
Automated Support for Program Refactoring using Invariants

Yoshio Kataoka,�Michael D. Ernst,~William G. Griswold ,}David Notkin�

�Dept. of Computer Science & Engineering
University of Washington

Box 352350, Seattle WA 98195-2350 USA
fkataoka,notking@cs.washington.edu

}Dept. of Computer Science & Engineering
University of California San Diego, 0114

La Jolla, CA 92093-0114 USA
wgg@cs.ucsd.edu

~MIT Lab for Computer Science
545 Technology Square

Cambridge, MA 02139 USA
mernst@lcs.mit.edu

Abstract

Program refactoring— transforming a program to improve
readability, structure, performance, abstraction, maintain-
ability, or other features — is not applied in practice as much
as might be desired. One deterrent is the cost of detecting
candidates for refactoring and of choosing the appropriate
refactoring transformation. This paper demonstrates the fea-
sibility of automatically finding places in the program that
are candidates for specific refactorings. The approach uses
program invariants: when a particular pattern of invariant
relationships appears at a program point, a specific refac-
toring is applicable. Since most programs lack explicit in-
variants, an invariant detection tool called Daikon is used to
infer the required invariants. We developed an invariant pat-
tern matcher for several common refactorings and applied it
to an existing Java code base. Numerous refactorings were
detected, and one of the developers of the code base assessed
their efficacy.

1 Introduction

Program refactoring is a technique in which a software engi-
neer applies well-defined source-level transformations with
the goal of improving the code’s structure and thus reducing
subsequent costs of software evolution. Initially developed
in the early 1990s [OJ90, Gri91, Opd92, GN93], refactoring
is increasingly a part of mainstream software development
practices [FBB+99]. As just one example, one of the basic
tenets of Extreme Programming [Bec99] is to refactor on a
continual basis, as a fundamental part of the software devel-
opment process.

Refactoring is not applied in practice as frequently as
might be beneficial. There are a number of reasons for this,
including managerial (such as, “we need to add features to

ship the product, and refactoring doesn’t directly contribute
to that”) and technical (such as, “refactoring might break
a subtle property of the system, which is too dangerous”).
There are a number of tools to help overcome some of these
problems: most of these automate the process of safely ap-
plying a refactoring that an engineer has determined is ap-
propriate (see Section 2).

Our research shows the feasibility of another kind of tool
to support engineers in refactoring software: automatically
finding candidate refactorings. The recommended man-
ual method of identifying beneficial refactorings is to ob-
serve design shortcomings manifested during development
and maintenance [GHJV95]. Unfortunately, design prob-
lems may be overlooked or ignored by a programmer, partic-
ularly under deadline pressures and the intellectual demands
of implementing correct changes.

Our technology for identifying refactoring candidates uses
program invariants: a particular pattern of invariants at a
program point indicates the applicability of a specific refac-
toring. This use of program invariants is complementary
to other approaches such as human examination or pattern-
matching over the source code.

To broaden the applicability of our approach beyond pro-
grams for which engineers have written invariants explicitly,
we automatically infer the invariants used to find candidate
refactorings. In particular, we use the Daikon tool for dy-
namically discovering program invariants [Ern00, ECGN01].

In the following we discuss prior work in refactoring (Sec-
tion 2), Daikon’s approach to detecting invariants (Section
3), our approach to finding refactoring candidates (Sections
4 and 5), and a case study of its use (Section 6). We close
with a comparison of dynamic and static refactoring detec-
tion (Section 7) and a discussion of contributions and future
work (Section 8).



2 Related Work

Refactoring Tools. Refactoring is ideally suited to au-
tomation: engineers want to apply refactorings, but apply-
ing them manually is error-prone (as are all manual software
modifications). This paper focuses on identifying candidates
for refactoring and, to a lesser degree, on checking that man-
ually applied refactorings preserve meaning. In contrast,
nearly all the related work focuses instead on automatically
applying refactorings once an engineer has identified a can-
didate. These two styles of automation seem to dovetail quite
naturally.

Opdyke [OJ90, Opd92] and Griswold [Gri91, GN93] de-
fined early tools to apply refactorings and ensure that the
meaning of the program was left unchanged by the refac-
toring.1

A number of more recent tools also support refactor-
ing: the Smalltalk Refactoring Browser [RBJ97], which
automatically performs a set of refactorings taken primar-
ily from Opdyke’s original work; the IntelliJ Renamer tool
(www.intellij.com), which supports renaming of packages,
variables, etc. and moving of packages and classes for Java;
and the Xref-Speller (www.xref-tech.com/speller/), which
extends the Emacs editor to support a set of refactorings for
C and for Java.

Roberts [Rob99] discusses analyses to support refactor-
ing, especially those defined by Opdyke. Roberts observes
that few of Opdyke’s refactorings are applied on their own,
so he defines the postconditions that hold after a refactor-
ing is applied. This definition allows precise reasoning
of postcondition–preconditiondependencies among refactor-
ings, which in turn allows compositions of refactorings to be
defined. Furthermore, Roberts discusses dynamic refactor-
ing in which the program, while running, checks for certain
properties, applies appropriate refactorings, and then can re-
tract those refactorings if the required conditions are later
violated. Although Roberts’s effort has similarities to our re-
sult — it aids in refactoring by exploiting program predicates
obtained by dynamic analysis — it, like the tools mentioned
above, focuses on the application of refactorings, while we
focus on locating where refactorings might apply.

Moore’s Guru tool [Moo96b, Moo96a] automates two spe-
cific and somewhat more global refactorings. It employs a
graph-based inheritance hierarchy inference algorithm that
can automatically restructure an object-oriented hierarchy
for programs written in Self [US87]. Using a similar al-
gorithm, Guru can also automatically extract shared expres-
sions from methods.

Bowdidge’s Star Diagram [Bow95, BG98] hierarchically
classifies references to chosen variables or data structures,
and provides a tree-based graphical visualization to high-

1Precisely defining what it means to leave the meaning of the program
unchanged is important and challenging. For example, the functional prop-
erties may be kept stable, but performance properties may change — indeed,
that might be one of the motivating reasons to apply the refactoring. The de-
tails of this issue are beyond the scope of this paper; they are addressed by
Griswold [Gri91] and Roberts [Rob99].

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Figure 1: An overview of dynamic invariant inference as imple-
mented by the Daikon tool.

light redundant patterns of usage, facilitating an appropriate
object-oriented redesign. The visualization has been used
both as the front-end to an automated refactoring tool and
a refactoring planner [GCB+98]. The tool does not recom-
mend specific refactorings, and the tool user must identify
the variables or data structures that are candidates for refac-
toring.

Finding Duplication in Software. Other related work
identifies potential duplication in software systems.
Baker [Bak95], for example, locates instances of duplication
or near-duplication in a software system by checking for
sections of code that are textually identical except for a
systematic substitution of one set of variable names and
constants for another. Further processing locates longer
sections of code that are the same except for other small
modifications. Experimental results showed the approach
to be effective and fast. There are at least two distinctions
from our approach. First, Baker’s approach identifies
the similarities but does not suggest specific refactorings.
Second, it identifies only refactoring candidates involving
redundancy, but many refactorings apply to code patterns
that appear only once or to code patterns that differ.

Kontogiannis et. al. [KDM+96] describe three analysis
techniques — source code metrics, dynamic programming,
and statistical matching — for finding patterns in code. Ex-
perimental results have been promising on moderately-sized
systems such as several Unix shells. These techniques — and
similar ones such as plan recognizers — are aimed at sup-
porting general program understanding, reverse engineering,
and architectural (and design) recovery activities. Although
our work has a high-level relationship to efforts like these,
our work is distinct due to our use of invariants and our fo-
cus on refactoring.

3 Invariant Discovery

Dynamic invariant detection [ECGN01] discovers likely in-
variants from program executions by instrumenting the tar-
get program to trace the variables of interest, running the in-
strumented program over a test suite, and inferring invariants
over the instrumented values (Figure 1). The inference step
tests a set of possible invariants against the values captured
from the instrumented variables; those invariants that are
tested to a sufficient degree without falsification are reported
to the programmer. As with other dynamic approaches such

2



as testing and profiling, the accuracy of the inferred invari-
ants depends in part on the quality and completeness of the
test cases. The Daikon invariant detector is language inde-
pendent, currently supporting instrumenters for C, Java, and
Lisp.

Daikon detects invariants at specific program points such
as loop heads and procedure entries and exits; each program
point is treated independently. The invariant detector is pro-
vided with a variable trace that contains, for each execution
of a program point, the values of all variables in scope at that
point. Each of a set of possible invariants is tested against
various combinations of one, two, or three traced variables.

For variablesx, y, and z, and computed constantsa,
b, and c, some examples are: equality with a constant
(x = a) or a small set of constants (x 2 fa; b; cg), lying in a
range (a � x � b), non-zero, modulus (x � a (mod b)), lin-
ear relationships likez = ax+ by+ c, ordering (x � y), a
range of functions (x = fn(y)), and invariant combinations
(x+ y � a (mod b)). Also sought are invariants over a se-
quence variable such as minimum and maximum sequence
values, lexicographical ordering, element ordering, invari-
ants holding for all elements in the sequence, or membership
(x 2 y). Given two sequences, some example invariants are
elementwise linear relationship, lexicographic comparison,
and subsequence relationship.

In addition to local invariants such asnode =
node.child.parent (for all nodes), Daikon detects global
invariants over pointer-directed data structures, such as
mytree is sorted by�. Finally, Daikon can detect conditional
invariants that are not universally true, such asif p 6= NULL

then �p > x and p:value > limit or p:left 2 mytree. Pointer-
based invariants are obtained by linearizing graph-like data
structures. Conditional invariants result from splitting data
into parts based on the condition and comparing the resulting
invariants; if the invariants in the two halves differ, they are
composed into a conditional invariant [EGKN99].

For each variable or tuple of variables, each potential in-
variant is tested. Each potential unary invariant is checked
for all variables, each potential binary invariant is checked
over all pairs of variables, and so forth. A potential invariant
is checked by examining each sample (i.e., tuple of values
for the variables being tested) in turn. As soon as a sam-
ple not satisfying the invariant is encountered, that invariant
is known not to hold and is not checked for any subsequent
samples. Because false invariants tend to be falsified quickly,
the cost of computing invariants tends to be proportional to
the number of invariants discovered. All the invariants are
inexpensive to test and do not require full-fledged theorem-
proving.

To enable reporting of invariants regarding components,
properties of aggregates, and other values not stored in pro-
gram variables, Daikon represents such entities as additional
derived variables available for inference. For instance, if ar-
ray a and integerlasti are both in scope, then properties
over a[lasti] may be of interest, even though it is not a
variable and may not even appear in the program text. De-
rived variables are treated just like other variables by the

invariant detector, permitting it to infer invariants that are
not hardcoded into its list. For instance, ifsize(A) is de-
rived from sequenceA, then the system can report the invari-
ant i < size(A) without hardcoding a less-than comparison
check for the case of a scalar and the length of a sequence.
For performance reasons, derived variables are introduced
only when known to be sensible. For instance, for sequence
A, the derived variablesize(A) is introduced and invariants
are computed over it beforeA[i] is introduced, to ensure
that i is in the range ofA.

An invariant is reported only if there is adequate evidence
of its plausibility. In particular, if there are an inadequate
number of samples of a particular variable, patterns observed
over it may be mere coincidence. Consequently, for each
detected invariant, Daikon computes the probability that such
a property would appear by chance in a random input. The
property is reported only if its probability is smaller than a
user-defined confidence parameter [ECGN00].

The Daikon invariant detector is available for download
from http://sdg.lcs.mit.edu/˜mernst/daikon/ .

4 Finding Refactoring Candidates

The goal of this work is to aid the engineer in finding some
of the nearly two dozen “bad smells in code” [FBB+99,
Chap. 3] that motivate refactorings. Human judgment is
still required to determine whether a candidate refactoring
should be applied: the engineer would apply the refactor-
ing — either manually or using a tool such as those discussed
in Section 2 — if it was judged to be of value.

Identifying refactoring candidates generally requires a se-
mantic analysis of a program. (In some cases, such as “Large
Class” [FBB+99, p. 78], a weaker analysis may identify
some candidates.) Our approach is to use program invariants
to automatically identify candidate refactorings. A particular
pattern of invariants identifies a potential refactoring candi-
date and the refactoring to be applied to it.

To discover candidate refactorings using invariants, we
studied the refactorings in Fowler et al. [FBB+99] to deter-
mine whether there were invariants that would indicate the
applicability of the refactoring.

As an example, the “Remove Parameter” refactoring can
be applied if a parameter is not needed. This can arise, for
example, when a parameter can be computed from other pa-
rameters: a method is a candidate if there is an invariant over
the parameters that implies one is a function of the others.
As one example, this approach allowed us to find a situation
in a substantial program in which a potentially rectangular
icon was always square: theheight andwidth parameters
were always equal. Automatic detection of this property al-
lowed the engineer to then decide whether or not to apply the
refactoring, depending on whether there was still a desire to
keep the original flexibility. (Even if the engineer chose not
to apply the refactoring, the relationship between the param-
eters could be retained, perhaps as a comment or annotation,
to provide additional documentation about the program; this

3



annotation could be mechanically checked from time to time
to identify if and when the potential flexibility was being uti-
lized.)

Our approach works regardless of how the invariants are
created. If the invariants are explicit in the code, then we
can analyze those invariants to determine candidate refactor-
ings. In the common case where there are few or no explicit
invariants, we dynamically detect program invariants, as de-
scribed in Section 3. (Section 7 compares dynamic and static
analysis for identifying candidate refactorings.)

5 Candidate Refactorings
Discoverable from Invariants

This section describes the refactorings (largely from Fowler
et al. [FBB+99]) that our tool detects, and specifies the in-
variants that indicate their applicability. Section 6 presents
a case study over Nebulous [GYK01], including quantitative
and qualitative results. We use some examples from this case
study to clarify the refactorings discussed here.

5.1 Remove Parameter

Remove Parameter is intended to apply when “a parameter
[is] no longer used by the method body” [FBB+99, p. 277].
A parameter can also be removed when its value is constant
or can be computed from other available information. The
refactoring eliminates the parameter from the declaration and
all calls. The rationale is that extraneous parameters are con-
fusing and burdensome to users of the code.

Remove Parameter is applicable when either of the follow-
ing preconditions (invariants at a procedure entry) holds:

� p = constant
� p = f(a; b; : : :)

wherep is a parameter,f is a computable function, anda,
b,. . . are either parameters or other variables in scope at the
procedure entry.

In Nebulous one parameter to theAspect constructor was
constant:

isAutomaticAspect = true

In another case of a constant parameter, methodSet-

FirstItemFlag turned out to have only a single call, and
that call passed a literal as the corresponding argument.

The example mentioned in the previous section — when
the width and height parameters for a rectangular icon were
always equal — illustrates the power of using invariants to
find this refactoring. In general, determining equality of two
parameters requires nontrivial program analysis.

5.2 Eliminate Useless Return Value

Eliminate Useless Return Value is intended for methods that
return a trivial value or a value that callers ignore; a value

is trivial if it is constant or is computable from other avail-
able values. Although this refactoring is not mentioned by
Fowler [FBB+99], its rationale and mechanics are similar to
those of Remove Parameter (Section 5.1).

Eliminate Useless Return Value is applicable if either of
the following postconditions (invariants at a procedure exit)
holds:

� return = constant
� return = f(a; b; : : :)

wherereturn stands for the procedure result,f is a com-
putable function, anda,b,. . . are in scope at the call site.

In Nebulous, methodmakeObjectObey in classColli-

sionCountCommand had the postcondition

return = true

and in fact, this routine can never return false.

5.3 Separate Query from Modifier

Separate Query from Modifier is intended for “a method
that returns a value but also changes the state of an ob-
ject” [FBB+99, p. 279]. The refactoring converts a single
routine into two separate routines, one of which returns the
query result and the other of which performs the modifica-
tion. The rationale is to give each routine a single clearly
defined purpose, to permit clients to perform just the query
or just the modification, and to create side-effect-free proce-
dures whose calls may be freely inserted or removed. An-
other common problem, at least in some of the Nebulous
code, is that the procedure name or documentation may not
make the side effects clear.

Separate Query from Modifier is applicable when two con-
ditions hold at the procedure exit:

� the postconditions do not containreturn = constant,
even though the procedure returns a value, and

� for some variablea in scope at procedure entry (for in-
stance, a formal parameter), the postconditions imply
a = orig(a)

If the return value is constant, the Eliminate Useless Return
Value refactoring (Section 5.2) will be recommended. Post-
conditions can implya = orig(a) by, for example, containing
a = func(a), wherefunc is not the identity function.

Nebulous’s CursorHistory.GetNextItem method,
which returns aCursorHistoryItem object, includes the
following postcondition:

this:mCurrentIndex = orig(this:mCurrentIndex) + 1

This method returns an item in the list and also increments
an index into the list.

5.4 Encapsulate Downcast

Encapsulate Downcast is intended for “a method that
returns an object that needs to be downcasted by its

4



callers” [FBB+99, p. 308]. The refactoring changes the re-
turn type and moves the downcast inside the method. The
rationale is to reduce the static number of downcasts and to
simplify implementation and understanding for clients. It
can also permit type checks to be performed statically (at
compile-time) rather than dynamically (at run-time), which
has the dual benefits of early error detection and of improved
performance.

Encapsulate Downcast is applicable when the following
postcondition holds:

� LUB(return:class) 6= declaredtype(return)

where LUB is the least-upper-bound operator andde-

claredtype(return) is the declared return type of the
procedure. Our current implementation approximates this
test with the conjunction of the following two conditions:

1. return:class = constant, and
2. return:class 6= declaredtype(return)

One example appears in methodShowAspect of class
AspectTraverseComboBox :

elements of this.comboBoxItems have class As-
pectTraverseListItem

Although this.comboBoxItems is declared as aVector

(containingObject s), its contents are alwaysAspectTra-

verseListItem objects. These elements can be encap-
sulated in a more specific container, making the intention
clearer.

5.5 Replace Temp with Query

Replace Temp with Query is intended for “a temporary vari-
able that holds the value of an expression” [FBB+99, p. 120].
The refactoring extracts the expression into a method and re-
places uses of the temporary by method calls. The rationale
is that the expression may be used in multiple places and
that eliminating temporary variables can enable other refac-
torings. In essence, this is the user-level inverse of a com-
piler’s application of the common subexpression elimination
optimization.

Replace Temp with Query is applicable to a temporary
variable if neither the temporary variable nor the value of the
expression that initialized it is changed during the temporary
variable’s lifespan. This is guaranteed by the conjunction of
the following two postconditions:

� temp = orig(temp), and
� a = orig(a), b = orig(b), . . . for all variablesa,b,. . . in

the (side-effect-free) initializer fortemp

Section 6 does not report any results for Replace Temp
with Query, because Daikon does not currently report invari-
ants over the initial values of temporary variables. Extend-
ing Daikon to do so is relatively straightforward, but time-
consuming. (Another problem is the need to check values (of
a,b,. . . above) at each use of the temporary; checking only

at the procedure exit would not preclude one of those val-
ues being changed, then changed back. A static analysis or
programmer examination could also suffice for this check.)

As a proof of concept of detecting Replace Temp with
Query, we introduced wrapper functions into Nebulous that
define temps via parameter passing, thus making them visi-
ble to Daikon. Using the Daikon output of the modified pro-
gram, our refactoring pattern-matcher was able to detect can-
didates for Replace Temp with Query. Consequently, we are
confident that this refactoring can be detected automatically
when we improve Daikon as described above.

6 Analysis of Nebulous

To demonstrate the feasibility of our invariant pattern match-
ing method and to gather informal empirical data about its
effectiveness, we applied our technique to Nebulous, a com-
ponent of Aspect Browser [GYK01]. Nebulous is a soft-
ware tool that employs simple pattern matching and the map
metaphor both to visualize how the code of a program fea-
ture or property crosscuts the file hierarchy of the program,
and to manage changes to that code. Nebulous is written in
Java, and consists of 78 files and a similar number of classes,
amounting to about 7000 lines of non-comment, non-blank
source code. Over its three year history, it has had three dif-
ferent primary developers under the guidance of one of the
co-authors.

We applied our approach as follows:

1. We wrote Perl scripts to identify the patterns of invari-
ants that indicate that particular refactorings may apply
(Section 5).

2. We used Daikon to extract invariants from a typical
Nebulous execution. The test runs of Nebulous exer-
cised a variety of features over two inputs — a student
assignment from an MIT class and the source code of
Nebulous itself.

3. We ran the Perl scripts over the extracted invariants to
identify candidate refactorings from among those de-
scribed in Section 5.

4. The current programmer on the Nebulous project evalu-
ated the usefulness of the recommendations. This eval-
uation occurred in the presence of one of the co-authors
so that qualitative issues could be observed.

The Nebulous programmer classified the recommenda-
tions into:yes, the recommendation is good;no, the recom-
mendation is not good at all; ormaybe, the refactoring might
be a good idea, or another refactoring might be better.

Name yes maybe no total
Remove Parameter 6 4 5 15
Eliminate Useless Return Value1 2 4 7
Separate Query from Modifier 0 2 0 2
Encapsulate Downcast 1 1 0 2
Total 9 8 9 26

5



Remove Parameter. Most of the yes’s in this category are
due to the same literal or object being passed in from all call
sites. For a single object being passed in, the restructuring
is tricky, since the object’s data must still reach the method.
Since the object is a singleton, the incoming object’s class
could be refactored to make it a static class, thus making the
data readily accessible via static methods. Most of the no’s
and maybe’s in Remove Parameter were detected as candi-
dates because in each instance a flag of the same value was
passed in on every call, and this flag controls a case statement
that is driving a method dispatch. Thus, although the pro-
grammer deemed it incorrect or inappropriate to perform Re-
move Parameter, he did decide that Replace Parameter with
Explicit Methods [FBB+99, p. 285] would be appropriate,
which would push the switching logic outside the method
using the flag. Extending the tool’s pattern matching to rec-
ognize flags — by detecting the passing of a limited range of
values to a method — could yield the appropriate recommen-
dation.

Eliminate Useless Return Value. The yes here is for a
function that always returns true. The four no’s are due to
the fact that the usage scenario failed to exercise a couple of
Nebulous’s more obscure features. (This weakness is specif-
ically due to our use of a dynamic method for discovering in-
variants; that is, the reported invariants were false and would
be eliminated through the use of a richer test suite or a suf-
ficiently powerful static technique.) The two maybe’s are
functionally correct, but their value is dubious. For example,
thecreateAspect method of classAspectBrowser need
not return its value, but the programmer judged it convenient
for additional processing after the aspect was created.

Separate Query from Modification. The two maybe’s for
this refactoring are a matter of programming style. The pro-
grammer likes a style of iterator (for example) that uses
a modify-and-return approach, which inherently combines
the query and the modification. It should be straightfor-
ward to customize the invariant pattern matcher to account
for programmer preferences, for instance disabling patterns
that make recommendations that contradict the program-
mer’s preferred style.

Encapsulate Downcast. Both recommendations made by
the tool are correct. However, in one case there are ten casts
on a vector appear in the code, in the other just two appear.
In the latter case the programmer marked this as a maybe
since the amount of casting was limited, thus mitigating the
benefits of creating a new class to encapsulate the casting.

Overally, the programmer felt that the use of the tool
was quite valuable. The tool’s recommendations, although
not large in number, revealed fundamental architectural fea-
tures — the programmer would say flaws — of Nebulous. In
particular, although the tool did not detect every use of flags
in the system to control method dispatch, the programmer

used his knowledge of the system to extrapolate from these
few cases to the architectural generalization. Also, although
a number of the recommended refactorings were not of inter-
est to the programmer, he quickly picked out the gems, wast-
ing little time on the uninteresting recommendations. More-
over, even the no’s provided insight about Nebulous, in par-
ticular revealing the excessive use of flags.

Several recommended refactorings, although correct, pos-
sessed subtleties that would complicate their application,
perhaps enough to discourage their application. One exam-
ple is Remove Parameter, which in some cases would ne-
cessitate converting a singleton object into a static class. In
another case, the recommendation, although technically not
meaning-preserving, convinced the programmer that the ex-
ceptional, falsifying case should be eliminated to simplify
the program. Thus, the process was not an exercise in refac-
toring alone, but also in functional redesign.

Based on these results, the programmer plans to eliminate
the prevailing architectural flaw, systematically refactoring
the code to largely eliminate the use of flags and to convert
key singleton objects into static classes.

Coincidentally, the programmer had recently used a sim-
ple clone-detection tool based on text-based pattern match-
ing [Gri98] to ferret out copy-pasted code. The refactoring
recommendations derived from Daikon’s output are largely
orthogonal to the ones found with the clone detector, thus
providing real value. This orthogonality is not surprising,
since the techniques described here depend upon run-time
values not available to the text-based clone detector.

Finally, we observe that some of the maybe’s pertain to
the refactoring’s usefulness in improving the design, rather
than its correctness. For Separate Query from Modification,
this was a matter of style. For such cases, a more com-
plete user interface to our tool would permit a programmer
to selectively disable classes of recommendations to avoid
being bothered by them. In other cases, the usefulness of
the refactoring is a matter of degree. For Encapsulate Down-
cast, the programmer felt that the number of casts (and how
widespread they were) was a determinant of usefulness. This
is a static property of the program’s design, as it pertains to
the way computations are expressed and modularized into
classes and methods. Consequently, it seems that the com-
plementary strengths of dynamic and static analysis would
best be combined to achieve high accuracy in refactoring rec-
ommendations.

7 Static and Dynamic Approaches

This section briefly compares our technical approach for
identifying refactorings to alternative approaches using static
rather than dynamic analysis techniques.

Our basic approach is independent of how invariants are
found. But our actual tools, and the case study based on
those tools, rely on dynamic techniques — those that run the
program and observe its execution. Dynamic analysis is by
no means the only reasonable way to detect refactorings; we

6



have suggested it as a complementary technique that can en-
hance other techniques and enable more refactorings to be
performed.

The central alternative to dynamic analysis is, of course,
static analysis. (Human analysis is sometimes more powerful
than either, allowing deep and insightful reasoning that is
beyond hope for automation.)

The results of dynamic analyses inherently depend on the
test suite used to produce those results; by contrast, static
analyses are in general sound with respect to all possible
program executions. Our dynamically-based results need to
be verified, either by the engineer or by a (static) analyzer
such as a meaning-preserving tool for applying the suggested
refactoring (Section 2). Deferring checking should be ac-
ceptable when most candidates are indeed applicable, as is
the case for our tool.

A combination of underlying analyses seems best for au-
tomated refactoring. Consider again the question of when the
refactoring Remove Parameter can be applied. A parameter
can be eliminated if it is never used, but also if its value can
be determined from other available information. The former
can be determined in some cases by a trivial lexical analysis
(or by a deeper analysis, if the parameter is passed to other
routines that can be determined never to use it), and a dy-
namic analysis is not appropriate. By contrast, determining
the run-time relationship among variables or their run-time
values is beyond the capability of most static analyses, but
can be easily checked dynamically. In some cases, a com-
bined static and dynamic analysis will be most appropriate;
for instance, static analysis can detect a pattern in the pro-
gram text, and dynamic analysis can verify that a necessary
relationship holds over the values, as for Encapsulate Down-
cast. In other cases, static and dynamic analysis can give dif-
ferent perspectives on a property; for instance, Move Field
and Move Method [FBB+99, pp. 142, 146] depend on how
much the field or method uses or is used by other classes.
The static and dynamic usage counts may be quite different.

8 Conclusion

This research indicates that program invariants can be used
to effectively discover refactoring candidates. Our results,
although preliminary, are compelling: we can extract invari-
ants from a realistic codebase and use them to identify a set
of refactorings that the author of the codebase had not pre-
viously identified or considered. There are two especially
attractive properties of our approach: first, the computation
of the invariants and the identification of refactoring candi-
dates is automatic; and second, the recommended refactoring
is justified in terms of run-time properties of the code (in the
form of Daikon invariants) that must hold for the refactoring
to be correct.

A number of questions remain, which we expect to drive
our future work in this area. First, in our initial case study
about half of the candidate refactorings showed real promise.
Ideally, we should reduce the other half of less-promising

candidates to relieve the engineer from having to consider
them as possible refactorings. Selection of better test suites
and complementing our dynamic analysis with static analy-
sis could go a long way towards achieving this goal. Sec-
ond, we need more empirical assessment of the utility of
our approach: our data point may not be representative of
programs in general, and determining if our approach works
better or worse in other situations is crucial. Third, we need
to determine how well our approach dovetails with other ap-
proaches for identifying refactoring candidates; the observa-
tion that our approach found distinct candidates from some
clone-based approaches is promising in this regard. Fourth,
we need to take steps towards integrating our tools with those
for applying refactorings (Section 2), with the intent of giv-
ing engineers a powerful suite of refactoring tools.

With respect to the use of dynamically discovered invari-
ants, our work provides another data point for their potential
effectiveness for realistic software engineering tasks. This
is the first use of invariants in which a tool consumes the
invariants as opposed to an engineer. A minor but interest-
ing consequence of this is that our work on improving the
relevance of extracted invariants [ECGN00] is of less im-
portance, since our refactoring tool would not be distracted
nor overwhelmed by additional, less relevant invariants. This
kind of observation can help drive the work on dynamically
discovering program invariants in new directions, too.

Using program invariants to discover refactoring candi-
dates shows significant promise as a complementary ap-
proach to tools that help to automate refactoring itself. That
the reported candidate refactorings for Nebulous suggested
some broader changes to the codebase was unexpected; it
hints that tools like this might address additional problems
that arise during software evolution and maintenance.

Acknowledgments

The authors thank Wesley Leong for evaluating our tool’s recom-
mendations on Nebulous. This research was supported in part by
NSF grant CCR-9970985, an IBM Graduate Fellowship, and gifts
from Edison Design Group, Microsoft Corporation, and Toshiba
Corporation. Kataoka is currently visiting UW from the System En-
gineering Laboratory, Research and Development Center, Toshiba
Corporation.

References

[Bak95] Henry G. Baker. ’Use-once’ variables and linear objects
– storage management, reflection and multi-threading.SIGPLAN
Notices, 30(1):45–52, January 1995.

[Bec99] Kent Beck.Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[BG98] Robert W. Bowdidge and William G. Griswold. Support-
ing the restructuring of data abstractions through manipulation of
a program visualization.ACM Transactions on Software Engi-
neering and Methodology, 7(2), April 1998.

7



[Bow95] Robert W. Bowdidge.Supporting the Restructuring of
Data Abstractions through Manipulation of a Program Visualiza-
tion. PhD thesis, University of California, San Diego, Department
of Computer Science & Engineering, November 1995. Technical
Report CS95-457.

[ECGN00] Michael D. Ernst, Adam Czeisler, William G. Gris-
wold, and David Notkin. Quickly detecting relevant program in-
variants. InProceedings of the 22nd International Conference on
Software Engineering, pages 449–458, Limerick, Ireland, June 7–
9, 2000. To appear inACM Transactions on Software Engineering
and Methodology.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely program in-
variants to support program evolution.IEEE Transactions on
Software Engineering, 27(2):1–25, February 2001. A previous
version appeared inProceedings of the 21st International Con-
ference on Software Engineering, pages 213–224, Los Angeles,
CA, USA, May 19–21, 1999.

[EGKN99] Michael D. Ernst, William G. Griswold, Yoshio
Kataoka, and David Notkin. Dynamically discovering pointer-
based program invariants. Technical Report UW-CSE-99-11-02,
University of Washington, Seattle, WA, November 16, 1999.

[Ern00] Michael D. Ernst.Dynamically Discovering Likely Pro-
gram Invariants. PhD thesis, University of Washington Depart-
ment of Computer Science and Engineering, Seattle, Washington,
August 2000.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts.Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[GCB+98] William G. Griswold, Morison I. Chen, Robert W.
Bowdidge, Jenny L. Cabaniss, Van B. Nguyen, and J. David Mor-
genthaler. Tool support for planning the restructuring of data ab-
stractions in large systems.IEEE Transactions on Software Engi-
neering, 24(7):534–558, July 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and
John Vlissides.Design Patterns. Addison-Wesley, Reading, MA,
1995.

[GN93] William G. Griswold and David Notkin. Automated assis-
tance for program restructuring.ACM Transactions on Software
Engineering and Methodology, 2(3):228–269, July 1993.

[Gri91] William G. Griswold. Program Restructuring as an Aid
to Software Maintenance. PhD thesis, University of Washington,
Dept. of Computer Science & Engineering, August 1991. Tech-
nical Report No. 91-08-04.

[Gri98] William G. Griswold. Coping with change using infor-
mation transparency. Technical Report CS98-585, University of
California, San Diego, Department of Computer Science and En-
gineering, April 1998 (Revised August 1998).

[GYK01] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo
Kato. Exploiting the map metaphor in a tool for software evo-
lution. In Proceedings of the 2001 International Conference on
Software Engineering, May 2001.

[KDM+96] K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler,
and Others. Pattern matching for clone and concept detection.
Automated Software Engineering, 3(1–2):77–108, June 1996.

[Moo96a] Ivan Moore. Automatic inheritance hierarchy restruc-
turing and method refactoring. InProceedings of the Eleventh
Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pages 235–250, 1996.

[Moo96b] Ivan R. Moore. Automatic Restructuring of Object-
Oriented Programs. PhD thesis, University of Manchester, 1996.

[OJ90] William F. Opdyke and Ralph E. Johnson. Refactoring:
An aid in designing application frameworks and evolving object-
oriented systems. InProceedings of SOOPPA ’90: Symposium
on Object-Oriented Programming Emphasizing Practical Appli-
cations, Sep 1990.

[Opd92] William F. Opdyke.Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois at Urbana-Champaign,
1992.

[RBJ97] Don Roberts, John Brant, and Ralph Johnson. A refac-
toring tool for Smalltalk.Theory and Practice of Object Systems,
3(4):253–63, 1997.

[Rob99] Donald Bradley Roberts.Practical Analysis for Refac-
toring. PhD thesis, University of Illinois at Urbana-Champaign,
1999.

[US87] David Ungar and Randall B. Smith. Self: The power of
simplicity. In Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 227–241, 1987.

8


