the active learning

approach. The more general perspective will be discussed in the longer version of

the paper.

2 The Framework

Let X be the set of documents in the database. We de�ne a weighting of these

documents as a distribution �x,
P

x2X
�x = 1. We assume that in the context

of any speci�c retrieval task, the user preferences are (probabilistically) consistent

with one such weighting ��
x
. The goal of a retrieval algorithm is therefore to re-

cover this underlying weighting through interactions with the user. The resulting

(approximation to) ��
x
can be used to correctly rank the documents or, for example,

to display all the documents with suÆciently large weight (cf. coverage) or the

top 10 documents. Naturally, ��
x
changes from one retrieval task to another and

has to be inferred separately in each task. We might estimate a user speci�c prior

(model) over the document weights to reect consistent biases that di�erent users

have across retrieval tasks.

We express our prior belief about the document weights as a Dirichlet distribution

P (�) =
1

Z
�
Y
x2X

��x�1
x

; where Z =

Q
x2X

�(�x)

�(
P

n

x=1 �x)
(1)

and
P

x2X
�x = 1.

Let C = fC1; : : : ; Cmg be the set of available clusters of documents. This set

typically includes also the individual documents in the database and may have

been obtained through a at, hierarchical, or overlapping clustering method. For

simplicity, we will initially assume that the clusters are either nested or disjoint,

i.e., can be organized hierarchically. The clustering need not be static, however,

and could be easily de�ned dynamically at each iteration.

Given the set of available clusters, we may choose a query set, the set of clusters

that are presented to the user for selection. The user is expected to choose the best

matching cluster in this set. In case of multiple selections, we will interpret the

marked clusters as a rede�ned cluster of the query set. While this interpretation

will result in suboptimal choices for the query set assuming the user consistently

selects multiple clusters, the interpretation nevertheless obviates the need for mod-



eling user's selection biases in this regard. An empty selection, on the other hand,

suggests that the clusters outside the query set are deemed more likely. In the

longer version of the paper, we will also consider feed-back other than the simple

selection. This includes, for example, non-stochastic relevance annotation of the

clusters in the query set.

The retrieval algorithm ows as follows: (1) It �nds a small subset S of clusters to

present, along with their summaries, to the user; (2) It waits until the user selects

none, one or more of the presented clusters which best match their interest; (3) It

uses the evidence from the user's selections to update the distribution P (�) over

the document weightings; (4) It outputs the top documents so far, ranked by their

weights, and the iteration continues until terminated by the user or the system

(based on any remaining uncertainty about the weights or the implied ranking).

The following sections address two primary issues: how to select the clusters to

present to the user and how to incorporate the information from user selections.

Since the second topic is a prerequisite for the former, we commence with the

inference problem.

3 Inference

Suppose a distribution P (�) over the document weights and a �xed query set S =

fCs1
; : : : ; Csk

g. We show next how to evaluate the posterior distribution P (�jy)

given the user response y. The key is to transform the at Dirichlet distribution

P (�) into a hierarchical form so as to explicate the portion of the distribution

potentially a�ected by the user response. The hierarchy, illustrated in Figure 1,

contains three levels: the �rst level corresponds to selecting S or X n S; the second

one pertains to choices within the query set S (of most interest to us) as well as

those under X n S; the third level explicates the selections within the clusters Csl

in S.

θ(2)

θ

θ

(1)

(3)θ

Figure 1: A three level hierarchical transform of a at Dirichlet.

We use �
(1)
i
; i = 1; 2 to denote the top level parameters, �

(2)

jj1
, j = 1; : : : ; k for the

cluster choices within the query set whereas �
(2)

xj2
, x 62 S gives the document choices

outside S. Finally, �
(3)

xjj
for x 2 Csj

indicate the parameters associated with the

cluster Csj
2 S. The original at Dirichlet P (�) can be written as

P (�(1))P (�
(2)

�j1
)P (�
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�j2
)

"
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�jl
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with the appropriate normalization constraints. If clusters in S overlap, the expan-

sion is carried out in terms of the disjoint subsets. The parameters governing the



Dirichlet component distributions are readily obtained by gathering the appropriate

parameters �x of the original Dirichlet (cf. [3]). For example,

�
(1)
0 =

X
x2S

�x; (3)

�
(2)

jj1
=

X
x2Csj

�x; for j = 1; : : : ; k; (4)

�
(2)

xj2
= �x for x 62 S; (5)

�
(3)

xjj
= �x; whenever x 2 Csj

; j = 1; : : : ; k (6)

If user selects cluster Csy
, we will update P (�

(2)

�j1
) which reduces to adjusting the

counts �
(2)

yj1
 �

(2)

yj1
+1. The resulting new parameters give rise to the posterior dis-

tribution P (�
(2)

�j1
jy) and by including the other components, to the overall posterior

P (�jy). If the user selects \none of these items," only the �rst level parameters �
(1)

i

will be updated.

4 Query set optimization

Our optimization criterion for chosing the query set S is the information that we

stand to gain from querying the user with it. Let y indicate the user choice, the

mutual information between y and the parameters � is given by (derivation provided

in a longer version of the paper)

I(y; �) = I(y; �
(2)

�j1
) =

kX
y=1

P (y)

Z
P (�

(2)

�j1
jy) log

P (�
(2)

�j1
jy)

P (�
(2)

�j1
)
d� (7)

=

kX
y=1

P (y)	(�
(2)

yj1
+ 1)�	

 
kX

x=1

�
(2)

xj1
+ 1

!
+H(y) (8)

where P (y) = �
(2)

yj1
=(
P

k

x=1 �
(2)

xj1
) de�nes our current expectation about user selection

from S; H(y) = �
P

k

y=1 P (y) logP (y) is the entropy of the selections y, and 	(�)

is the Di-gamma function, de�ned as 	(z) = d=dz log �(z). Extending the criterion

to \no selection" is trivial.

To simplify, we expand the counts �
(2)

�j1
in terms of the original (at) counts �x, and

de�ne for all clusters (whether or not they appear in the query set) the weights

ai =
X
x2Ci

�x; (9)

bi = ai	(ai + 1)� ai log ai (10)

The mutual information criterion now depends only on aS =
P

k

i=1 asi =
P

x2S
�x,

the overall weight of the query set and bS =
P

k

i=1 bsi which provides an overall

measure of how informative the individual clusters in S are. With these changes,

we obtain:

I(y; �
(2)

�j1
) =

bS

aS
+ log(aS)�	(aS + 1) (11)



We can optimize the choice of S with a simple greedy method that successively

�nds the next best cluster index i to include in the information set. This algorithm

scales as O(km), where m is the number of clusters in our database and k is the

the maximal query set size in terms of the number of clusters.

Note that this simple criterion excludes nested or overlapping clusters from S. In

a more general context, the bookkeeping problem associated with the overlapping

clusters is analogous to that of the Kikuchi expansion in statistical physics (cf. the

use of this approximation in a belief propagation context [7]).

5 Projection back to a at Dirichlet

The hierarchical posterior is not a at Dirichlet anymore. To maintain simplicity,

we project it back into a at Dirichlet in the following KL-divergence sense

P 0
�jy = argmin

Q�

KL(P�jykQ�) (12)

where P (�jy) is the hierarchical posterior expressed in terms of the original at

variables �x; x 2 X (but no longer a at Dirichlet). The transformation from

hierarchical to at variables is given by

�x =

(
�
(1)
1 �

(2)

jj1
�
(3)

xjj
; x 2 Csj

; j = 1; : : : ; k

�
(1)
2 �

(2)

xj2
; x 2 S n X

(13)

As a result, when x 2 Csj
for some j = 1; : : : ; k we get (derivation omitted)

E�jy log �x = 	(�x)�	(
X
z2X

�z) +
Æy;jP

z2Csj

�z
�

1P
z2S

�z
(14)

where y denotes the user selection. For x 2 X n S

E�jy log �x = 	(�x)�	(
X
z2X

�z) (15)

If we de�ne rx = E�jy log �x for all x 2 X , then the counts �x corresponding to the

at approximation Q� can be found by minimizing

D(P�jykQ�) =
X
x2X

[log �(�x)� �xrx]� log �(
X
x2X

�x) + const. (16)

where we have omitted any terms not depending on �x. This is a strictly convex

optimization problem over the convex set �x � 0; x 2 X and therefore admits a

unique solution. Furthermore, we can eÆciently apply second order methods such

as Newton-Raphson in this context due to the speci�c structure of the Hessian:

H = D � c11T , where D is a diagonal matrix containing the derivatives of the

di-gamma function1 	0(�x) = d=d�x	(�x) and c = 	0(
P

x2X
�x). Each Newton-

Raphson iteration requires only O(m) space/time.

1These derivatives can be evaluated eÆciently on the basis of the highly accurate ap-
proximation to the di-gamma function (REFS).



6 Decreasing entropy

Since the query set was chosen to maximize the mutual information between the

user selection and the parameters �, we get the maximal reduction in the expected

entropy of the parameters:

I(y; �) = H(P�)�EyH(P�jy) (17)

As discussed in the previous section, we cannot maintain the true posterior but have

to settle for a projection. It is therefore no longer obvious that the expected entropy

of the projected posterior possesses any analogous guarantees; indeed, projections

of this type typically increase the entropy. We can easily show, however, that the

expected entropy is non-increasing:

Ey

�
D(P�jykP�)�min

Q�

D(P�jykQ�)

�
= H(P�)�Ey

n
H(P 0

�jy)
o
� 0 (18)

since P 0
�jy

is the minimizing argument. It is possible to make a stronger state-

ment indicating that the expected entropy of the projected distribution decreases

monotonically after each iteration.

Theorem 1 For any � > 0

Ey

�
H(Q�jy)

	
� H(P�)�

�
k � 1

�S

�
�+O(�2) (19)

where k is the size of the query set and �S =
P

z2S
�z.

While this result is not tight, it does demonstrate that the projection back into a

at Dirichlet still permits a semi-linear descrease in the entropy. The denominator

of the �rst order term, i.e., �S , can increase only by 1 at each iteration.

It is important to note that the entropy of a Dirichlet distribution is not bounded

from below (it is bounded from above). The manner in which the Dirichlet updates

are carried out (how �x change) still keeps the entropy a meaningful quantity.

7 Discussion

The active learning approach proposed here provides the basic methodology for

optimally querying the user at multiple levels of abstraction. There are a number

of extensions to the approach presented in this short paper. For example, we can

encourage the user to provide a weighted selection among the presented clusters.

In this case the selection is no longer stochastic but pertains more closely to the

distribution (parameters �) that we wish to recover. The information criterion

(reducing to an ordinary KL-divergence) can be evaluated in this case and will be

discussed in more detail in the longer version of the paper.

Our formulation also does not yet incorporate any information about the user con-

�dence. If the level of con�dence in the user selection is known, the rate of the

update and learning can �t the user the best. Any con�dence measure attached to

the user selection can be incorporated into the update equations through equivalent

sample size. This assumes consistence on the part of the user and, in future work,



we will instead introduce a latent variable for user's con�dence, and infer its value

through consecutive user selections.

Our queries do not request a classi�cation of all the presented clusters in terms of

their relevance as is typically done in \classical" relevance feedback systems. The

relevance is a binary decision and such cluster speci�c feedback can be incorporated

into P (�) through constraints (step functions) operating on the document weights

�x. This formulation requires approximations to maintain the posterior through

multiple iterations and for optimizing the query set. The details of this approach

and the associated large deviation approximations will be discussed in the longer

version of the paper.

We are also currently in the process of analyzing the fundamental trade-o�s between

the size of the query set (resource constraints) and the expected completion time

of the retrieval process.
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