
SPEECHBUILDER: Facilitating Spoken Dialogue System Development

James Glass and Eugene Weinstein

Spoken Language Systems Group
MIT Laboratory for Computer Science
Cambridge, Massachusetts 02139, USA

fglass, ecoder g@mit.edu

Abstract

In this paper we report our attempts to facilitate the creation of
mixed-initiative spoken dialogue systems for both novice and
experienced developers of human language technology. Our ef-
forts have resulted in the creation of a utility called SPEECH-
BUILDER, which allows developers to specify linguistic infor-
mation about their domains, and rapidly create spoken dialogue
interfaces to them. SPEECHBUILDER has been used to create
domains providing access to structured information contained
in a relational database, as well as to provide human language
interfaces to control or transaction-based applications.

1. Introduction
As anyone who has tried to create a mixed-initiative spoken dia-
logue system knows, building a system which interacts compe-
tently with users, while allowing them freedom in what they can
say and when they can say it during a conversation, is a signifi-
cant challenge. For this reason, many systems avoid this tactic,
and instead take a more strategic approach which focuses on a
directed dialogue. In fact, many researchers argue that conver-
sational, mixed-initiative dialogue systems may not be worth
pursuing, both for practical and philosophical reasons. Cer-
tainly, there are many technical difficulties to overcome, which
include recognizing and understanding conversational speech,
generating reasonable and natural responses, and managing a
flexible dialogue strategy.

Over the past decade, the Spoken Language Systems Group
at the MIT Laboratory for Computer Science has been actively
developing the human language technologies necessary for cre-
ating such conversational human-machine interfaces. In recent
years we have created several systems which have been publicly
deployed on toll-free telephone numbers in North America, in-
cluding systems providing access to information about weather
forecasts, flight status, and flight schedules and prices [1, 2].

Although these applications have been successful, there are
limited resources at MIT to develop a large number of new do-
mains. To address this issue, we have recently set out to make it
easier to rapidly prototype new mixed-initiative conversational
systems. Unlike other portability efforts that we are aware of,
which tend to employ directed-dialogue strategies (e.g., [3]),
our goal is to enable the kinds of natural, mixed-initiative sys-
tems which are now created manually by a relatively small
group of expert developers.

Names in alphabetical order. This research was supported by
DARPA under contract N66001-99-1-8904 monitored through Naval
Command, Control and Ocean Surveillance Center and under an in-
dustrial consortium supporting the MIT Oxygen Alliance.

In this paper we describe our initial efforts in developing a
utility called SPEECHBUILDER. The next section describes the
architecture we have adopted. This is followed by a descrip-
tion of the human language technologies which are deployed
in SPEECHBUILDER, and the knowledge representation it uses.
We then describe the current state of development, followed by
ongoing and future activities in this project.

2. System Architecture

The approach that we have adopted for developing the SPEECH-
BUILDER utility has been to leverage the basic technology
which is deployed in our more sophisticated conversational sys-
tems. There are many reasons for doing this. First, in addi-
tion to developing a programmable client-server architecture for
conversational systems [4], we have devoted considerable effort
over the last decade to improving human language technology
(HLT) in speech recognition, language understanding, language
generation, discourse and dialogue, and most recently, speech
synthesis. By employing these HLT components we minimize
duplication of effort, and maximize our ability to adopt any
technical advances which are made in any of these areas. Sec-
ond, by using our most advanced HLT components, we widen
the pool of potential developers to include both novices and ex-
perts, since the latter can use SPEECHBUILDER to rapidly pro-
totype a new domain (a very useful feature) and subsequently
modify it manually. Third, since we are not limiting any of
the HLT capabilities in any way, we allow for the potential
for SPEECHBUILDER-created systems to eventually scale up to
the same level of sophistication as our most capable systems.
Lastly, by focusing attention on portability as a major issue,
we can potentially identify weaknesses in some of our existing
HLT components. This can lead to better solutions, which will
ultimately benefit all of our conversational systems.

We have made a conscious decision to have as simple an
interface as possible for the user, while providing mechanisms
to incorporate any needed complexities. For example, develop-
ers do not specify natural language grammars for their domain.
Instead, they specify the basic semantic concepts (calledkeys),
and provide examples of user utterances which trigger different
system behaviors (calledactions). The system then uses these
inputs to configure the language understanding grammar auto-
matically. The developer can optionally create additional hier-
archy in the grammar by using bracketing to label portions of
the example sentences as being subject to a particular structure.
Table 1 contains example sentences and their corresponding
key/action representations encoded as CGI parameters (which
are used for one kind of SPEECHBUILDER configuration).

To be presented at the 7th European Conference on Speech Communication and Technology, Aalborg, Denmark, September, 2001.



Audio
Server
Audio
Server

Application
Back-end
Database

Server

Language
Generation
Language

Generation

Speech
Recognition

Speech
Recognition

Context
Tracking

Discourse
Server

Speech
Synthesis

Dialogue
Management

Dialogue
Manager

Frame
Construction
Language

Understanding

Hub Relational
Database

SQL

Figure 1: SPEECHBUILDER configuration for database access.

turn on the lights in the kitchen
action=set&frame=(object=lights,room=kitchen,value=on)
will it be raining in Boston on Friday
action=verify&frame=(city=Boston,day=Friday,property=rain)
show me the Chinese restaurants on Main Street
action=identify&frame=(object=(type=restaurant,
cuisine=Chinese,on=(street=Main,ext=Street)))
I want to fly from Boston to San Francisco arriving before ten a m
action=list&frame=(src=BOS,dest=SFO,
arrival time=(relative=before,time=(hour=10,xm=AM)))

Table 1: Example sentences and their CGI representations.

2.1. SPEECHBUILDER Configurations

There are currently two ways in which a SPEECHBUILDER ap-
plication can be configured. The first configuration can be used
by a developer to create a speech-based interface to structured
data. There is no programming required. As shown in Figure 1,
this model makes use of theGALAXY architecture and all of the
associated HLT components to access information stored in a
relational database which is populated by the developer. This
database table is used along with the semantic concepts and ex-
ample utterances to automatically configure the speech recog-
nition, language understanding, language generation (including
both SQL and response generation), and discourse components
(described in Section 3). A generic dialogue manager handles
user interactions with the database. Armed with a table of struc-
tured data, an experienced developer can use SPEECHBUILDER

to create a prototype system in a matter of minutes.

The second possible SPEECHBUILDER configuration pro-
vides the developer with total control over the application func-
tionality, as well as the discourse, dialogue, and response gener-
ation capabilities [5]. In this model, the developer creates a pro-
gram implementing domain-specific functionality and deploys
it on a CGI-enabled web server. As shown in Figure 2, this con-
figuration uses a subset of theGALAXY components. The se-
mantic frame is converted to the CGI parameter representation
shown in Table 1 by means of the language generation compo-
nent and is sent to the developer CGI application usingHTTP.

Since the developer CGI application is stateless, the
SPEECHBUILDER server maintains a dialogue state variable
which is exchanged with the CGI application on every turn. It is
the responsibility of the application to decide what information,
if any, to inherit from this state variable, and what information
to retain for the next dialogue turn. Table 2 shows how the state
information can be used to keep track of local discourse context.

Audio
Server
Audio
Server

Application
Back-end

SpeechBuilder
Server

Language
Generation

CGI Parameter
Generation

Speech
Recognition

Speech
Recognition

Text-to-Speech
Conversion

Speech
Synthesis

Frame
Construction
Language

Understanding

Hub Developer
Application

HTTP

Figure 2: Alternative SPEECHBUILDER configuration.

what is the phone number of John Smith
action=identify&frame=(property=phone,name=John+Smith)
what about his email address
action=identify&frame=(property=email)
&history=(property=phone,name=John+Smith)
what about Jane Doe
action=identify&frame=(name=Jane+Doe)
&history=(property=email,name=John+Smith)

Table 2: Example interaction using the dialogue state variable.

2.2. Web-Based Interface

SPEECHBUILDER employs a web-based interface, and is im-
plemented via a number of Perl CGI scripts. The web interface
allows the developer to manipulate all of the domain specifics,
such as keys and actions, query responses, and vocabulary word
pronunciations. These domain specifics are stored in an XML
document, and the developer has the ability to edit this file man-
ually without using the online interface. The web interface con-
tains a facility for downloading and uploading the XML repre-
sentation of a domain, and for uploading CSV (comma sepa-
rated value) representations of data tables. The developer also
uses the web interface to compile the domain (that is, to con-
figure theGALAXY servers according to domain specifics), and
to start and stop the runtime modules of the domain. Once a
domain has been compiled, the developer can also examine the
parse tree and semantic frame produced for each example sen-
tence. The interface makes it very easy for a developer to con-
tinually modify, recompile, and redeploy a domain during the
development cycle.

3. Human Language Technologies
As shown in Figure 1, SPEECHBUILDER makes use of all the
major GALAXY components [4]. The programmable hub exe-
cutes a program which was created specifically for the SPEECH-
BUILDER application, although it contains all of the function-
ality of the programs used by our main systems. A specific
version of the hub program is configured for each developer.

The speech recognizer is configured to use generic
telephone-based acoustic models, and is connected to the lan-
guage understanding component via anN -best interface [6].
Since users may speak words which are not specified in the vo-
cabulary, we have incorporated an out-of-vocabulary model [7].
Baseform pronunciations which do not occur in our large on-
line dictionaries are generated by rule [8]. SPEECHBUILDER

provides an editing facility for developers to modify pronunci-
ations. The recognizer deploys a hierarchicaln-gram grammar

2



Key Examples
color red, green blue
day Monday, Tuesday, Wednesday
room living room, dining room, kitchen

Table 3: Examples of concept keys.

derived from the language understanding grammar rules and the
example sentences provided by the developer.

For language understanding, SPEECHBUILDER configures
a grammar file as well as a file for converting full or partial
parses into a meaning representation [9]. Language understand-
ing is configured to back off to robust parsing (i.e., concept
spotting) when no full parse is available. The discourse server
is based on a new component which performs inheritance and
masking after an internal electronic ‘E-form’ has been gener-
ated from the semantic frame [2].

The dialogue management server was modeled after the
functionality of our main systems [2]. Since this component
still tends to be extensively customized for every domain, we
created a simple generic server which is intended to handle the
range of situations which can arise in database query domains.
We fully expect this component to increase in complexity as we
consider a wider range of domains.

The language generation component is actually used for
generating three different outputs, as it is in our main sys-
tems [10]. The first use of generation is for creating the ‘E-
form’ representation used by the discourse and dialogue com-
ponents. The second use is to generate an SQL query for use by
the database server. The third use is to generate a response to
the user which is vocalized using the speech synthesizer.

4. Knowledge Representation
Linguistic constraints are specified by a developer in terms of
a set of concept keys and sentence-level actions via the web
interface. Each is described in more detail in the following.

4.1. Concept Keys

Concept keys usually define classes of semantically equivalent
words or word sequences. All the entries of a key class should
play the same role in an utterance. Concept keys can be ex-
tracted from the database table or can be manually specified
by the developer through the web-based interface. In order
to appear in the semantic frame a conceptmustbe a member
of a concept key class. A regularization mechanism allows
the developer to specify variations on the spoken form (e.g.,
“Philadelphia,” vs. “Philly”) that map to a standardized form
(e.g., “PHL”). Table 3 contains examples of concept keys.

4.2. Sentence-level Actions

Actions define classes of functionally equivalent sentences, so
that all the entries of an action class perform the same operation
in the application. Actions are example queries that one might
use in talking to the domain. Action labels determine the clause
name of the semantic frame produced by the language under-
standing component. SPEECHBUILDER generalizes all exam-
ple sentences containing particular concept key entries to accept
all the entries of the same key class, and thus builds the natural
language template. SPEECHBUILDER also tries to generalize
the non-key words in the example sentences so that it can un-
derstand a wider variety of user queries than was provided by
the developer. Table 4 contains example actions.

Action Examples
identify what is the forecast for Boston

what will the temperature be on Tuesday
I would like to know today’s weather in Denver

set turn the radio on in the kitchen please
can you please turn off the dining room lights
turn on the TV in the living room

Table 4: Examples of actions.

Put object==(the blue box) location==(on the table)
object=(color=blue,item=box),location=(item=table)
Put object=(the blue box) location=(on the table)
object=(blue box),location=(table)
Put the box location==(on the table location==(in the kitchen))
item=box,location=(relative=on,item=table,
location=(relative=in,room=kitchen))

Table 5: Examples of strict (==) and flattened (=) hierarchy.

The system created by SPEECHBUILDER can potentially
understand a larger set of queries than are defined by the set
of sentence examples, since the examples are converted into
a hierarchicaln-gram for the recognizer, and the understand-
ing component backs off to concept spotting when a complete
parse is not found. However, the system performs better if given
a richer set of examples.

4.3. Hierarchical Concept Keys

SPEECHBUILDER allows the developer to build a structured
grammar when this is desired. This is done by “bracketing”
example sentences within the actions – using parentheses to en-
force a structure on the way that each particular sentence is
parsed. The semantic frame created by the natural language
processor reflects the hierarchy specified by the bracketing.

To bracket a sentence, the developer encloses the substruc-
ture which they wish to separate in parentheses, preceded by a
name for the substructure followed by either == or =, depending
on whether the developer desires to usestrict or flattenedhier-
archy. Strict hierarchy maintains the key/value structure of all
concept keys present in the bracketed text. In contrast, flattened
hierarchy collapses all internal key/values into a single concept
value. Table 5 shows examples of bracketed example sentences
which make use of the hierarchical concept keys.

4.4. Responses

In addition to configuring ways of asking about information, the
developer must also specify how the system will present infor-
mation to the user. When a database is provided by the devel-
oper, SPEECHBUILDER configures a generic set of replies for
each appropriate database query which could be requested by a
user. In addition, responses are generated to handle situations
common to all database applications (e.g., no data matching the
input constraints, multiple matches to a user query, too many
matches, etc.). Each of these default responses can be modified
by the developer, as desired, to customize the domain.

5. Current Status
SPEECHBUILDER has been accessible from within MIT and
limited other locations for beta-testing since November 2000,
and it has been used to create several different domains. The
LCSinfodomain, for example, provides access to contact infor-
mation for the approximately 500 faculty, staff, and students

3



working at the MIT Laboratory for Computer Science (LCS)
and Artificial Intelligence Laboratory (including phone num-
bers, email addresses, room locations, positions, and group af-
filiations) and is able to connect the caller to any of the peo-
ple in the database using call bridging. Applications similar
to LCSinfodomain are under development by novice develop-
ers elsewhere at MIT, as well as at the Space and Naval War-
fare Systems Center in San Diego, CA. SPEECHBUILDER has
also been used to create a simple appliance application which
controls various physical items in an office (e.g. lights, cur-
tains, projector, television, computer, etc.). This domain is now
being used within LCS. SPEECHBUILDER has also been used
by members of our group, as well as our industrial partners to
create small mixed-initiative database access applications (e.g.,
schedule information, music queries, stock quotes).

In order to allow developers to test out their systems, we
have set up a centralized telephone access line, which develop-
ers can use to access their deployed domains. In addition, we
have provided a local-audio setup so that those developers with
access to theGALAXY code distribution can run their domains
on their own machines independently of any MIT hardware.

6. Ongoing and Future Activities

There are many ongoing and future activities which will im-
prove the SPEECHBUILDER infrastructure. For example, in or-
der to be able to handle more complicated schema for informa-
tion access, we plan to introduce the ability to access multiple
intersecting database tables from one domain. Currently, all
database cells are treated as strings, but in the future we plan
to implement functionality for handling Boolean and numerical
values as well.

Although we have created an initial database query dia-
logue manager, we plan to continue to add features which will
provide the developer more control for their particular applica-
tion. A related area of future research will be to improve the
current communication protocol for non-database applications.

In areas of speech recognition and understanding, we plan
to incorporate our recent work in confidence scoring [11]. In the
longer term we would like to introduce unsupervised training of
acoustic and linguistic models. Currently, developers can only
upload transcriptions, which are used as training data for these
components.

The current configuration of the system defaults to using
a commercial speech synthesizer. We would like to provide a
facility to developers whereby they can configure a simple con-
catenative speech synthesizer [12].

The work we have done thus far has been restricted to
American English. However, as we have ongoing research
efforts in multilingual conversational systems (e.g., Japanese,
Mandarin Chinese, and Spanish), we have begun to modify the
SPEECHBUILDER interface so that multilingual systems can be
configured as well.

The systems developed thus far have been prototypes that
have not been rigorously evaluated. In order to demonstrate
the usefulness of the currently deployed architecture, we plan
to configure a weather information domain within SPEECH-
BUILDER, and evaluate at least the speech recognition and
understanding components on our standard test sets [1]. By
demonstrating at least compatible performance with our manu-
ally created systems, we hope to show the potential for creating
robust, yet rapidly configurable, spoken dialogue systems.

7. Summary
This paper has provided an overview of our efforts to facilitate
the creation of mixed-initiative spoken dialogue systems. If suc-
cessful, we believe this research will benefit others by allowing
people interested in spoken dialogue systems to rapidly con-
figure applications for their particular interests. We have suc-
cessfully deployed two distinct configurations of the SPEECH-
BUILDER utility which connect to applications located on a re-
mote web-based server, or to a local database. Several prototype
systems have been created with this utility, which are currently
in active use. In the near future, we hope to extend the current
framework so as to allow for the creation of more complex and
powerful spoken dialogue systems.

8. Acknowledgements
Many people in the SLS group contributed to this work, includ-
ing Issam Bazzi, Scott Cyphers, Ed Filisko, TJ Hazen, Lee Het-
herington, Jef Pearlman, Joe Polifroni, Stephanie Seneff, Chao
Wang and Jon Yi.

9. References
[1] V. Zue et al., “JUPITER: A telephone-based conversational

interface for weather information,”IEEE Trans. Speech
and Audio Proc., 8(1), 2000.

[2] S. Seneff and J. Polifroni, “Dialogue management in
the MERCURY flight reservation system,”Proc. ANLP-
NAACL 2000, Satellite Workshop, Seattle, 2000.

[3] S. Sutton, et al., “Universal Speech Tools: The CSLU
Toolkit,” Proc. ICSLP, Sydney, 1998.

[4] S. Seneff, R. Lau, and J. Polifroni, “Organization, com-
munication, and control in theGALAXY -II conversational
system,”Proc. Eurospeech, Budapest, 1999.

[5] J. Pearlman, “SLS-LITE: Enabling Spoken Language
Systems Design for Non-Experts,” M.Eng. Thesis, MIT,
Cambridge, 2000.

[6] J. Glass, T. Hazen, and L. Hetherington, “Real-Time
Telephone-Based Speech Recognition in theJUPITERDo-
main,” Proc. ICASSP,Seattle, 1999.

[7] I. Bazzi and J. Glass, “Modeling out-of-vocabulary words
for robust speech recognition,”Proc. ICSLP, Beijing,
2000.

[8] A. Black, K. Lenzo and V. Pagel, “Issues in building gen-
eral letter to sound rules,”ESCA Speech Synthesis Work-
shop, Jenolan Caves, 1998.

[9] S.Seneff, “TINA: A natural language system for spoken
language applications,”Computational Linguistics, 18(1),
1992.

[10] L. Baptist and S. Seneff, “GENESISII: A versatile system
for language generation in conversational system applica-
tions,” Proc. ICSLP, Beijing, 2000.

[11] T. Hazen, T. Burianek, J. Polifroni, and S. Seneff, “Recog-
nition confidence scoring for use in speech understanding
systems,”Proc. ISCA ASR Workshop, Paris, 2000.

[12] J. Yi, J. Glass, and L. Hetherington, “A flexible, scalable
finite-state transducer architecture for corpus-based con-
catenative speech synthesis,”Proc. ICSLP,Beijing, 2000.

4


