
Improving the Java Memory Model Using CRF

Computation Structures Group Memo 428

November 15, 1999

Jan-Willem Maessen, Arvind, and Xiaowei Shen

Submitted to PLDI 2000, Vancouver, BC. This paper describes research done at

the Laboratory for Computer Science of the Massachusetts Institute of Technology.

Funding for this work is provided in part by the Advanced Research Projects Agency

of the Department of Defense under the O�ce of Naval Research contract N00014-

92-J-1310 and Ft Huachuca contract DABT63-95-C-0150.

Improving the Java Memory Model Using CRF

Jan-Willem Maessen, Arvind, and Xiaowei Shen�

Abstract

We describe an alternative memory semantics for Java programs using an enriched version

of the Commit/Reconcile/Fence (CRF) memory model [SAR99]. We need to enrich CRF with

semantics for Java's monitor-style locking, and with an instruction to mark cached data which

will never change so that we can give semantics for �nal slots. With these enrichments, we

give an instruction-by-instruction translation of Java memory operations into CRF operations.

The resulting Java memory semantics allow a number of optimizations such as load reordering

that are currently prohibited. Using the translation, we develop a simple thread-local algebraic

semantics for Java so that optimizations can be expressed at the source or bytecode level.

Finally, we show how the given semantics can be applied to give a simple dependency analysis

algorithm for Java.

1 Introduction

Java is the �rst widely-accepted computer language to contain language-level support for multi-

threaded programs running on multiple processors. Java objects are shared between all threads;

thus, reads and writes performed in one thread must be visible in another thread. Thus, like

any multithreaded language Java requires a memory model, which explains the behavior of objects

which are read and written by multiple threads. In this paper we present a new semantics for Java

memory operations in terms of an enriched version of the Commit/Reconcile/Fence (CRF) memory

model. This semantics is both simpler and more formal than the current Java semantics. At the

same time, it retains a constructive, program-like
avor, describing rather than prescribing program

behavior. Reordering of operations is captured compactly in a reordering table. We enrich CRF by

adding monitor-like locks and allowing memory to be frozen to capture the write-once semantics

of �nal �elds. From the enriched CRF semantics we obtain a high-level algebraic semantics which

captures the legal reorderings of instructions within a single thread. Java can be compiled e�-

ciently by referring to the algebraic semantics or by representing CRF operations. Side conditions

on reordering correspond to compiler analyses such as escape analysis, alias analysis, and pointer

analysis. This is the �rst detailed presentation of compilation using CRF.

The problems with the existing Java memory model fall into three broad categories. First,

the memory model given in Chapter 17 of the Java Language Speci�cation [GJS96] is di�cult

to understand. It views the operation of memory in three stages. The instruction stream acts

on thread-local memory (cache), a main memory holds persistent state, and a bu�er holds data

moving between cache and main memory. By placing the bu�er between cache and main memory,

it becomes di�cult to reason about the ordering of operations at either end of the bu�er. In the

�[jmaessen,arvind,xwshen]@lcs.mit.edu. This paper describes research done at the Laboratory for Computer

Science of the Massachusetts Institute of Technology. Funding for this work is provided in part by the Advanced

Research Projects Agency of the Department of Defense under the O�ce of Naval Research contract N00014-92-J-1310

and Ft Huachuca contract DABT63-95-C-0150. Submitted to PLDI 2000, Vancouver, BC

1

CRF model we instead bu�er the instruction stream. We then reason explicitly about the order in

which bu�ered instructions act on the cache. We translate every Java memory operation into one

or more CRF instructions.

The new mapping from Java to CRF permits optimizations prohibited by the current Java

memory model. The current model requires what Pugh [Pug99] refers to as coherence (in all

examples, memory cells are assumed to initially contain zero or null, and no extraneous writes

occur):

Thread 1 Thread 2

v = p.f;

w = p.f;

x = p.f;

p.f = 2;

Java requires that if we observe w=2 then x=2. Consider this source code:

v = p.f;

w = q.f;

x = p.f;

If p = q at run time, the compiler is forbidden from performing fetch elimination and having

x = v, as the above example shows. The memory model we give in this paper permits loads to

be re-ordered without recourse to alias analysis and as such allows this optimization. This change

re
ects current practice (reported as Bug #4242244 in Sun's bug parade).

A more subtle and pernicious problem is that certain reorderings which might otherwise be

legal cannot be expressed at the source or bytecode level in Java. Pugh [Pug99] gives the following

example of a seemingly innocuous reordering which changes the underlying memory semantics (the

right-hand side cannot in this case actually be expressed legally in Java, but describes the order of

operations on main memory):

u = q.y;

v = p.x;

w = p.x;

p.x = 42;

)

v = p.x;

w = p.x;

p.x = 42;

u = q.y;

v = p.x;

u = q.y;

w = p.x;

p.x = 42;

6)

v = p.x;

w = p.x;

p.x = 42;

u = q.y;

Simply exchanging the unrelated assignments u and v prevents further code motion of assignment

u. In the CRF model, because operation ordering is resolved at the instruction level we can always

express legal instruction reorderings directly in code. The algebraic semantics we develop permits

such reasoning to be extended to the source language and bytecode levels.

The current memory model for Java does not provide memory coherence semantics for �nal

locations. The Java language provides four di�erent sorts of memory locations (note that the

Java language speci�cation refers to most memory locations as variables). Variables declared as

volatile can be read and written in order without locking. Variables declared as final can be

written at most once, in the object's constructor, and then read many times. Other variables fall

under Java's default semantics, and we refer to these as regular memory locations. Finally, every

Java object has an associated monitor, which can be used to enforce mutual exclusion.

2

The semantics of �nal �elds cannot be captured in the CRF translation without introducing

a new operation to declare that a �eld will not change. Moreover, keeping the contents of �nal

locations themselves coherent isn't enough. The String Problem provides a remarkable case in

point. Consider the following pared-down implementation of Java.Lang.String:

public final class MyString {

private final theCharacters;

public String(char [] value) {

char [] internalValue = value.clone();

theCharacters = internalValue;

}

etc.

}

How do we guarantee that the call to value.clone() �nishes all its writes before another thread

looks at the contents of theCharacters? Writers must synchronize before a �eld may be read

remotely, and readers must synchronize before performing the �rst read of a �nal �eld. If the

copy has not completed, a partially-initialized string could be seen|a big security problem when

strings are used for naming internal state. In the current model, we must synchronize every single

access to the contents of theCharacters. This leads to unacceptable overhead, especially given the

pervasiveness of strings used for internal naming. We instead give a semantics which guarantees

that the contents of theCharacters will be up to date as of initialization.

In an e�ort to keep the memory model as permissive as possible we make use of data-dependent

memory synchronization to solve the string problem. This permissiveness is essential to obtaining

an implementation where only the object involved in the �nal store requires synchronization. This

result is of broad interest, as many systems contain a large body of data which is written at most

once|for example, object metadata in Java, or data structures in purely-functional programming

languages such as Concurrent ML [Rep99].

There are a number of di�erent declarations which a�ect the visibility of variables in di�erent

parts of a Java program. In this paper we address the behavior of the memory itself, and not issues

of naming or scoping, so we do not distinguish between private, public, and package variables, nor

between class (static) variables and instance variables. All of these obey the same basic underlying

memory semantics. We will be concerned about the state of the object pointed to by an object

reference whenever that reference is loaded or stored. We therefore give simpli�ed translations for

memory operations on scalar types.

2 Overview of the Memory Model

A brief overview of the proposed Java memory model will make the semantics in the paper clear.

At a high level there are three kinds of loads and stores in the Java language: Load and Store

for regular locations, LoadV and StoreV for volatile locations, and LoadF and StoreF for �nal

locations. We indicate scalar operations with a subscript S. The correspondence between Java

constructs and these abstract operations is given in Figure 2. Note the notation: We use o and p

to stand for object references, a and b to stand for addresses, m and n to stand for scalars, v and

w to stand for arbitrary values (scalars or object references), i to stand for an array index, and

r to stand for the result of an instruction. We formalize the model by translating Java memory

operations into an enriched version of CRF. In doing so, we try to be as permissive as possible,

giving the implementation more
exibility while providing these guarantees to the programmer:

3

Storage Class Source Bytecode Operation

regular int x = o.n; [i,l,f,d]load LoadS
regular Object p = o.q; aload Load

regular o.n = 5; [i,l,f,d]store StoreS
regular o.q = (Object) p; astore Store

volatile int x = o.n; [i,l,f,d]load LoadVS

volatile Object p = o.q; aload LoadV

volatile o.n = 5; [i,l,f,d]store StoreVS

volatile o.q = (Object) p; astore StoreV

final int x = o.n; [i,l,f,d]load LoadFS
final Object p = o.q; aload LoadF

final o.n = 5; [i,l,f,d]store StoreFS
final o.q = (Object) p; astore StoreF

int x = a[i]; [i,l,f,d]aload LoadS
Object p = a[i]; aaload Load

a[i] = 5; [i,l,f,d]astore StoreS
a[i] = (Object) p; aastore Store

Figure 1: Mapping from Java byte code operations to memory operations

Volatile loads and stores are sequentially consistent. They may not be reordered in any

way with respect to one another.

It is always safe to change any �eld's storage class to volatile. To ensure that a regular

�eld may be made volatile without a�ecting existing code, volatile �elds obey the same locking

semantics as regular �elds.

Regular loads and stores must be properly synchronized. No operation after a lock

may be moved before a lock, and no operation before an unlock may be moved after an unlock.

This means that Java code must synchronize on a shared monitor in order to access shared �elds

safely.

Final loads are considered constant. This will be true anyhow if �nal �elds are properly

initialized before they escape a thread. This assumption permits aggressive re-ordering and fetch

elimination of �nal loads.

Final and Volatile �elds provide initialization safety. We ensure the data being read is

current before every volatile load and before the �rst �nal load from a particular address in a given

thread.

Final and Volatile �elds snapshot their contents. If such a �eld holds a reference, then

the object being referenced must be up to date as of the time the �eld is written. This is the

only exception to the synchronization requirement for regular �elds. This allows us to capture

ordinary mutable data in a consistent fashion, allowing us to implement MyString as described

above. However, we only guarantee this for the object pointed at, not for any objects it may point

to|the stronger guarantee is hard to reason about and has dubious bene�t.

No need for prescient stores. Prescient stores are used in Java primarily to capture reorder-

ing of writes in compiler or processor. Speculation is captured using reordering rules. Arbitrary

processor-level control speculation is permitted by assuming an oracle which correctly predicts

the outcome of every branch; any reordering permitted under this assumption is allowed by our

semantics. We do not address the e�ects of value speculation in this paper.

4

3 The CRF model

CRF is intended for architects and compiler writers. It is de�ned by giving precise semantics to

the memory instructions so that every CRF program has a well-de�ned operational behavior. We

use these semantics to derive source-level compiler optimizations. CRF memory operations act on

a cache; each Java thread has its own cache, which is initially a copy of the cache of the thread

which started it. We decompose conventional Load and Store instructions into some �ner grain

instructions. In CRF, a Load becomes a Loadl (load-local) preceded by a Reconcile, and a Store

becomes a Storel (store-local) followed by a Commit. The Commit and Reconcile instructions

ensure that the data produced by one processor can be observed by another processor whenever

necessary. This �ne-grained control over memory consistency will allow us to develop a simple, yet

precise, memory semantics for Java.

We formalize the CRF model by imagining the code as a sequence of pending memory opera-

tions, each labeled with a unique result tag r. We separate instructions with semicolon, which is

associative (we can also glue groups of instructions together with semicolon):

r1 = Storel a, 5; r2 = Loadl a

We choose this representation rather than using Java source code or byte code because we want to

give rules which re-order memory operations|conceptually quite simple, but very complicated to

describe if those memory operations involve manipulating a stack.

3.1 Rewriting semantics

Loads and stores are local, acting purely on the cache:

(r = Storel a,v;instructions, completions, cache=[a := �; s]))
(instructions, r =

p
/ completions, cache=[a := v ;Dirty])

(r = Loadl a; instructions, completions, cache=[a := v ; s]))
(instructions, r = v / completions, cache=[a := v ; s])

Note the notation: Each thread consists of a sequence of pending instructions, a group of completed

instructions, and a cache which maps addresses to values tagged with a state of either Clean, Dirty,

Locked, or Frozen. The �rst line describes a state where the next instruction is a Storel of value

v to address a and the cache contains a mapping for a whose cache state is s (and whose value is

irrelevant, since it is discarded). If this is the case we can write the result into the cache, changing

the value stored to v and marking the entry as dirty. The Storel is marked as done using a tick

(
p
). We separate completed instructions and entries in the cache with a slash (/)|their exact

arrangement doesn't matter, and we consider the simplest order we can.

In order to implement cache coherence, we must have some way of moving values to and from

main memory and between threads.

(instructions, completions, cache) / threads, memory=[a := v]

where cache contains no mapping for a)
(instructions, completions, cache =[a := v ;Clean]) / threads, memory=[a := v]

Here we see an entire system, which contains multiple threads and a shared global memory. A

thread can at any time cache an entry contained in global memory if it has not done so already.

The state of main memory is needed only for these coherence operations|instruction execution

happens purely locally within a thread.

5

(instructions, completions, cache =[a := v ;Dirty]) / threads, memory=[a := �])
(instructions, completions, cache =[a := v ;Clean]) / threads, memory=[a := v]

(instructions, completions, cache) / threads, memory=[a := 0]

where cache contains no mapping for a)
(instructions, completions, cache =[a := 0;Locked]) / threads, memory

(instructions, completions, cache =[a := 0;Locked]) / threads, memory

where cache contains no mapping for a)
(instructions, completions, cache) / threads, memory=[a := 0]

(instructions, completions, cache=[a := v ; s])
where s is Clean or Frozen)

(instructions, completions, cache)

These rules are referred to as background operations because they can happen at any time irrespec-

tive of the instructions in any thread. To ensure that coherence operations complete, we use the

thread-level operations Commit and Reconcile:

(r = Commit a; instructions, completions, cache)

where a is not in cache, or a is Clean)
(instructions, r =

p
/ completions, cache)

(r = Reconcile a;instructions, completions, cache)

where a is not in cache or a is Dirty or Frozen)
(instructions, r =

p
/ completions, cache)

Commit ensures the results of a write reach main memory. Reconcile ensures that the cache is

refreshed with new data before a read. These behaviors are re
ected in di�erent reordering rules

for Commit and Reconcile. Note that these instructions simply block and wait for the background

rules to do the real work of moving data between cache and memory. Note also that real systems

use much more sophisticated cache coherence protocols, and in practice these operations will not

oblige a processor either to suspend or to
ush entries from its cache.

We augment CRF with locking operations designed to implement Java's monitor-style synchro-

nization. Lock and Unlock are the only atomic memory operations, and as such require Locked

access to their address (and the corresponding coherence operations above). Locks contain a count

of the number of times the owning thread has locked the lock.

(r = Lock l; instructions, completions, cache=[l := n;Locked]))
(instructions, r = n / completions, cache=[l := n+ 1;Locked])

(r = Unlock l;instructions, completions, cache=[l := n+ 1;Locked]))
(instructions, r = n / completions, cache=[l := n;Locked])

Note that we rely on Java's type safety to ensure that a location is the target of a Lock instruction

if and only if it is actually a monitor. There are therefore no concerns about reading and writing

locked locations.

We need some way to declare that a location's value should remain invariant. We thus add a

Frozen cache state, which declares that a memory location should not change and can therefore

remain in the cache inde�nitely. A Freeze operation marks a cache line as Frozen:

6

2nd) Loadl Storel Lock Unlock Freeze Commit Reconcile Fencer� Fencew�
1st +
Loadl a a a a b
Storel a a a
Lock a a b b
Unlock a a b b
Freeze

Commit a b
Reconcile a
Fence�r c c c
Fence�w c c c

a: Addresses must not match
b: Address of 1st instr must not match pre-address of fence

c: Address of 2nd instr must not match post-address of 1st instr

Figure 2: Reordering table for extended CRF. Blank entries may always be reordered.

(r = Freeze a;instructions, completions, cache=[a := v ;�]))
(instructions, r =

p
/ completions, cache=[a := v ;Frozen])

3.2 Reordering

Much of the power of the CRF model comes from the ability to reorder instructions (provided

we respect data dependencies). For our purposes this reordering captures a mix of both compiler

optimizations and architectural speculation and reordering. Fine-grained Fence instructions enforce

ordering if needed. The Fence instruction itself doesn't a�ect memory state when it executes:

(r = Fence a,b;instructions, completions, cache))
(instructions, r =

p
/ completions, cache)

Each memory fence has a pair of arguments, a pre-address and a post-address, and imposes

an ordering constraint between memory operations involving the pre- and post- addresses. For

example, Fencerw a, b fences preceding reads on address a and succeeding writes on address b.

Note that a Fencew� instruction imposes ordering constraints on preceding Commit instructions

instead of Storel instructions; it makes little sense to ensure a Storel is completed if it is not followed

by a Commit. Similarly, a Fence�r instruction imposes ordering constraints on following Reconcile

instructions instead of Loadl instructions.

Reordering is speci�ed by referring to the reordering table in Figure 2. Memory access instruc-

tions can be reordered if they access di�erent addresses or if they are both Loadl instructions.

Memory rendezvous instructions (Commit and Reconcile) can always be swapped. Memory fence

instructions can always be swapped. The underlying rationale is to allow maximum reordering

exibility for both compiler and architecture.

3.3 Machine Mapping

The CRF model isolates compiler writers from the plethora of microprocessors by providing an

implementation-independent representation of memory coherency which is more general than any

7

particular implementation. Extra Commit, Reconcile, and Fence operations in the �nal program

will constrain its execution, but they will not render it illegal. The coarse-grained memory fence

provided by most modern architectures is both a blessing and a curse: a blessing because it can

encompass many �ner-grained operations in one, a curse because it is far more expensive than most

memory operations.

For modern microprocessors, the Loadl and Storel can be translated into normal Load and

Store instructions. The load and store instructions of all current machines implicitly Reconcile

and Commit, so explicit Reconcile and Commit operations can simply be eliminated. To run CRF

programs on a sequentially consistent machine, we eliminate all fences since memory accesses are

executed strictly in-order. To run CRF programs on a machine that supports Sparc's RMO model,

we need to translate fences into appropriate memory barrier (Membar) instructions.

Some processor architecture speci�cations, such as Alpha and PowerPC, allow non-atomic store

operations. This means two store operations can be observed in di�erent orders by di�erent threads,

even if all reads are separated by fences. For simplicity, the CRF model does not permit this. We

have de�ned G-CRF [She99], a generalized version of CRF that allows the semantic e�ect of store

operations to the same address to be observed in di�erent orders by di�erent processors or threads

even though the load operations used in the observation are performed in-order. The mapping from

G-CRF to architectures with non-atomic stores remains straightforward.

We can use G-CRF as the underlying memory model to de�ne Java's memory model; the trans-

lation from Java remains unchanged. Indeed, this change will have no e�ect on the optimizations

described in this paper. Thus, although G-CRF relaxes the Java memory model, there is no clear

advantage to the compiler writer. We therefore restrict our attention to CRF in this paper.

4 Translating Java into CRF

Each of the Java memory operations has a straightforward static translation into CRF. The trans-

lation is designed to be used by a compiler, or by a Java programmer reasoning about program

behavior. For clarity, we introduce versions of the Commit, Reconcile, and Fence instructions

which act on multiple addresses at once. A complete listing of the CRF instructions used in the

translation and their purposes can be found in Figure 3. We use these complex coherence opera-

tions for two reasons: First, they yield the most permissive possible semantics (by avoiding global

synchronization of all of memory); we are particularly keen to eliminate accidental synchronization

between unrelated objects. Second, it is possible for a compiler to reason clearly and simply about

the addresses involved in these derived operations, allowing us to choose a good instruction order-

ing statically. While we could represent these barriers precisely at run time, doing so would be

expensive; moreover, current architectures do not support �ne-grained synchronization. Generous

reordering permits many �ne-grained barriers to be consolidated into a few global ones.

4.1 Regular memory

CRF's �ne-grained memory operations nicely express the semantics of regular memory locations,

which ordinarily require locking for coherence. We synchronize on both volatile and regular loca-

tions during locking so that we can safely change a regular location into a volatile location without

changing the behavior of a program. Because regular locations are release consistent, loads and

stores are purely local operations; consistency operations need occur only when we actually lock

and unlock an object:

8

~p The non-lock �elds in the object pointed to by p

�V All volatile locations

�VR All volatile and regular locations

�VRL All non-�nal locations (volatile, regular, and lock)

v = Loadl a; Load v from a locally

Storel a,v; Store v into a locally

Commit a; Commit StoreF to a

Reconcile a; Reconcile before Loadl a

Freeze a; Freeze contents of a in cache

Commit ~p; Commit writes, if any, to �elds in p

Fenceww ~p, a; Complete Commit ~p before allowing write to a

Fencerw �V,a; Complete last volatile Loadl before allowing Storel to a

Fenceww �V,a; Complete last volatile Commit before allowing Storel to a

Fencerr �V,a; Complete last volatile Loadl before allowing Reconcile a

Fencewr �V,a; Complete last volatile Commit before allowing Reconcile a

Lock l; Monitor-style lock

Unlock l; Monitor-style unlock

Reconcile �VR; Reconcile all non-�nal storage

Commit �VR; Commit all non-�nal storage

Fencewr l, �VRL; Wait for Lock l before allowing locks, unlocks or Reconcile �VR
Fenceww l, �VRL; Wait for Lock l before allowing locks, unlocks or writes to non-�nals

Fenceww �VRL, l; Wait for locking and Commit �VR before allowing Unlock l

Fencerw �VRL, l; Wait for locking and non-�nal reads before allowing Unlock l

Figure 3: Address groups and CRF instructions used in translation of Java operations.

Store a,p � Fenceww ~p , a;

Storel a,p

p = Load a � p = Loadl a

StoreS a,n � Storel a,n

n = LoadS a � n = Loadl a

Enter l � Lock l;

Fencewr l, �VRL;
Fenceww l, �VRL;
Reconcile �VR

Exit l � Commit �VR;
Fenceww �VRL, l;
Fencerw �VRL, l;
Unlock l

The Fenceww in the translation of Store guarantees initialization safety|writes to �nal and volatile

�elds pointed to by p will complete before the �eld is written, so that if a is later read in another

thread those �elds will be up to date. The fence does not a�ect regular �elds because Load does

not actually reconcile its result.

9

4.2 Final �elds

The semantics of �nal �elds require explanation. We must ensure that an object reached through a

�nal �eld is up to date as of the time the �eld is written (for example, in MyString the contents of the

array referred to by theCharacters). Note that we need to perform mirror-image synchronization

at the reader and the writer; if either synchronization is omitted the memory order is weakened

and we lose this guarantee. We do this using operations on ~p:

StoreF a,p � Commit ~p;
Fenceww ~p , a;

Storel a,p;

Commit a;

Freeze a;

Reconcile ~p
p = LoadF a � Reconcile a;

p = Loadl a;

Freeze a;

Reconcile ~p
StoreFS a,n � Storel a,n;

Commit a;

Freeze a

n = LoadFS a � Reconcile a;

n = Loadl a;

Freeze a

Note the e�ect of Freeze a when p1 = LoadF a is followed by p2 = LoadF a and we move the

Freeze a as far down in instruction order as possible, eliminating Reconcile a:

Reconcile a;

p1 = Loadl a;

Freeze a;

Reconcile ~p1;
Reconcile a;

p2 = Loadl a;

Freeze a;

Reconcile ~p2

�

Reconcile a;

p1 = Loadl a;

p2 = Loadl a;

Reconcile ~p1;
Reconcile ~p2;
Freeze a;

Freeze a

�

Reconcile a;

p1 = Loadl a;

Reconcile ~p1;
Freeze a;

p2 = p1

Replacing p2 = Loadl a by p1 = p2 in the above yields a legal behavior, and thus LoadF operations

can be combined. The remaining redundant operations then combine trivially. Similarly, when we

follow StoreF a,p1 by p2 = LoadF a:

Commit ~p1;
Fenceww ~p1 , a;
Storel a,p1;

Commit a;

Freeze a;

Reconcile ~p1;
Reconcile a;

p2 = Loadl a;

Freeze a;

Reconcile ~p2

�

Commit ~p1;
Fenceww ~p1 , a;
Storel a,p1;

p2 = Loadl a;

Commit a;

Reconcile ~p1;
Reconcile ~p2;
Freeze a;

Freeze a

�

Commit ~p1;
Fenceww ~p1 , a;
Storel a,p1;

Commit a;

Reconcile ~p1;
Freeze a;

p2 = p1

10

Again, we know that we can fetch-eliminate p2 = Loadl a. The redundant synchronization then

disappears, and once again we have fetch-eliminated the LoadF. Note that we must Reconcile ~p
during a StoreF to allow the fetch elimination to work! Because there is no matching Commit in

LoadF, this will have no direct e�ect on the interaction between LoadF and StoreF. It does leave a

small but undesirable wart on our semantics: writing a shared object to an unshared �nal �eld will

make the object coherent with respect to main memory. However, the reconcile can be reordered

much earlier in the instruction stream, so this can't meaningfully be exploited to synchronize shared

objects.

4.3 Volatile memory

Operations on volatile �elds cannot be reordered at all. This is quite easy to capture by adding

fences before every volatile memory operation separating it from other volatile operations. The

operations on ~p ensure that we can safely replace a �nal �eld with a volatile �eld without a�ecting

pre-existing program behavior.

StoreV a,p � Commit ~p;
Fenceww ~p, a;
Fencerw �V,a;
Fencerw �V,a;
Storel a,p;

Commit a;

Reconcile ~p
p = LoadV a � Fencerr �V,a;

Fencewr �V,a;
Reconcile a;

p = Loadl a;

Reconcile ~p
StoreVS a,n � Fencerw �V,a;

Fenceww �V,a;
Storel a,n;

Commit a

n = LoadVS a � Fencerr �V,a;
Fencewr �V,a;
Reconcile a;

n = Loadl a

5 Compilation

For the purposes of compilation, it is useful to have a high-level, static, purely local notion of

how memory operations behave within a thread. We can use the reordering table for enriched CRF

to prove reordering properties for our translations, leading to just such a semantics. For example,

consider reordering StoreF a,p and q = LoadV b. The only nontrivial reorderings in the translation

involve a and b; we are saved by Java's type system, which tells us that volatile and �nal storage are

disjoint and thus a 6= b. A similar argument for other pairs of operations yields the reordering table

in Figure 4. A Java-to-bytecode compiler can reorder instructions according to the table without

resorting to complex reasoning about the program's memory behavior (Pugh's example, given in

the Introduction, shows this is not possible in the current Java memory model).

11

2nd) Load Store LoadV StoreV LoadF StoreF Enter Exit

1st+
Load a no

Store a a b b no

LoadV no no c no

StoreV b no no b no

LoadF c c c a
StoreF b b a a ^ b
Enter no no no no no no

Exit no no

a: Addresses must not match
b: Unless the following store is a reference to the object which is stored to by the �rst store,

e.g. Store p.f,v; StoreF a,v is disallowed.

c: When a preceding LoadF or StoreF to the same address exists.

Figure 4: Reordering table for algebraic semantics. Blank entries may always be reordered.

Condition b guarantees that objects are completely initialized before references to those objects
are stored in �elds visible to other processors. It corresponds to the ~p operations on stores. Con-

dition c corresponds to the motion of Freeze operations through the program code, and can be

formalized like so:

LoadF/StoreF a;

instrs;

o = LoadF a;

LoadF p.w

�

LoadF/StoreF a;

instrs;

LoadF p.w;

o = LoadF a

5.1 Eliminating operations

We can eliminate certain operations if doing so is consistent with some execution of a thread. This

will reduce the possible program behaviors, but will not introduce any new behavior. For example,

we can eliminate a load operation which is preceded by a load or store to the same address, and

replace it with the value read or written|it is always legal to execute both instructions in quick

succession, possibly updating main memory as we go. The discussion of �nal �elds gave the proof

of this property for LoadF and StoreF.

5.2 Dependency Analysis

Most optimizations involving code motion require the construction of a dependency graph. Our

goal is to create a dependency graph with as few edges as possible, giving the compiler the greatest

possible leeway to reorder instructions. Constructing a dependency graph for either the algebraic

semantics or for low-level CRF is very simple. For every pair of instructions A and B, where
A initially occurs before B, we see if our reordering table permits A;B to be reordered to B;A.
If it does, no dependency exists between the instructions. If they cannot be reordered, we add a

dependency edge from A to B. The resulting graph is unique after all the edges that can be derived
by transitivity are removed. Figure 5 shows an example of applying this procedure. In practice, of

course, we can be more careful and avoid adding extra transitive edges to the graph.

12

(a)

Storel(x,1)

Commit(x)

Storel(y,2)

Reconcile(x)

Loadl(x)(c)

Storel(x,1)

Commit(x)

ww

Storel(y,2)

Reconcile(x)

Loadl(x)

Fence (x,y)

(b)

Storel(x,1);

Commit(x);

Storel(y,2);

Reconcile(x);

Loadl(x);

wwFence (x,y);

Commit(y);

Commit(y) Commit(y)

Figure 5: Partial Order of CRF Programs

While this dependency graph must be conservative, since not all information is known at compile

time, our side conditions correspond to well-known compiler analyses:

Type information and alias analysis can approximate condition a. Distinct �elds will never
share an address. Alias analysis can show that many remaining addresses are certainly di�erent.

Points-to analyses can determine which loads and stores might potentially refer to or be

referred to by a particular �nal �eld, approximating condition b. The same information allows us

to manipulate coherence operations on ~p in the underlying CRF.

Value propagation algorithms can be used to detect when a �nal �eld has already been read

by a particular thread, allowing us to enforce condition c. This also allows us to reason about

Freeze operations in the CRF encoding.

Inter-thread escape analysis [CGS+99, WR99] will reveal when an object is used entirely

within one thread. In this case, we can eliminate coherency operations on the object. Thus, local

�elds can ignore locking, and operations to local volatile �elds can be reordered.

An e�cient realization of the Java Memory Model on any modern architecture will require a

code generator which can coalesce memory barriers. Instruction selection based on a BURS-like

schema chooses instructions for groups of operations which are connected in the dependency graph.

A separate pre-pass can be used to allow barrier instructions to be coalesced. One simple way

to do this is to add dependencies between all barriers such that there is a single ordering to the

barriers which respects the original dependencies. A dependency-based code generator can then

do the actual coalescing. If our initial dependence graph has fewer edges, there will be greater

opportunity to choose a good ordering for the barriers.

6 Related Work

There are a large number of papers devoted to formalizing the semantics of Java and of the Java Vir-

tual Machine; the ultimate reference on the language, however, remains the o�cial Java Language

Speci�cation [GJS96] and the Java Virtual Machine Speci�cation [LY97]. Most e�orts to formalize

Java focus on the language's safety properties. There have been comparatively few attempts to

formalize Java's memory model. The problems of the Java memory model are characterized very

13

succinctly by Pugh [Pug99]. Others formalize these problems, and compare Java's properties to

those of extant memory models [GS97].

CRF is intended as a mechanism-oriented memory model which exposes both data replication

and instruction reordering at the ISA level [SAR99]. It is intended for architects and compiler

writers rather than for high-level parallel programming. The present paper is the �rst formal

attempt to map a high-level language into the CRF model. In doing so, we extend CRF with Lock,

Unlock, and Freeze. The Generalized CRF model, which eliminates causality, is presented in detail

elsewhere [She99].

Sequential consistency (SC) [Lam79] has been the dominant memory model in parallel comput-

ing for decades due to its simplicity. The desire to achieve higher performance has led to various

weaker memory models [AH90, AH93, GLL+90, GAG+92, GGH93, KCZ92, BZS93, GS93, GS98,

BFJ+96, FL98]. Release consistency [GLL+90, GGH93] is a good representative of programmer-

oriented memory models. It assumes that memory accesses to shared variables are guarded by

acquire and release operations and allows memory accesses between synchronizations to be per-

formed out-of-order and interleaved each other. The essence of release consistency is that memory

accesses before a release must be globally performed before the synchronization lock can be released.

Location consistency (LC) [GS93, GS98] is a memory model that is de�ned from the compiler's

point of view. It speci�es a partially ordered multiset for write and synchronization operations.

An ordering between two write operations is created if they are performed on the same processor,

while an ordering is created between a synchronization and a write operation if the processor that

performs the write operation also participates in the synchronization. For each read operation, a

value set is de�ned as the set of legal values that can be returned.

Some characteristics of memory semantics can be captured by either instruction reordering or

non-atomic store operations. This can be illustrated by the following example:

Thread 1 Thread 2 Thread 3 Thread 4

Store a,1 Store a,2 v1 = Load a; w1 = Load a;

v2 = Load a; w2 = Load a;

In this example, we might want to allow v1 = 1, v2 = 2, w1 = 2, and w2 = 1. Such a property allows

the two load instructions (in thread 3 or 4) to be reordered statically, when it may be unclear if

their addresses di�er. We use explicit instruction reordering to model this; load instructions can

always be reordered, even when they access the same address.

The same semantics can be modeled by requiring that memory instructions be executed in-order

but not requiring that stores occur atomically. Many compiler-oriented memory models such as

Location Consistency and DAG Consistency [BFJ+96]. The prescient stores in the original Java

memory model e�ectively use this strategy, allowing a store action to be reordered with respect to

a store instruction. While both methods can describe the same semantics, we feel that our method

is simpler because instruction reordering is natural to compiler writers.

7 Conclusion

We have simpli�ed our presentation of the Java memory model. Other translations yielding the

same model as described here are possible|for example, if every Storel is followed by a Commit

then we can do away with the Commit ~p instructions in StoreF and StoreV, and with the global

commit in the Exit code, without materially a�ecting our semantics. We chose this translation

to emphasize the symmetry of Commit and Reconcile operations and the locality of operations on

regular �elds.

14

As written, synchronization performs a global memory barrier even when the object being locked

is not actually shared and even when the lock is already held locally. We would like to be able to

totally eliminate unnecessary locking. Experiments show that this can reduce synchronization by

approximately 50% [CGS+99]. We can do this in our semantics by recording the owner of a lock

when it is locked (initially the creating thread). A memory barrier is only required if the ownership

of the lock changes. We omit the details of this translation for brevity.

We have not addressed exceptions. Java's strongly-ordered exception model has major in
uence

on compiled code; in many cases null pointer checks will require otherwise unconstrained memory

operations to be ordered. Our choice of memory model does not a�ect this decision. We suggest

that the Java compiler ignore memory ordering constraints arising due to exceptional control
ow.

Instead, a coarse-grain memory barrier can be used when an exception occurs.

The prescient stores in the original Java memory model render stores non-atomic. We instead

choose to represent instruction reordering explicitly. While both methods can describe the same

semantics, we feel that our method is simpler because instruction reordering is natural to compiler

writers. If there is a genuine need for non-atomic stores in the Java memory semantics, G-CRF

can be used. This will not change any of the optimizations discussed in this paper.

Using CRF as a formalism for reasoning about Java is proving useful. We now understand how

to enhance CRF so that we can reason about language-level constructs (such as write-once memory)

which have no architectural equivalent. Language-level memory operations translate straightfor-

wardly into CRF code. The resulting translation captures �ne-grained consistency constraints,

allowing a simple solution to the String Problem. Moreover, we have used the translation to de-

velop a high-level memory semantics which allows local reasoning about thread behavior and which

permits bytecode-level optimizations which are currently disallowed. This process is simpli�ed by a

semantics in which instruction reordering is a clear and fundamental part of the model. Finally, we

have shown that the memory model can be realized on current processors using familiar compilation

techniques.

Acknowledgments

Jan-Willem Maessen would like to thank Vivek Sarkar and the rest of the Jalape~no group at IBM,

who �rst got him interested in the problems with Java's memory model and in the connections

between memory model and compilation. Bill Pugh's talk at MIT and the discussions on the

JavaMemoryModel mailing list suggested much of the actual memory model given in this paper.

Marc Snir provided useful comments on a draft of the paper.

References

[AH90] Sarita V. Adve and Mark D. Hill. Weak Ordering { A New De�nition. In Proceedings of

the 17th International Symposium On Computer Architecture, pages 2{14, June 1990.

[AH93] Sarita V. Adve and Mark D. Hill. A Uni�ed Formalization of Four Shared-Memory

Models. IEEE Transactions on Parallel and Distributed Systems, June 1993.

[BFJ+96] Robert Blumofe, Matteo Frigo, Christopher Joerg, Charles Lsiserson, and Keith Ran-

dall. DAG-consistent distributed shared memory. In Proceedings of the 10th Interna-

tional Parallel Processing Symposium, April 1996.

15

[BZS93] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway Distributed Shared Memory

System. In Proceedings of the IEEE COMPCON, 1993.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam

Midki�. Escape analysis for java. In OOPSLA 1999 Conference Proceedings, October

1999.

[FL98] Matteo Frigo and Victor Luchangco. Computation-centric memory models. In Proceed-

ings of the 10th ACM Symposium on Parallel Algorithms and Architectures (SPAA),

June/July 1998.

[GAG+92] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessy, and Mark D.

Hill. Programming for Di�erent Memory Consistency Models. In Journal of Parallel

and Distributed Computing, pages 399{407, August 1992.

[GGH93] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Revision to "Memory Con-

sistency and Event Ordering in Scalable Shared-Memory Multiprocessors". Techni-

cal Report CSL-TR-93-568, Computer Systems Laboratory, Stanford University, April

1993.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. Addison-

Wesley, Menlo Park, CA, 1996.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,

and John Hennessy. Memory Consistency and Event Ordering in Scalable Shared-

memory Multiprocessors. In Proceedings of the 17th International Symposium on Com-

puter Architecture, pages 15{26, May 1990.

[GS93] Guang R. Gao and Vivek Sarkar. Location Consistency { Stepping Beyond the Barriers

of Memory Coherence and Serializability. Technical Memo 78, ACAPS Laboratory,

School of Computer Science, McGill University, December 1993.

[GS97] Alex Gontmakher and Assaf Schuster. Java consistency: Non-operational characteri-

zations for java memory behavior. Technion/CS Technical Report CS0922, Computer

Science Departement, Technion, November 1997.

[GS98] Guang R. Gao and Vivek Sarkar. Location Consistency { A New Memory Model and

Cache Coherence Protocol. Technical Memo 16, CAPSL Laboratory, Department of

Electrical and Computer Engineering, University of Delaware, February 1998.

[KCZ92] P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software

Distributed Shared Memory. In Proceedings of the 19th International Symposium On

Computer Architecture, pages 13{21, May 1992.

[Lam79] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690{691, September

1979.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-

Wesley, Menlo Park, CA, 1997.

16

[Pug99] William Pugh. Fixing the java memory model. In Proceedings of the ACM Java Grande

Conference, June 1999.

[Rep99] John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[SAR99] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-Reconcile & Fences (CRF): A

New Memory Model for Architects and Compiler Writers. In Proceedings of the 26th

International Symposium On Computer Architecture, Atlanta, Georgia, May 1999.

[She99] Xiaowei Shen. Design and Veri�cation of Adaptive Cache Coherence Protocols. PhD

thesis, Department of Electrical Engineering and Computer Science, Massachusetts In-

stitute of Technology, October 1999.

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape analysis for java

programs. In OOPSLA 1999 Conference Proceedings, October 1999.

17

