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Abstract

Efficient learning with partially labeled data involves extracting structure
from large unlabeled set and combining this information with limited la-
beled examples. A typical albeit unstated assumption in this context as-
sociates separable clusters in the unlabeled set with unique but unknown
labels. When this assumption is valid, labeled examples are needed only
to the extent that they can facilitate labeling of the clusters. We capture
and formalize this intuition in a conditional probability model where soft
clusters serve to regularize the labeling of the unlabeled examples. Clus-
tering is achieved by defining a Markov diffusion process (cf. Tishby
and Slonim, NIPS 2000). The associated time scale of this process de-
termines the effective size of the clusters and is chosen through a margin
based criterion that guarantees unambiguous classification of examples.
We relate the time scale to the mixing time of the Markov process and ex-
tend the basic idea by combining multiple time scales to maximize clas-
sification accuracy. We demonstrate the performance of the approach on
both real and synthetic datasets.

1 Representation based on Markov diffusion

To achieve good learning performance, the data must be encoded in a suitable representa-
tion matched to the learning algorithm. Typically, we are provided data points in a space,
and a distance metric that measures pairwise similarity between points. The provided dis-
tance metric is often quite accurate locally, as it is relatively easy to characterize small
perturbations in the data. However, over larger distances, the given metric is frequently
inadequate, and hurts the performance of the many learning algorithms that rely on global
distances. Fortunately, in problems with many data points (with or without labels), we can
use the locally accurate metric to construct an improved global distance measure that re-
flects the density of the data. For example, the data may lie on a submanifold of the space,
revealed by the density, and we should measure distances along the manifold. Intuitively,
the distances are smaller in directions of high density, and larger in low-density directions.

We define a Markov diffusion process based on the locally accurate metric. The local
metric defines probabilities of transitioning between two nearby points in one timestep,
and we construct the global distance as the probability of transitioning between two points
in t timesteps. Thus, we consider all the paths of length t on this graph.



Formally, consider a set of points fx1; : : : ;xNg that need not be labeled. Construct a graph
whose nodes correspond to data points, and whose undirected edges correspond to one
step transitions. We only allow such immediate transitions from a point to its neighbors.
Specifically, for each point, connect it with an undirected edge to its K nearest neighbors.
Points in high density centers can be neighbors of many points and end up with more than
K edges. Self-transitions back to the point itself are also included. Let the probability of
transitioning from a state i at time t to a neighbor k at time t+ 1 be

pik = P (kji) =
1

Zi

exp(��d(xi;xk)) 8t;

where d(xi;xk) is the local distance between the points, � is a positive real parameter, and
Zi normalizes probabilities so they sum to 1, namely Z i =

P
k exp(��d(xi;xk)):

Thus, we exponentiate distances to obtain probabilities. This relation reconciles the addi-
tive nature of distances with the multiplicative combination of probabilities when taking
multiple steps.

Note that the transition probability pik and pki is not symmetric, because the normalization
Zi typically differs. As a rule of thumb, pik > pki when xk lies in a higher-density region
than xi.

Denote the probability of transitioning from i at time 0 to k at time t with p tik = P (ktji0) =
P (kji). The last notation omits the t and 0 superscripts from k and i respectively. If we
organize all transition probabilities as a matrixA whose i; k-th entry is p ik , we can simply
use a matrix power to calculate

ptik = [At]ik :

The matrix is row stochastic so that rows sum to 1. We represent a point in terms of
its probabilities of having transitioned from each of the other points. The k-th point is
represented in terms of the probabilities of originating at any point i, namely P (i 0jk) /
P (ktji0)P (i0) / P (ktji0), since we assume uniform starting probabilites. We can use the
compact vector notation [p1jk; : : : ; pNjk] =

1
Z0

k

[pt1k; : : : ; p
t
Nk] , where Z 0

k normalizes the
sum of components to 1. Two points are close if these origination probabilities are similar.

To fully specify the representation, we must choose K, �; and t. The first two parameters
influence the one-step probabilities. The t parameter regulates the amount of smoothing
due to diffusion. As t increases, the probabilities ptik approach the stationary distribution,
which is independent of i. We defer details til section 3.

2 Parameter estimation for classification

We now assume that we are given a partially labeled data set
f(x1; ~y1); : : : ; (xL; ~yL);xL+1; : : : ;xNg and we wish to classify the unlabeled points.
Typically, the number of labeled points L is much smaller than the total points N . We
want to employ our representation and introduce a parameter p yji = P (yjx0i ) for each
component. The parameters pyji are probabilities in [0; 1]. The classifier has the form

P (yjxtk) =
X
i

P (yjx0i )P (x0i jx
t
k):

For brevity, we will henceforth drop the timestep superscripts. We discuss three techniques
for choosing them: maximum likelihood with EM, maximizing average margin subject to
constraints, and maximum entropy discriminiation.



2.1 EM estimation

We maximize the conditional log-likelihood
LX
l=1

logP (~yljxl) =
LX
l=1

log

NX
i=1

P (~ylji)P (ijxl) (1)

where the first summation is only over the labeled examples. Since P (ijx l) are fixed, this
objective function is jointly concave in the free parameters and lends itself to a unique
maximum value. The concavity also guarantees that this optimization is easily performed
via the EM algorithm [1].

Let pijl be the soft assignment for component i given (x l; ~yl), i.e., pijl = P (ijxl; ~yl) /
P (~ylji)P (ijxl). The EM algorithm iterates between the E-step, where p ijl are recom-
puted from the current estimates of P (yji), and the M-step where we update P (yji)  P

l:~yl=y
pijl=
P

l pijl.

The runtime of this algorithm isO(LN). The discriminative formulation suggests that EM
will provide reasonable parameter estimates P (yji) for classification purposes. The quality
of the solution, as well as the potential for overfitting, is contingent on the smoothness
of the representation, specifically the origination probabilities P (x ijxk). Note, however,
that whether or not P (yji) will converge to the extreme values 0 or 1 is not an indication
of overfitting. Actual classification decisions for unlabeled examples x i (included in the
expansion) need to be made on the basis of P (yjx i) and not on the basis of P (yji), which
function as parameters.

2.2 Margin based estimation

An alternative discriminative formulation is also possible, one that is more sensitive to the
decision boundary rather than probability values associated with the labels. To this end,
consider the conditional probability P (yjxk) =

P
i P (yji)P (ijxk). The decisions are

made on the basis of the sign of the discriminant function

f(xk) = P (y = 1jxk)� P (y = �1jxk) =
NX
i=1

wiP (ijxk) (2)

where wi = P (y = 1ji) � P (y = �1ji). This is similar to a linear classifier and there
are many ways of estimating the weights wi discriminatively. The weights should remain
bounded, however, i.e., wi 2 [�1; 1], so long as we wish to maintain the probabilistic
interpretation of the parameters. Estimation algorithms with Euclidean norm regularization
such as SVMs would not be appropriate in this sense.

For separable problems, we propose a simple linear program that maximizes the margin 
for labeled points, which is the smallest distance between the decision boundary and the
point. The maximization is subject to classifying the labeled points correctly:

max
wi

 subject to

~ylf(xl) �  8l 2 [1 : : : L]

wi � 1 8i 2 [1 : : :N ]

�wi � 1

Solutions of linear programs are achieved at extremal points of the set. The Kuhn-Karush-
Tucker conditions require that the optimal w i will equal 1 or �1 except for points that
satisfy the margin constraint with equality. Thus the majority of weights labels will be
hard.



Problems with very few labeled examples are typically separable, especially for moderate
values of t, when the representation is not overly smooth. If the problem is nonseparable,
the margin and weights will be 0 and this formulation is not useful. One possibility is to
introduce a individual margin variable  i for each point and optimize the average margin.
The margins are bounded to have magnitude less than 1, reducing the risk that any single
point would dominate the average margin. Individual margins are equivalent to adding
linear slack variables and optimizing a common margin as above. However, if a common
margin is desired together with slack variables, maximum entropy discrimination provides
a framework to do so [5, 6], and we recommend this latter technique in the non-separable
case.

2.3 Sample size requirements

Here we quantify the sample size that is needed for accurate estimation of the labels for the
unlabeled examples. Since we are considering a transduction problem, i.e., finding labels
for already observed examples, the sample size requirements can be assessed directly in
terms of the diffusion matrix. As before, the probabilities P (ijk) and P (ijj) are diffusion
probabilities starting in i ending in k and j respectively.

Lemma 1 Let djk =
Pn

i=1 jP (ijj) � P (ijk)j. The V () dimension of the transductive
classifier is upper bounded by the number of connected components of a graph with n
nodes and adjacency matrix A, where Ajk = 1 if djk �  and zero otherwise.

Proof: The discriminant function f(xj) in the two-class case is given by

f(xj) =

nX
i=1

P (ijj)[q(y = 1jj)� q(y = �1jj)] (3)

Assume that yjf(xj) �  for all j. We wish to evaluate the number of complete labelings
fyjg consistent with these margin constraints.

We establish first that all examples xj and xk for which djk �  must have the same label.
This follows directly from

jf(xj)� f(xk)j �

nX
i=1

jP (ijj)� P (ijk)j jq(y = 1jj)� q(y = �1jj)j

�
nX
i=1

jP (ijj)� P (ijk)j = djk

as this difference must be larger than  for the discriminant functions to have different
signs. Since any pair of examples for which djk �  share the same label, different labels
can be assigned only to examples not connected by the d jk �  relation.�

Given a dataset, and a desired classification margin  we calculate the representation and let
r = V () dimension. With high probability we can correctly classify the unlabeled points
given O(r log r) labeled examples [3]. This can also be helpful to determine timescale t
since it is reflected in the V (), for example V () = N for t = 0 and V () = 1 for t =1
for the full range of  2 [0; 2].

2.4 Examples

Consider an example (figure 1) of classification with Markov diffusion. We are given 2
labeled and 148 unlabeled points in an intertwining swiss-roll pattern. We set K = 6



unlabeled point
positive labeled point
negative labeled point

Figure 1: Topmost is the connectivity structure for symmetric 6-nearest neighbors. Below
are dlassifications using Markov diffusion for t=3, 20, and 500 (top to bottom), estimated
with EM. There are two labeled points (large circle, triangle) and 148 unlabeled points,
most of which have been classified (small circles, triangles) but for small values of t the
Markov diffusion may not have reached them, leaving them assigned 50/50 to both classes
(small dots).

and � = 10 (the box has extent 2 � 2), and show three different timescales. At t = 3

the diffusion has not connected all points, so that some unlabeled points have no path to
any labeled point. In the EM algorithm, their parameters do not affect the labeled data
likelihood, and they then remain assigned equally to both classes. The other points have
a path to only one of the classes, and are therefore fully assigned to that class. At t = 20

all points have paths to labeled points, however, the Markov process has not mixed well.
Some paths may not follow the curved high-density structure, and instead cross between
the two clusters. The triangle class dominates the assignment. When the Markov process
is well-mixed at t = 500, the points are labeled as expected, even though labels changed
back and forth for different ts. The parameter assignments are hard, but the class posteriors
are weighted averages of these and soft.

3 Parameter choices for K, � and t

For sufficiently large K the graph will have no distinct connected components and if, in
addition, all the distances corresponding to the edges in the graph are finite, the Markov
process defined on the graph will be ergodic. In practice, the choice K seems to have little
effect, e.g., on the resulting classification performance. This can be in part due to the fact
that adjusting � can counter the effect from increasing the number of neighbors (e.g., for
large � neighbors further away appear disconnected).

The smoothness of the diffusion representation also depends on the number of diffusion
time steps t. This is a regularization parameter akin to the kernel width of a density es-
timator. In the limiting case t = 1, we employ only the initial neighborhood graph. In
this case, the above classifier would reduce to a distance weighted K-nearest neighbor for
points that have labeled neighbors; points without labeled neighbors would have uniform
probabilities over the labels. If we also increase K to include all the points we obtain the
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Figure 2: Left: Average margin (solid) and minimum margin (dashed, multiplied by 10).
Right: Test errors for 2–64 labeled examples for markov diffusion (bottom) and best SVM
(top)

mixture distance or kernel expansion representation [6].

In the limiting case t =1 the representation for each node converges to a uniform weight-
ing over the points in the same connected component. Put another way, if point x i and xk
belong to the same connected component of size NCk

then P (x0i jx
1
k ) = 1=NCk

, otherwise
the probability is 0. The likelihood is maximized for all assignments where the parameters
P (yji) average to the class priors within their respective connected components.

We can make more appropriate choices for t with a few unsupervised heuristics. If t + 1

equals the diameter of a singly connected graph, then we ensure that P (x 0
i jx

t
k) > 0 so each

point influences every other point. However, this scheme ignores transition probabilities.
Instead, the mixing time of a graph measures the time it takes to approach the stationary
distribution p1k . The graph mixes faster the smaller the second largest eigenvalue � 2 of
the transition matrix A (the largest eigenvalue is always 1). To reach within � in half L1
distance from the stationary distribution, we must have [8]

t � max
i

1

1� �2
(ln

1

p1i
+ ln

1

�
)

where p1i is the stationary probability at node i. Similarly to [4] we wish to choose t so that
we are relatively far from the overall stationary distribution. The rate of mutual information
dissipation used by [4] to identify cluster development does not, however, suffice as a recipe
for choosing the overall time scale t.

Good choices of t for classification are not independent of labels. For example, if labels
change quickly over small distances, we want a sharper representation and a smaller t.
Cross-validation could provide a supervised choice of t but requires many labeled points
for accuracy, which we do not have here. It is also computationally expensive. Instead,
we propose to choose t that maximizes the log likelihood (eq. 1), which is also equivalent
to maximizing the average log(1 plus margin). We average this margin measure over all
the points, both labeled and unlabeled to ensure a solid recovery of the labels most of the
observed points.

Figure 2 shows both the average and minimum margins as a function of t, for the swissroll
example. The average margin has a single peak, but occurs for smaller values of t than our
subjectively preferred segmentation, which occurs for t closer to the highest peak of the
minimum margin.



3.1 Multiple time scales

So far, we have employed a single global value of t. However, the desired smoothness
may be different at different locations (akin to adaptive kernel widths [2]). At the simplest,
if the graph has multiple connected components, we can set individual t for each compo-
nent. Ideally, each point has its own time scale, and the choice of time scale is optimized
jointly with the classifier parameters. Here we propose a restricted version of this criterion
where we find individual time scales tk for each unlabeled point but estimate the remaining
parameters separately.

The principle by which we select the time scales for the unlabeled points encourages the
node identities to become the only common correlates for the labels. More precisely, define
P (yjk; tk) for any unlabeled point k as

P (yjk; tk) =
1

Zk

X
i:~yi=y

P (ijk; tk) (4)

where Zk =
P

i P (ijk; tk) and both summations are over only the labeled points. More-
over, let P (y) be the overall probability over the labels across the unlabeled points or

P (y) =
X
k

P (k)P (yjk; tk) (5)

where P (k) is the invariant stationary distribution over the nodes in the graph. Note that
P (y) remains a function of all the individual time scales for the unlabeled points. With
these definitions, the principle for setting the time scales reduces to maximizing the mutual
information between the label and the node identity:

ft1; : : : ; tmg = arg max
t1;:::;tm

I(y; k) (6)

= arg max
t1;:::;tm

(
H(y)�

X
k

P (k)H(yjk)

)
(7)

where H(y) and H(yjk) are the marginal and conditional entropies over the labels and are
computed on the basis of P (y) and P (yjk; tk), respectively. Note that the ideal setting of
the time scales would be one that determines the labels for the unlabeled points uniquely
on the basis of only the labeled examples while at the same time preserving the overall
variability of the labels across the nodes. This would happen, for example, if the labeled
examples fall on distinct connected components. The criterion can be optimized using an
axis parallel search, where only discrete values of tk need to be tried.

4 Experimental results

We applied the markov diffusion approach to partially labeled text classification, with few
labeled documents but many unlabeled ones. Text documents are represented by high-
dimensional vectors but only occupy low-dimensional manifolds, so we expect markov
diffusion to be beneficial. We used the mac and windows subsets from the 20 newsgroups
dataset1. There were 958 and 961 examples in the two classes, with 7511 dimensions after
rare words were removed. We estimated the manifold dimensionality at 8. Consequently
K = 10 seemed a suitable choice of neighborhood size, and also led to a graph with a
single connected component. The histogram of distances to the 10 nearest neighbor is
peaked at 1.3, so we choose � = 0:6 for a reasonable falloff. We plotted the decay of

1Processed as 20news-18827, http://www.ai.mit.edu/˜jrennie/20Newsgroups/,
removing rare words, duplicate documents, and performing tf-idf mapping.



mutual information as a function of t and chose t = 8, after verifying histograms of the
entropy of the representation vectors. We trained both the EM and the linear programming
formulation, using 2–64 labeled points, treating all remaining points as unlabeled. We
trained on 10 random splits balanced for class labels, and tested on a fixed separate set of
987 points. Results in figure 2 show a clear advantage over the best SVM out of linear
and Gaussian SVMs for different kernel widths and values of C. The linear programming
training runs slightly faster than EM but produces slightly worse test errors.
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