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Abstract

We present a new mechanism-oriented memory model
called Commit-Reconcile & Fences (CRF) and define it us-
ing algebraic rules. Many existing memory models can be
described as restricted versions of CRF. The model has been
designed so that it is both easy for architects to implement,
and stable enough to serve as a target machine interface
for compilers of high-level languages. The CRF model ex-
poses a semantic notion of caches (saches), and decomposes
load and store instructions into finer-grain operations. We
sketch how to integrate CRF into modern microprocessors
and outline an adaptive coherence protocol to implement
CRF in distributed shared-memory systems. CRF offers an
upward compatible way to design next generation computer
systems.

1. Loads and Stores: The CISC of Nineties

Caching and instruction reordering are ubiquitous fea-
tures of modern computer systems and are necessary to
achieve higher performance. For uniprocessor configura-
tions, these features are mostly transparent and exposed
only for some low-level memory-mapped input/output op-
erations. For multiprocessor configurations however, these
features are anything but transparent. Indeed, a whole area
of research has evolved around what view of memory should
be presented to the programmer, the compiler writer, and the
computer architect.

Every programming language has a memory model, re-
gardless of whether it is described explicitly or not (e.g.,
programmer-centric models [16, 5, 19]). It is the task of the
compiler to ensure that the semantics of a high-level pro-
gram is preserved when its compiled version is executed on
an architecture with a certain low-level memory model (e.g.,
architecture-centric models [25, 18, 26, 14]). The essence of
any memory model is the correspondence between each load

instruction and the store instruction that supplies the value
retrieved by the load. Unfortunately, at the architecture
level, memory access operations often have some sophisti-
cated implementation characteristics that make it difficult to
specify the resulting memory model precisely.

Our approach is to decompose the load and store instruc-
tions into finer-grain orthogonal operations and use them
to define the Commit-Reconcile & Fences (CRF) memory
model. The CRF model has a semantic notion of caches,
referred to as saches, which makes the operational behav-
ior of data replication to be part of the model. Both loads
and stores are performed directly on local saches and new
instructions are provided to move data between saches and
memory whenever necessary. The Commit instruction en-
sures that a modified value in the sache is written back to the
memory, while the Reconcile instruction ensures a stale
value is purged from the sache. CRF also provides fine-
grain fences to control the reordering of memory related
instructions. Thus, a normal load or store instruction can be
thought of as follows:

Load(a) � Reconcile(a); Loadl(a); Fence
Store(a,v) � Storel(a,v); Commit(a); Fence

where Loadl and Storel represent loading data from and
storing data to the local sache, respectively.

CRF is a mechanism-oriented memory model and in-
tended for architects and compiler writers rather than for
high-level parallel programming (see Figure 1). It is de-
fined by giving precise (algebraic) semantics to the memory
related instructions so that every CRF program has a well-
defined operational behavior. The CRF mechanisms give
architects great flexibility for efficient implementations, and
at the same time these mechanisms give compiler writers all
the control they need. A compiler can move around or even
eliminate some Commit, Reconcile and Fence operations
in a program.

There are many benefits to our approach. CRF permits
aggressive cache coherence protocols in distributed shared-
memory (DSM) systems because no operation explicitly
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Figure 1. CRF: A Memory Model for Architects
and Compiler Writers

or implicitly involves multiple saches. Furthermore, any
cache-coherence protocol for CRF is automatically a correct
protocol for all other memory models whose programs can
be transformed into CRF programs.

In addition, there is no need to distinguish between ordi-
nary variables and synchronization variables used as locks.
In fact, the choice and implementation of synchronization
mechanisms is an orthogonal issue. CRF mechanisms can
be incorporated in stages in future systems without loss of
compatibility with existing systems.

The salient features of CRF may be described as follows:

� It is easy to translate a variety of high-level program-
ming models into CRF. Translation of programs based
on models such as release consistency into CRF is
straightforward.

� Most existing multiprocessor systems can be inter-
preted as specific implementations of CRF, though
more efficient implementations are possible.

� In CRF, stores to each memory location are totally or-
dered so that they are always observed in the same
order by all the processors. This is a deliberate de-
sign choice to avoid semantic complications without
compromising implementation flexibility.

� The set of algebraic rules, that define all legal behaviors
according to the CRF model, can be used by architects
and compiler writers to design and verify the correct-
ness of their optimizations.

Paper organization: We briefly discuss existing memory
models in Section 2 before introducing our formalism in
Section 3. After presenting the CRF model in Section 4, we
discuss the relationship of CRF with some existing memory
models in Section 5. In Section 6, we sketch an adaptive
cache coherence protocol that implements CRF. Section 7
discusses the potential impact of CRF on microarchitectures,
and some conclusions follow in Section 8.

2. Weaker Memory Models

Sequential consistency (SC) has been the dominant mem-
ory model in parallel computing for decades due to its sim-
plicity [16] and is thus the standard against which other mod-
els must be compared. SC requires that memory accesses of
a program be performed in-order on each processor and be
atomic with respect to each other and is thus clearly at odds
with both instruction reordering and caching. Ingenious
solutions have been devised to keep both of these features
transparent so that at the high-level, a programmer assuming
SC cannot detect if and when the memory accesses are out-
of-order or non-atomic. For small scale parallel machines,
it is well understood how to preserve the access atomicity of
SC with cache coherence protocols, and recent advances in
the use of speculative execution permit reordering of loads
without destroying the sequentiality of SC.

The desire to achieve higher performance has led to var-
ious relaxed or weaker memory models [21, 12, 15, 8, 6].
Broadly speaking, weaker memory models weaken either
the sequentiality constraint or the atomicity constraint of
SC. The weak-ordering property allows certain memory ac-
cesses to be performed in a different order than the pro-
gram order unless explicit ordering constraints are speci-
fied. The weak-atomicity property exposes data replica-
tion by allowing store accesses to be performed in some
non-atomic fashion. An aggressive memory model can ac-
commodate some combination of both weak-ordering and
weak-atomicity properties.

2.1. Properly Synchronized Programs

It is common practice in parallel programming to use
locks to ensure that only one processor at a time can access a
shared variable (though in many programs it is perfectly safe
to read a shared variable without acquiring the lock). A data
race occurs when there are multiple concurrent accesses to a
shared variable, at least one of which is a write. Informally,
a properly synchronized program has no data races; races
are limited to acquiring locks.

Although it is generally undecidable if a program is prop-
erly synchronized, it is relatively easy for the programmer
to characterize each memory operation as ordinary or syn-
chronization access. Synchronization accesses can be fur-
ther classified as acquire and release operations, loop and
non-loop operations, and so on. Based on such classifi-
cations, the notions of data-race-free programs [2, 3] and
properly-labeled programs [10, 9] have been defined. In
each definition, conflicting ordinary accesses are separated
(ordered) by synchronization accesses. For properly syn-
chronized programs, SC behavior can be achieved on an
architecture with an appropriate weaker memory model [1].
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2.2. Models with Weak-Ordering

Modern microprocessors support memory models with
weak-ordering to hide latency for performance improve-
ment. Memory fences are provided at the programming
level to ensure proper ordering constraints between specific
memory accesses whenever necessary. Examples of mem-
ory fences include the Membar instruction in Sparc [26] and
the Sync instruction in PowerPC [18]. Synchronization in-
structions such as Test-&-Set and Swap often act as fences.
IBM 370’s conditional instructions have a fence-like effect,
as does PowerPC’s EIEIO instruction.

Different weak-ordering models allow memory accesses
to be reordered under different conditions. In Sparc, Total
Store Order (TSO) allows a load instruction to be performed
before outstanding store instructions complete, which vir-
tually models FIFO write-buffers. The Partial Store Order
(PSO) model further allows stores to be reordered, so that
stores to the same cache line can be merged in write-buffers.
Sparc-v9 defined Relaxed Memory Order (RMO) in which
loads and stores can be performed in arbitrary order, pro-
vided that the so-called self-consistency is preserved. In
each of these cases, the programmer must know the mem-
ory model of the underlying architecture so that when nec-
essary, he can insert appropriate instructions to ensure that
SC assumptions are not violated.

2.3. Models with Weak-Atomicity

Although weak-ordering models allow memory accesses
to be performed out-of-order, they still require each memory
access to be atomic with respect to other memory accesses.
The semantic effect of each store operation must be observ-
able by other processors in a lock-step. In the presence of
caches, some mechanism is needed to prevent other proces-
sors from observing stale values in their caches. This is
usually accomplished by invalidating all outstanding copies
of the address in other caches. Invalidation increases store
latencies and can cause dramatic performance degradation.
In the past, such delays have been tolerable in small SMP’s
using snoopy bus protocols, but this may not be so in future.

Release consistency (RC) allows non-atomic memory ac-
cesses since the execution of memory accesses between ac-
quire and release operations does not have to be visible im-
mediately to other processors [12, 17]. The essence of RC
is that memory accesses before a release must be globally
performed before the synchronization lock can be released.
Lazy release consistency (LRC) goes a step further; it allows
a synchronization lock to be released to another processor
even before previous memory accesses have been globally
performed, provided the semantic effect of those memory
accesses has become observable to the processor about to
acquire the lock [15]. Again it can be shown that properly

synchronized programs execute correctly under both RC and
LRC, giving more flexibility in implementations.

Weak memory models have often eluded precise defi-
nitions, a fact that causes complications when there is a
multi-level, non-uniform memory hierarchy with a mixture
of shared buses and networks.

3. Specifying a Memory Model

3.1. Program Order and Memory Models

Memory models are often defined based on the concept
of program order, which is an execution trace of memory
accesses. The program order has been defined in various
ways; the following definition from “The Sparc Architecture
Manual (Version 9)” is typical:

A program order execution trace is an execution
trace that begins with a specified initial instruction and
executes one instruction at a time in such a fashion that
all the semantic effects of each instruction take effect
before the next instruction is begun. The execution
trace this process generates is defined to be the program
order. ... Program order specifies a unique total order
for all memory transactions initiated by one processor.

We find such definitions defective on two counts. First, it
is not possible to define program order without first specify-
ing the memory model, because the memory model affects
the program order. The following example illustrates the
problem:

Processor 1 Processor 2
r = Load(a1); Store(a1,1);
Jz(r,L2); ...

L1: Store(a2,100); Store(a1,0);
Jz(r, L3);

L2: Store(a2,200);
Jz(r,L1);

L3: ...

Assume initially both memory locations a1 and a2 con-
tain value 0. What is the program order for processor 1 in
regards to the two stores at L1 and L2? If register r gets value
0 then L2 is executed before L1; otherwise L1 is executed
before L2. Since this depends on the value retrieved by the
load instruction, it cannot be determined without a memory
model. Program order is not a well-defined concept without
the inclusion of a memory model.

The second problem with the program order definition is
that, by insisting on executing one instruction at a time,many
legal and interesting memory behaviors cannot be observed.
Consider the following program:
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Processor 1 Processor 2
Store(a1,1); L: r2 = Load(a2);
r1 = Load(a1); Jz(r2,L);
Store(a2,r1); r = Load(a1);

Suppose initially locations a1 and a2 contain value 0.
Processor 1 eventually stores value 1 to location a2, while
processor 2 loops until the value of location a2 becomes non-
zero (i.e., 1). Let us assume that loads cannot be reordered
(or equivalently, the memory model does not allow loads
to be reordered). Is it possible for register r to get value
0? Whether r gets value 0 or 1 can affect the program
order on processor 2; just imagine the code of processor
1 from the previous example replaces the last instruction
of processor 2 here. Some memory models allow the two
stores on processor 1 to be reordered in spite of apparent
data dependencies. For example, register r1 can get value 1
before the store to location a1 is “globally performed” due to
the use of write-buffers. This cannot happen if instructions
are executed one at a time as dictated by the definition of
the program order.

Our way of defining memory models side-steps the pit-
falls associated with definitions based on program order.

3.2. Memory Model as an Input-Output Relation

The observable behavior of a program on a computer
is determined both by its processor microarchitecture (e.g.,
out-of-order and speculative execution) and the memory ar-
chitecture (e.g., memory, caches, cache-coherence proto-
cols). At an abstract level, it is useful to think of a computer
as having two types of subsystems – processor and mem-
ory. Each processor generates a stream of memory requests,
for which the memory produces a stream of replies. The
memory system behaves as an oracle that defines a value for
each load request generated during a program execution. A
memory model is the specification of such an oracle. For
parallel systems, memory models are invariably nondeter-
ministic, that is, for the same set of input streams a range of
behaviors are acceptable as output.

We will present memory models as a mathematical rela-
tion between processor request streams and memory reply
streams. A request stream consists of loads and stores, and
in weaker models, some special instructions like fences. We
assume processors attach a unique transaction tag to each
request and the memory system generates a corresponding
reply using the same transaction tag. The replies are not nec-
essarily generated in the same order in which the requests
are processed. In case of a load request, the reply contains
the value returned from the memory. For other types of re-
quests the reply simply contains an acknowledgment (Ack).
The order of requests in an input stream is significant and
represents the order imposed on the requests by the program
execution. There is no order on replies in the output stream.

Generally, many different sets of output streams represent
legal replies for the same set of input streams.

Our memory model definitions can be used to design
and verify cache coherence protocols and processor opti-
mizations. However, any issue regarding program behav-
ior requires both a processor model and a memory model
and is discussed in this paper only tangentially. (We have
discussed program behavior issues related to microarchi-
tectures with register renaming and speculative executions
elsewhere [22]).

In the rest of this section, we introduce our TRS formal-
ism and use it to model SC.

3.3. Term Rewriting Systems

We will use Term Rewriting Systems (TRS’s) to define
memory models. A TRS consists of a set of terms and a set
of rewriting rules. The terms represent system states and
the rules specify state transitions. The general structure of
rewriting rules is as follows:

s1 if p(s1)
! s2

where s1 and s2 are terms and p(s1) is an optional predicate
about s1.

A rule can be used to rewrite a term if its left-hand-side
pattern matches the term or one of its subterms, and the
corresponding predicate, if any, is true. If several rules are
applicable, then any one of them may be applied. If no rule is
applicable, then the term cannot be rewritten any further. A
rewriting strategy can be used to specify which rule among
the applicable rules should be applied at each rewriting step.

Notation: We use ‘[]’ as the meta notation in grammars to
separate disjuncts. It is important to distinguish between
variables and constants while pattern matching. A variable
matches any expression while a constant matches only itself.
We will follow the convention where variables and constants
are represented by identifiers that begin with a lower-case
and upper-case letter, respectively. Connectives such as ‘;’
are also constants. We use ‘�’ to represent the empty term
(e.g., an empty cache), and ‘-’ the wild-card term that can
match any term. We use ‘j’ as a connective to indicate
that ordering does not matter (i.e., ‘j’ is associative and
commutative).

3.4. Example: Sequential Consistency

As an example, we use a TRS to define SC. The system
is modeled as a memory and a set of sites (see Figure 2).
Each site contains a processor,a processor-to-memory buffer
(pmb) and a memory-to-processor buffer (mpb). A memory
request is a Load or Store instruction. SC can be defined
by the following rules:
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proc proc proc

memory

pmb pmb pmbmpb mpb mpb

SYS � Sys(MEM, SITES)
SITES � SITE [] SITE jSITES
SITE � Site(PMB, MPB, PROC)
PMB � � [] ht,REQi;PMB
MPB � � [] ht,REPijMPB
REQ � Load(a) [] Store(a,v)
REP � v [] Ack

Figure 2. Semantic Configuration of SC

SC-Load Rule
Sys(m, Site(ht,Load(a)i;pmb, mpb, p) j sites)

! Sys(m, Site(pmb, mpbjht,m[a]i, p) j sites)

SC-Store Rule
Sys(m, Site(ht,Store(a,v)i;pmb, mpb, p) j sites)

! Sys(m[a:=v], Site(pmb, mpbjht,Acki, p) j sites)

where m[a] refers to the value of memory location with
address a, and m[a:=v] represents memory m with location
a updated with value v. Since only the instruction at the front
of pmb can be executed, memory requests are processed in-
order on each processor. Memory accesses are semantically
atomic with respect to one another because there is no data
replication. Since the connective ‘ j ’ implies no ordering,
any site can be brought to the leftmost position in the site
group. Thus, if two processors intend to access the same
address, either can proceed.

The above two rules completely define all possible out-
comes for a given set of request streams for the SC model.
We will now show that, even without a processor model,
this definition can be used to decide the correctness of some
optimizations for microarchitectures.

3.5. Some Optimization Rules

Suppose each processor keeps outstanding instructions in
some buffers in-order. On a load, the processor checks the
buffer, and if the preceding instruction is a store to the same
address, the value of the store instruction is returned imme-
diately. Similarly, on a store, if the preceding instruction is
a store to the same address, then the preceding store instruc-
tion can be discarded without writing back to the memory.
The following two rules express these optimizations:

memory

proc

sache sache sache

proc proc

pmb pmb pmbmpb mpb mpb

SYS � Sys(MEM, SITES)
SITES � SITE [] SITE j SITES
SITE � Site(SACHE, PMB, MPB, PROC)
SACHE � � [] Cell(a,v,CS) jSACHE
CS � Clean [] Dirty
PMB � � [] ht,REQi;PMB
MPB � � [] ht,REPijMPB
REQ � Loadl(a) [] Storel(a,v)

[] Commit(a) [] Reconcile(a)
[] Fencerr(a1,a2) [] Fencerw(a1,a2)
[] Fencewr(a1,a2) [] Fenceww(a1,a2)

REP � v [] Ack

Figure 3. Semantic Configuration of CRF

SC-Load-Bypass Rule
Site(pmb1;ht1,Store(a,v)i;ht2,Load(a)i;pmb2, mpb, p)

! Site(pmb1;ht1,Store(a,v)i;pmb2, mpbjht2,vi, p)

SC-Store-Merge Rule
Site(pmb1;ht1,Store(a,v1)i;ht2,Store(a,v2)i;pmb2, mpb, p)

! Site(pmb1;ht2,Store(a,v2)i;pmb2, mpbjht1,Acki, p)

These rules are correct in the sense that, given a set of
input streams, they do not add any new behavior to the set of
behaviors generated by the SC rules (or equivalently, the SC
rules can simulate the behaviors generated by the optimiza-
tion rules). Of course, given a processor model, addition
of such rules may affect the set of behaviors observable for
a program. However, all such program behaviors would
correspond to some behavior permissible by the SC model.

4. The CRF Memory Model

CRF exposes both data replication and instruction re-
ordering at the programming level. Each site has a seman-
tic cache (sache), on which Loadl (load-local) and Storel
(store-local) instructions operate (see Figure 3). The model
assumes memory accesses can be reordered as long as data
dependence constraints are preserved, and provides memory
fences to enforce ordering if needed.

The Commit and Reconcile instructions can be used
to ensure that the data produced by one processor can be
observed by another processor whenever necessary. The
memory behaves as the rendezvous between the writer and
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Figure 4. Memory Rendezvous of CRF

the reader: the writer performs a Commit operation to guar-
antee that the modified data has been written back to the
memory, while the reader performs a Reconcile operation
to guarantee that the stale copy (if any) has been purged from
the sache so that subsequent load operations must retrieve
the data from the memory (see Figure 4).

Semantic caches do not necessarily correspond to caches
in implementations; they are needed purely for semantic
reasons. Similarly, the rendezvous between the writer and
reader does not have to be the main memory; a cache coher-
ence protocol may use any cache in the memory hierarchy
as the rendezvous point. The only thing that matters is that
any system that implements CRF must maintain the same
observable memory behavior.

The definition of CRF includes two sets of rules. The
first set of rules specifies the execution of Loadl, Storel,
Commit and Reconcile instructions. It also includes rules
that govern the data propagation between semantic caches
and memory. The second set of rules deals with instruction
reordering and memory fences. We also refer to the first set
of rules as the Commit-Reconcile (CR) model because these
rules by themselves define a memory model, which is the
same as the CRF model except that instructions are executed
strictly in-order.

4.1. The Commit-Reconcile Model

There are two states for sache cells,Clean and Dirty. The
Clean state indicates that the data has not been modified
since it was cached or last written back. The Dirty state
indicates that the data has been modified and has not been
written back to the memory since then. Notice in CRF,
different saches can have a cell with the same address but
different values.

Loadl and Storel Rules: A Loadl or Storel can be per-
formed if the address is cached in the sache:

CRF-Loadl Rule
Site(sache, ht,Loadl(a)i;pmb, mpb, p)

if Cell(a,v,-) 2 sache
! Site(sache, pmb, mpbjht,vi, p)

DirtyInvalid Clean

Store

Purge

Cache

Writeback

Commit/Reconcile Load/Store/ReconcileLoad/Commit

Figure 5. Sache State Transitions of CRF

CRF-Storel Rule
Site(Cell(a,-,-) j sache, ht,Storel(a,v)i;pmb, mpb, p)

! Site(Cell(a,v,Dirty) j sache, pmb, mpbjht,Acki, p)

Although the store rule above requires that the address
be cached before the Storel can be performed, it makes no
semantic difference to allow the Storel to be performed even
if the address is not cached. This is because, if the address
is not cached, the sache can first obtain a Clean copy from
the memory (by applying the cache rule given below), and
then perform the Storel access. This can be represented by
a straightforward derived rule.

Commit and Reconcile Rules: On a Commit operation, if
the address is cached and the cell’s state is Dirty, the data
must be first written back to the memory (by applying the
writeback rule given below). On a Reconcile operation, if
the address is cached and the cell’s state is Clean, the cell
must be first purged from the sache (by applying the purge
rule given below).

CRF-Commit Rule
Site(sache, ht,Commit(a)i;pmb, mpb, p)

if Cell(a,-,Dirty) =2 sache
! Site(sache, pmb, mpbjht,Acki, p)

CRF-Reconcile Rule
Site(sache, ht,Reconcile(a)i;pmb, mpb, p)

if Cell(a,-,Clean) =2 sache
! Site(sache, pmb, mpbjht,Acki, p)

Note that a Reconcile operation can complete while the
address is cached in the Dirty state. This allows proper
modeling of load bypassing in write-buffers.

Cache, Writeback and Purge Rules: A sache can obtain
a Clean copy from the memory, if the address is not cached
at the time (thus no sache can contain more than one copy
for the same address). A Dirty copy can be written back to
the memory, after which the sache state becomes Clean. A
Clean copy can be purged from the sache at any time, but
cannot be written back to the memory. Figure 5 illustrates
the sache state transitions (Invalid indicates the address is
not cached).

CRF-Cache Rule
Sys(m, Site(sache, pmb, mpb, p) j sites)

if a =2 sache
! Sys(m, Site(Cell(a,m[a],Clean)j sache, pmb, mpb, p)

j sites)
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I2 ) Loadl Storel Fencerr Fencerw Fencewr Fenceww Commit Reconcile
I1 + (a0) (a0,v0) (a0

1,a0

2) (a0

1,a0

2) (a0

1,a0

2) (a0

1,a0

2) (a0) (a0)

Loadl(a) true a 6= a0 a 6= a0

1 a 6= a0

1 true true true true
Storel(a,v) a 6= a0 a 6= a0 true true true true a 6= a0 true
Fencerr(a1,a2) true true true true true true true a2 6= a0

Fencerw(a1,a2) true a2 6= a0 true true true true true true
Fencewr(a1,a2) true true true true true true true a2 6= a0

Fenceww(a1,a2) true a2 6= a0 true true true true true true
Commit(a) true true true true a 6= a0

1 a 6= a0

1 true true
Reconcile(a) a 6= a0 true true true true true true true

Figure 6. Instruction Reordering Table of CRF

CRF-Writeback Rule
Sys(m, Site(Cell(a,v,Dirty) j sache, pmb, mpb, p) j sites)

! Sys(m[a:=v], Site(Cell(a,v,Clean) j sache, pmb, mpb, p)
j sites)

CRF-Purge Rule
Site(Cell(a,-,Clean)j sache, pmb, mpb, p)

! Site(sache, pmb, mpb, p)

These rules are also called background rules, since they
can be applied even though no instruction is executed by
any processor. The background rules can potentially propel
optimizations that are more aggressive than conventional
techniques such as non-binding prefetch.

It is worth noting that we can add extra Commit and
Reconcile instructions in a program without affecting its
semantics. The set of behaviors that is generated by the
program with extra Commit and Reconcile instructions is
a subset of the behaviors of the original program. This
is because, regardless of whether a Commit or Reconcile
is executed, a dirty cell can always be written back to the
memory and a clean cell can always be purged from a sache.

The operational specification of CRF includes a set of
imperative rules only; intentionally this does not address
implementation issues. For example, suppose a processor
executes a Commit instruction while a dirty copy is cached
for the address. The processor will stall until the writeback
rule is applied. In practice, proper directive rules must be
incorporated to ensure the liveness of the system. Directive
rules, however, have no semantic implications and thus,
are not part of the CRF definition. More discussion about
the imperative-directive design methodology can be found
elsewhere [23].

4.2. The Fence Operation

CRF allows memory accesses to be reordered if they
access different addresses or if they are both Loadl instruc-
tions. It provides four types of memory fences to con-
trol reordering: Fencerr (read-read), Fencerw (read-write),
Fencewr (write-read) and Fenceww (write-write). Each
memory fence has a pair of arguments, a pre-address and

a post-address, and imposes an ordering constraint between
memory operations involving the pre- and post- addresses.
For example, Fencerw(a1,a2) ensures that any preceding
Loadl to location a1 must be performed before any follow-
ing Storel to location a2 can be performed. This implies
that instructions Loadl(a1) and Storel(a2,v) separated by
Fencerw(a1,a2) cannot be reordered.

A Fencewr or Fenceww imposes ordering constraints
on preceding Commit (instead of Storel) operations, since
only a Commit can force the data of a Storel to be writ-
ten back to the memory. It makes little sense to ensure a
Storel operation to be completed if it is not followed by a
Commit. Similarly, a Fencerr or Fencewr imposes order-
ing constraints on following Reconcile (instead of Loadl)
operations, since only a Reconcile can force the stale data,
if any, to be purged. It makes little sense to postpone a Loadl
operation if it is not preceded by a Reconcile.

Memory fences can always be reordered with respect to
each other. Figure 6 concisely defines the conditions under
which two adjacent memory instructions can be reordered
(assume instruction I1 precedes instruction I2, and a ‘true’
condition indicates that the reordering is allowed). The un-
derlying rational is to allow maximum reordering flexibility
for out-of-order execution.

For example, the rule represented by the Storel-Storel
entry specifies that two Storel operations can be reordered if
they access different addresses. This rule is commutable in
the sense that reordered transactions can be reordered back.
Not all the reordering rules commute. For example, the rule
represented by the Fencerr-Loadl entry does not commute:
once the reordering is performed, the transactions cannot be
reordered back unless the address of the Loadl instruction
and the pre-address of the Fencerr instruction are different
(according to the Loadl-Fencerr entry).

We also need a rule to discharge a memory fence:

CRF-Fence Rule
Site(sache, ht,Fence��(a1,a2)i;pmb, mpb, p)

! Site(sache, pmb, mpbjht,Acki, p)

The reordering rules are useful for the compiler writer to
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decide whether specific compiler transformations preserve
program semantics. The specification of CRF also demon-
strates a framework in which different memory models can
be defined and analyzed. For example, we can ensure that all
load and store operations to the same location are performed
in-order on each processor by changing the Loadl-Loadl en-
try to “a 6= a0”.

Again it is worth noting that adding an extra Fence in a
program can eliminate a permissible behavior but never add
a new behavior. In particular, a strict sequential execution
of instructions always generates a legal behavior.

4.3. Coarse-grain Fences, Commits and Reconciles

We have chosen fine-grain fence, commit and reconcile
operations to define the memory model but coarse-grain
versions of these operations may be more practical at the
instruction set level.

A coarse-grain fence imposes an ordering constraint with
respect to address ranges, instead of individual locations.
For example, Fencerw(A1,A2) ensures that all preceding
Loadl operations to address range A1 must be performed
before any following Storel operation to address range A2

can be performed. It can be defined in terms of jA1j:jA2jfine-
grain fences and obey all the reordering rules given earlier.
Similarly, Commit(A) and Reconcile(A) can be defined
in terms of fine-grain Commit and Reconcile operations,
respectively. An address range may be a cache line, a page
or the whole address space (represented by *).

Of particular interest are memory fences that impose or-
dering constraints between some memory range and an in-
dividual location. As an example, we define the following
pre- and post- fences:

PreFenceW(a) � Fencerw(*,a); Fenceww(*,a)
PostFenceR(a) � Fencerr(a,*); Fencerw(a,*)

Informally, PreFenceW(a) requires that all memory ac-
cesses (i.e., Loadl and Commit) preceding the fence be
completed before any store to location a following the fence
can be performed. PostFenceR(a) requires that all loads
to location a preceding the fence be completed before any
memory access (i.e., Reconcile and Storel) following the
fence can be performed.

5. Relationship with Other Models

There is a simple translation scheme from SC programs
to CRF programs. We can augment an SC program to a
CRF program by substituting each Load/Store instruction
with a Loadl/Storel instruction, placing a Reconcile before
each Loadl and a Commit after each Storel, and inserting
memory fences appropriately. This translation guarantees

that the augmented program in CRF has the same program
behavior as the original program in SC.

A program that is crucially dependent on the SC seman-
tics for its correctness is the Dekker’s algorithm for mutual
exclusion. The essence of this algorithm is that a processor
first signals its intent to enter the critical section by asserting
a flag (a1 and a2 for processors 1 and 2, respectively), and
then checks whether the other processor is also trying to
enter. It can enter the critical section only when the other
processor has not set its flag (this part of the code is not
shown below). Initially both locations a1 and a2 contain
value 0.

Processor 1 Processor 2
Storel(a1,1); Storel(a2,1);
Commit(a1); Commit(a2);
Fencewr(a1,a2); Fencewr(a2,a1);
Reconcile(a2); Reconcile(a1);
r = Loadl(a2); r = Loadl(a1);

The Lock and Unlock operations for mutual exclusion
can be implemented with much less effort using synchro-
nization instructions such as Test-&-Set, Swap or Load-
Reserve/Store-Conditional. In CRF, these instructions by
themselves have no ordering implication on preceding and
following instructions. Memory fences can be used to en-
force necessary ordering constraints, where Lock is consid-
ered to be both a Loadl and Storel operation, and Unlock
simply a Storel operation.

We can translate programs based on release consistency
to CRF by defining the Release and Acquire operations as
follows:

Release(s) � Commit(*); PreFenceW(s); Unlock(s)
Acquire(s) � Lock(s); PostFenceR(s); Reconcile(*)

This can lead to better performance (especially for DSM
systems) than implementations of RC on existing micro-
processors. Memory accesses after a Release can be
performed before the semaphore is released, because the
Release only imposes a pre-fence on preceding accesses.
Memory accesses before an Acquire do not have to be com-
pleted before the semaphore is acquired, because the Ac-
quire only imposes a post-fence on following memory ac-
cesses. In addition, modified data of store operations before
a Release need to be written back to the memory at the
release point, but stale data in other caches do not have to be
invalidated or updated since it will be reconciled at the next
acquire point.

Modern microprocessors often exhibit some relaxed
memory models. They provide very coarse-grain mem-
ory fences that apply to all addresses, and have no com-
mit/reconcile like instructions. For example, Sparc’s RMO
model can be represented using CRF instructions as follows:
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Load(a) � Reconcile(a); Loadl(a)
Store(a,v) � Storel(a,v); Commit(a)
Membar #LoadLoad � Fencerr(*,*)
Membar #LoadStore � Fencerw(*,*)
Membar #StoreLoad � Fencewr(*,*)
Membar #StoreStore � Fenceww(*,*)

Unlike CRF, according to the manual, Sparc requires
that Membar instructions be applied in-order. The exact se-
mantics of Membar instructions can be obtained by simply
modifying the corresponding entries in the reordering table.
However, it is not clear to us why fences must be performed
in-order.

Some memory models (e.g., Location Consistency [7, 8])
cannot be represented by CRF. In CRF, if the values of
two stores (not necessarily from the same processor) are
observed by more than one processor, then they must be
observed in the same order, provided the load instructions
used in the observation are executed in-order. There is a
total order on stores for each address in CRF. For example,
in the following program, if register r1 gets value 2, then
register r2 also must get value 2.

Processor 1 Processor 2
Storel(a,1); Storel(a,2);
r1 = Loadl(a); r2 = Loadl(a);

6. Cache Coherence Protocols for CRF

Cachet [24], an adaptive cache coherence protocol, has
been developed to implement CRF on the MIT StarT mul-
tiprocessor system [4]. Cachet is a seamless integration
of a number of micro-protocols, each of which has been
optimized for a different access pattern. The design is mo-
tivated by the belief that a protocol that adapts to changing
access patterns should perform better than any fixed proto-
col. Micro-protocols are distinctive in the actions performed
by the protocol engine while committing dirty cells and rec-
onciling clean cells.

Cachet-Base: This straightforward implementation of CRF
simply uses the memory as the rendezvous point. A Commit
instruction for an address cached in the Dirty state requires
that the modified data be written back to the memory before
the instruction can complete. A Reconcile instruction for
an address cached in the Clean state requires the data be
purged from the cache before the instruction can complete.
An attractive characteristic of Cachet-Base is its simplicity:
no state needs to be maintained on the memory side.

Cachet-WriterPush: Since load operations are usually
more frequent than store operations, it is desirable to allow
a Reconcile to complete even when the address is cached
in the Clean state. Subsequent load accesses to the address
targeted by the Reconcile will then cause no cache miss.
Correspondingly, when a Commit instruction is performed

on an address cached in the Dirty state, the Clean copies
of the address are purged from all other caches before the
Commit can complete. Therefore, committing an address
that is cached in the Dirty state can be a lengthy process.

Cachet-Migratory: When an address is exclusively ac-
cessed by one processor for a reasonable time period, it
makes sense to give the cache the exclusive ownership so
that all instructions on the address become local operations.
This is reminiscent of the exclusive state in conventional
MESI-like protocols. Therefore, a Commit instruction can
complete even when the address is cached in the Dirty state,
and a Reconcile instruction can complete even when the
address is cached in the Clean state.

Each micro-protocol of Cachet embodies some voluntary
rules that are not triggered by any specific instruction or
protocol message. For example, at any time, a cache engine
can write a dirty copy back to the memory or purge a clean
copy from the cache. The memory engine can voluntarily
send data to caches, provided that the memory contains
the valid data. The existence of voluntary rules provides
enormous scope for adaptivity which can be exploited to
achieve better performance.

It is also possible to adaptively switch the micro-protocol
that is operating on an address. For example, since the mem-
ory maintains no information about cache copies in Cachet-
Base states, it can simply instruct a cache cell to adopt the
Cachet-Base protocol when it does not have enough direc-
tory space to record the information. This can be impor-
tant for large DSM systems when fully-mapped directory
schemes are too expensive.

Since Cachet implements CRF, it is by definition a proto-
col for all high-level models whose programs can be trans-
lated into CRF programs. The translation can be performed
statically by the compiler, or dynamically by the processor
or the protocol engine. Thus, different high-level memory
models can be used in different regions of memory simul-
taneously. For example, in an RC program, the region of
memory used for input/output operations can have the SC
semantics by simply employing an SC translation scheme
for that region.

With both CRF and Cachet specified in TRS’s, it can
be proved formally that Cachet is a correct implementation
of the CRF memory model [24]. The proof is based on
simulation with respect to a mapping function that maps
each Cachet term to a CRF term. The mapping function
is defined in terms of the “drained states” which can be
reached by applying a subset of Cachet rules. The simulation
theorem shows that if a term t1 can be rewritten to another
term t2 in Cachet, then the term corresponding to t1 can be
rewritten to the term corresponding to t2 in CRF.
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7. CRF Implications for Microarchitectures

First note that the CRF model can be implemented on any
multiprocessor systems based on current microprocessors
via a simple translation. For example, CRF programs can be
executed correctly on a machine with Sparc’s RMO model:
Loadl and Storel are translated as normal Load and Store,
Commit and Reconcile as Nop (no-operation), and Fence
as Membar. It is safe to treat a Commit as a Nop because if
it follows a Storel then its semantic effect is captured by the
corresponding Store, otherwise it has no semantic effect.
Similar argument applies to Reconcile.

In this section we discuss several issues that may arise
if we were to develop a microprocessor to implement CRF
directly. Since ordinary load and store instructions have
been decomposed into finer-grain instructions in CRF, the
instruction bandwidth needed to support a certain level of
performance is likely to be high. This effect is similar
to what was observed during the shift from CISC to RISC
ISA’s. A solution to this problem is discussed in Section 7.1.

Another important issue is the flexibility needed to dis-
patch CRF instructions to the memory system. The mem-
ory system, including the caches and associated protocols,
works on the requests in the processor-to-memory queue.
The processor must dispatch these requests quickly for good
performance. This issue is discussed in Section 7.2.

Finally, as an aside, we discuss the impact of speculative
load mechanism on CRF because it is a way of keeping load
reordering transparent.

7.1. Reducing Instruction Bandwidth Requirement

While coarse-grain instructions alleviate some of the in-
struction bandwidth requirements, better encoding of load
and store instructions using the CRF-bits can make a dra-
matic difference.

There are six CRF-bits: the Com and Rec bits are used to
insert Commit and Reconcile operations, while the PreR,
PreW, PostR and PostW bits are used to insert memory
fences. Informally, the fence bits have the following effect
if turned on:

� PreR: all preceding Loadl operations must complete
before the instruction is performed;

� PreW: all preceding Commit operations must com-
plete before the instruction is performed;

� PostR: the instruction must complete before any fol-
lowing Reconcile operation is performed;

� PostW: the instruction must complete before any fol-
lowing Storel operation is performed.

The following instruction sequences give the semantics
of Load/Store instructions when all the CRF-bits are set:

Branch Resolution

Functional Units

Memory System

ROB

<tag, value/Ack>

<tag, value>

Instruction Fetch

mis-prediction

<tag, inst, Dispatched/UnDispatched>

Figure 7. Instruction Dispatch from ROB

Load(a) [Rec,PreR,PreW,PostR,PostW] Store(a,v) [Com,PreR,PreW,PostR,PostW]

Fencerr(*,a); Fencerw(*,a);
Fencewr(*,a); Fenceww(*,a);
Reconcile(a); Storel(a,v);
Loadl(a); Commit(a);
Fencerr(a,*); Fencewr(a,*);
Fencerw(a,*); Fenceww(a,*);

Notice, for a Load instruction it makes little sense to
set the PreR or PreW bit without setting the the Rec bit.
Similarly, the Com bit of a Store instruction should be set
if the PostR or PostW bit is set. The Com and Rec bits are
separate since synchronization instructions such as Test-&-
Set and Swap behave as both a load and a store operation.

7.2. Dispatching the CRF Instructions

A modern processor fetches and decodes instructions and
puts them in a reorder buffer (ROB) after register renaming
(see Figure 7). Any instruction except a memory instruction
can be dispatched to a functional unit as soon as its operands
become available. Functional units store results back in
the ROB. When a branch gets resolved, it can have the
effect of killing all the instructions that are fetched after
the branch, and resetting the program counter to the correct
value. Instructions are retired from the ROB in the same
order in which they are enqueued into the ROB. In such a
system the order in which instructions retire from the ROB
is the “program order” (further details of out-of-order and
speculative execution can be found elsewhere [20, 22]).

Care has to be exercised in dispatching memory instruc-
tions from the ROB to the memory system (i.e., pmb). If
we treat the memory as a separate autonomous subsystem,
then no speculative store should be dispatched because there
is no way to retract or undo the effect of a store operation
once it is dispatched. In addition, no memory instruction
with an unresolved address or value should be dispatched.
The rest of the constraints in dispatching of memory related
instructions are determined by the memory model.
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In SC, memory instructions are dispatched in the same
order in which they reside in the ROB. In CRF, memory
instructions can be dispatched earlier as long as the reorder-
ing rules are respected. For example, a Loadl(a) can be
dispatched if there is no undispatched Storel or Recon-
cile in front that refers to address a or some unresolved
address. Note that the dispatch can happen even if there
is an undispatched Fencerr or Fencewr instruction in front
whose post-address is a. The reason this is safe is that even
if we dispatch instructions in-order, the reordering rules for
CRF allow the instructions to be reordered in pmb. Thus,
reordering at the processor-level cannot violate the memory
model.

It should also be noted that the processor can simplify the
memory interface by being less aggressive. For example, the
processor may never dispatch a fence, and allow at most one
outstanding load or store instruction for the same address.
This will allow the memory system to reorder loads and
stores as it pleases.

7.3. Impact of Speculative Loads

Some microprocessors such as MIPS R10000 have in-
corporated the capability for speculative execution of load
instructions, which allows much more efficient implemen-
tation of SC [27]. A load instruction is allowed to be
dispatched and performed speculatively before memory in-
structions preceding it have completed. However, all load
and store instructions must be retired in-order. When an ad-
dress is modified, a kill signal is issued to all the processors
(this is a normal operation in systems with snoopy buses).
When a processor receives the kill signal, it searches for load
instructions to that address in its ROB which have obtained a
value. If such a load is found, the load and all the following
instructions are killed. This capability is easy to incorporate
in any modern processor that does instruction reordering and
speculative execution based on branch prediction.

It is worth pointing out that the speculative execution
of load instructions requires the communication from the
memory to a cache to be FIFO. Specifically, if the memory
issues a kill signal to a cache, and then supplies a value to
the same cache (probably for another address), then the kill
signal must arrive at the cache first. This FIFO property
is easily satisfied in an SMP because of the bus. However,
in DSM systems where the memory is distributed among
multiple sites, maintaining the FIFO order is difficult and
expensive. Thus, even with speculative loads, SC may have
limited scalability.

Finally we note that speculative loads would be an equally
useful mechanism to implement the CR model, which is the
same as the CRF model without instruction reordering.

8. Conclusion

We have proposed CRF, a mechanism-oriented mem-
ory model that provides great flexibility in both instruction
reordering and data replication. Instruction reordering is
constrained only by data dependences and memory fences.
Data replication is facilitated by decomposing the load and
store instructions into simpler instructions that operate on
semantic caches and memory. Generally speaking, a Storel
followed by a Commit forces the memory to be updated,
and a Loadl preceded by a Reconcile retrieves the latest
value from the memory. These fine-grain primitives pro-
vide architects and protocol designers more implementation
flexibility in hiding long latency operations, especially in
DSM’s.

CRF is designed to serve as the interface between the
compiler writer and the architect. It can be used as the com-
mon target machine language for compilers of high-level
parallel languages. CRF is defined completely with only
eight rewriting rules and a reordering table. All its mecha-
nisms, notably, Commit, Reconcile and Fence, have direct
instruction-level interpretation. CRF has precise seman-
tics for any program, regardless of whether it is properly
synchronized or not. This, we think, is essential for an
architecture-centric memory model because of its impact on
the ISA specification.

The complexity of weaker memory models, surprisingly,
does not manifest itself in implementations but rather in
a conceptual burden for the programmer and the architect.
Indeed, the definitions of weaker models are not for the faint
hearted but it is their unstability that is more problematic.
No compiler writer or architect can deal with a memory
model that changes with every computer generation even
from the same manufacturer. CRF addresses both these
issues squarely. Its definition is precise and small, and it
provides a simple method of dealing with its variants. It
essentially provides a systematic way for architectures and
compiler implementations to evolve.

There is no broad consensus on the memory model future
shared-memory machines should support. Hill has recently
argued that multiprocessors should just support SC, or a
model that just relaxes the ordering from writes to reads [13].
Hill’s central argument is that the performance gap between
SC and relaxed memory models can be narrowed by specula-
tive execution and prefetching techniques [11] and thus, the
complexity of weaker memory models is not justified. We
agree with many of his observations but not his prescription.

For the sake of argument we compare SC with CR (CRF
sans instruction reordering). As we pointed out earlier,
the speculative load mechanism would be an equally use-
ful mechanism to implement the CR model. However, CR
provides more implementation flexibility. For example, CR
allows a store operation to be performed without the exclu-
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sive ownership. This can be very useful to alleviate cache
thrashing due to false-sharing. Different processors can
work on different parts of the same cache line without inter-
fering each other. Moreover, write-buffers can be employed
so that store accesses to the same cache line can be merged
to take advantage of burst bus transactions. Thus, even if the
instruction reordering advantage turns out to be minimal, we
expect Commit and Reconcile type mechanisms to widen
the performance gap in future, especially for DSM’s.

The next step in this research is to do a performance
evaluation of the CRF model.
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