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Abstract

We present a novel use of Term Rewriting Systems (TRS's) to describe micro-architectures.

The state of a system is represented as a TRS term while the state transitions are represented

as TRS rules. TRS descriptions are amenable to both veri�cation and synthesis. We illustrate

the use of TRS's by giving the operational semantics of a simple RISC instruction set. We

then present another TRS that implements the same instruction set on a micro-architecture

which permits register renaming and speculative execution. The correctness of the speculative

implementation is discussed in terms of the ability of the two TRS's to simulate each other. Our

method facilitates understanding of important micro-architectural di�erences without delving

into low-level implementation details.

1 Introduction

Term Rewriting Systems (TRS's) o�er a convenient way to describe parallel and asynchronous

systems, and can be used to prove the correctness of an implementation with respect to a speci�-

cation. TRS descriptions, augmented with proper information about the building blocks, also hold

the promise of high-level synthesis. High-level architectural descriptions, which are both automat-

ically synthesizable and veri�able, open up the possibility of architectural exploration at a fraction

of the time and cost than what is feasible using current commercial tools.

Formal veri�cation of microprocessors has gained considerable attention in recent years [2, 3,

7, 11]. Other formal techniques, such as Lamport's TLA and Lynch's I/O automata, can also be

used to model microprocessors. While all these techniques have something in common with TRS's,

we �nd the use of TRS's more intuitive in both architecture descriptions and correctness proofs.

TRS's can be used to describe both deterministic and non-deterministic computations. Although

they have been used extensively in programming language research to give operational semantics,

their use in architectural descriptions is novel.

In this paper, we will use TRS's to describe a speculative processor capable of register renaming

and out-of-order execution. The lack of space does not permit us to discuss a synthesis procedure

from TRS's or to give su�cient details that are needed to make automatic synthesis feasible.

Nevertheless, we will show that our speculative processor produces the same set of behaviors as

a simple non-pipelined implementation. Though the reader is the ultimate judge, we believe that

our descriptions of micro-architectures are more precise than what one may �nd in a modern

textbook [4]. It is the clarity of these descriptions that lets us study the impact of features such as

write bu�ers or caches, especially in multiprocessor systems [10, 9]. In fact, part of the motivation

for this work came from one of the author's experience in teaching computer architectures.
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2 Term Rewriting Systems

A term rewriting system is de�ned as a tuple (S, R, S0), where S is a set of terms, R is a set of

rewriting rules, and S0 is a set of initial terms (S0 � S). In the architectural context, the terms

and rules of a TRS represent states and state transitions, respectively. The general structure of

rewriting rules is as follows:

s1 if p (s1)

! s2

where s1 and s2 are terms, and p is a predicate.

A rule can be used to rewrite a term if the left-hand-side pattern of the rule matches the term

or one of its subterms, and the corresponding predicate is true. The new term is generated in

accordance with the right-hand-side of the rule. If several rules are applicable, then any one of

them can be applied. If no rule is applicable, then the term cannot be rewritten any further. In

practice, we often use abstract data types such as arrays and FIFO queues to make the descriptions

more readable. More information about TRS's can be found elsewhere [1, 6].

A small but fascinating example of term rewriting is provided by the SK combinatory

system, which has only two rules, and a simple grammar for generating terms. These

two rules are su�cient to describe any computable function!

TERM � K [] S [] TERM.TERM

K-rule: (K.x).y ! x

S-rule: ((S.x).y).z ! (x.z).(y.z)

The interested reader may want to verify that, for any subterm x, the term ((S.K).K).x

can be rewritten to (K.x).(K.x) by applying the S-rule. This term can be rewritten

further to x by applying the K-rule. Thus, if one reads the `.' as function application

then the term ((S.K).K) behaves as the identity function.

Notice the S-rule rearranges `.' and duplicates the term represented by x on the right-

hand-side. In architectures where terms represent states, rules must be restricted so that

terms are not restructured or duplicated.

3 AX: A Minimalist RISC Instruction Set

We will use AX, a minimalist RISC instruction set, to illustrate all the examples in this paper.

The TRS description of a simple AX architecture also provides a good introductory example to the

TRS notation.

In the AX instruction set (see Figure 1), all arithmetic operations are performed on registers

and only the Load and Store instructions are allowed to access memory. The grammar uses `[]' as

a meta notation to separate disjuncts. Throughout the paper `r' represents a register name, `v'

a value, `a' a data memory address and `ia' an instruction memory address. An identi�er may

be quali�ed with a subscript. We do not specify the number of registers, the number of bits in a

register or value, or the exact bit-format of each instruction. Such details are not necessary for a

high-level description of a micro-architecture but are needed for synthesis.

2



INST � r:=Loadc(v) Load-constant Instruction

[] r:=Loadpc Load-program-counter Instruction

[] r:=Op(r1,r2) Arithmetic-operation Instruction

[] Jz(r1,r2) Branch Instruction

[] r:=Load(r1) Load Instruction

[] Store(r1,r2) Store Instruction

Figure 1: AX Instruction Set

To avoid unnecessary complications, we assume that the instruction address space is disjoint

from the data address space, so that self-modifying code is forbidden. AX is powerful enough to

let us express all computations as location independent, non-self-modifying programs.

Semantically, AX instructions are executed strictly according to the program order: the program

counter is incremented by one each time an instruction is executed except for the Jz instruction,

where the program counter is set appropriately according to the branch condition. The informal

meaning of the instructions is as follows:

The load-constant instruction r:=Loadc(v) puts constant v into register r. The load-program-

counter instruction r:=Loadpc puts the content of the program counter into register r. The

arithmetic-operation instruction r:=Op(r1,r2) performs the arithmetic operation speci�ed by Op

on the operands speci�ed by registers r1 and r2, and puts the result into register r. The branch

instruction Jz(r1,r2) sets the program counter to the target instruction address speci�ed by register

r2 if register r1 contains value zero; otherwise the program counter is simply increased by one. The

load instruction r:=Load(r1) reads the memory cell speci�ed by register r1, and puts the data into

register r. The store instruction Store(r1,r2) writes the content of register r2 into the memory cell

speci�ed by register r1.

We de�ne the operational semantics of AX instructions using the PB model, a single-cycle, non-

pipelined, in-order execution processor. The datapath for such a system is shown in Figure 2. The

processor consists of a program counter (pc), a register �le (rf), and an instruction memory (im).

The program counter holds the address of the instruction to be executed. The processor together

with the data memory (dm) constitutes the whole system, which can be represented as the TRS

term Sys(Proc(pc, rf, im), dm). The semantics of each instruction can be given as a rewriting rule

which speci�es how the state is modi�ed after each instruction is executed.

It is important to realize that pc, rf, im and dm can be grouped syntactically in any convenient

way. Grouping them as Sys(Proc(pc, rf, im), dm) instead of Sys(pc, rf, im, dm) provides a degree

of modularity in describing the rules that do not refer to dm. Abstract data types can also enhance

modularity. For example, rf, im and dm are all represented using arrays on which only two oper-

ations, selection and update, can be performed. Thus, rf[r] refers to the content of register r, and

rf[r:=v] represents the register �le after register r has been updated with value v. Similarly, dm[a]

refers to the content of memory location a, and dm[a:=v] represents the memory with location a

updated with value v.

We use the following notational conventions in the rewriting rules: all the special symbols such

as `:=', and all the identi�ers that start with capital letters are treated as constants in pattern

matching. We use `-' to represent the wild-card term that can match any term. Notation Op(v1,v2)

represents the result of operation Op with operands v1 and v2.
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Figure 2: The PB Model: A Single-Cycle In-Order Processor

Loadc Rule

Proc(ia, rf, im) if im[ia] = r:=Loadc(v)

! Proc(ia+1, rf[r:=v], im)

Loadpc Rule

Proc(ia, rf, im) if im[ia] = r:=Loadpc

! Proc(ia+1, rf[r:=ia], im)

Op Rule

Proc(ia, rf, im) if im[ia] = r:=Op(r1,r2)

! Proc(ia+1, rf[r:=v], im) where v = Op(rf[r1],rf[r2])

Jz-Jump Rule

Proc(ia, rf, im) if im[ia] = Jz(r1,r2) and rf[r1] = 0

! Proc(rf[r2], rf, im)

Jz-NoJump Rule

Proc(ia, rf, im) if im[ia] = Jz(r1,r2) and rf[r1] 6= 0

! Proc(ia+1, rf, im)

Load Rule

Sys(Proc(ia, rf, im), dm) if im[ia] = r:=Load(r1)

! Sys(Proc(ia+1, rf[r:=dm[a]], im), dm) where a = rf[r1]

Store Rule

Sys(Proc(ia, rf, im), dm) if im[ia] = Store(r1,r2)

! Sys(Proc(ia+1, rf, im), dm[a:=rf[r2]]) where a = rf[r1]

Since the pattern Proc(ia, rf, im) will match any processor term, the real discriminant is the

instruction at address ia. In the case of a branch instruction, further discrimination is made based

on the value of the condition register.

It is important to understand the atomic nature of these rules. Once a rule is applied, the state

speci�ed by its right-hand-side must be reached before any other rule can be applied. For example,

on an Op instruction, both operands must be fetched and the result computed and stored in the

register �le in one atomic action. Furthermore, the program counter must be updated during this

atomic action as well. This is why these rules describe a single-cycle, non-pipelined implementation

of AX.

To save space, we may use a table to describe the rules informally. For example, Figure 3

summarizes the PB rules given above. It is our hope that, given proper context, the reader will be

able to deduce the precise TRS rules from a tabular description.
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Rule Name Instruction at ia Next pc Next rf Next dm

Loadc r:=Loadc(v) ia+1 rf[r:=v] dm

Loadpc r:=Loadpc ia+1 rf[r:=ia] dm

Op r:=Op(r1,r2) ia+1 rf[r:=Op(rf[r1],rf[r2])] dm

Jz Jz(r1,r2) ia+1 (if rf[r1] 6= 0) rf dm

rf[r2] (if rf[r1] = 0)

Load r:=Load(r1) ia+1 rf[r:=dm[rf[r1]]] dm

Store Store(r1,r2) ia+1 rf dm[rf[r1]:=rf[r2]]

Figure 3: Operational Semantics of AX (Current State: Sys(Proc(ia, rf, im), dm))

4 Register Renaming and Speculative Execution

There are many possible micro-architectures that can implement the AX instruction set. For

example, in a simple pipelined architecture, instructions are fetched, executed and retired in order,

and there can be as many as 4 or 5 partially executed instructions in the processor. Storage in

the form of pipeline bu�ers is provided to hold these partially executed instructions. In more

sophisticated pipelined architectures, there are multiple functional units, which may be specialized

for integer or oating-point calculations. In such architectures, even if instructions are issued in

order, they may complete out of order because of varying latencies of functional units. To preserve

correctness, a new instruction is not issued when there is another instruction in the pipeline that

may update any register to be read or written by the new instruction. Seymore Cray's CDC 6600,

which is one of the earliest examples of such an architecture, used a scoreboard to dispatch and

track partially executed instructions in the processor. In Cray-style scoreboard design, the number

of instructions in the pipeline is limited by the number of registers in the instructions set.

The technique of register renaming was invented by Tomasulo at IBM in mid sixties to overcome

this limitation on pipelining. Tomasulo assigned a renaming tag to each instruction as it was

decoded. The following instructions used this tag to refer to the value produced by this instruction.

A renaming tag became free, i.e., could be used again, once the instruction was completed. The

micro-architecture maintained the association between the register name, the tag and the associated

value (whenever the value became available). This innovative idea was embodied in IBM 360/91 in

late sixties but went out of favor until late eighties for several reasons. For example, the performance

gains were not considered commensurate with the complexity of the implementations. Register

renaming is common place today and present in all the high-end microprocessors (PentiumPro,

PowerPC 604, MIPS R10000 and later models in these product lines).

An important state element in a micro-architecture with register renaming is a reorder bu�er

(ROB), which holds instructions that have been decoded but have not completed their execution

(see Figure 4). Conceptually, ROB divides the processor into two asynchronous parts: the �rst part

fetches an instruction and, after decoding and renaming registers, dumps it into the next available

slot in the ROB. The ROB slot index serves the purpose of the renaming tag, and the instructions

in the ROB always contain tags or values instead of register names. An instruction in the ROB

can be executed if all its operands are available. The second part takes any enabled instruction

out of the ROB and dispatches it to an appropriate functional unit, including the memory system.

This mechanism is very similar to the execution mechanism in dataow architectures. Such an

architecture may execute instructions out of order, especially if functional units have di�erent

latencies or there are data dependencies between instructions.

In addition to register renaming, most contemporary microprocessors also permit speculative
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Figure 4: The PS Model: A Processor with Register Renaming and Speculative Execution

execution of instructions. The speculative mechanisms predict the address of the next instruction to

be issued based on the past behavior of the program. (Several researchers have recently suggested

mechanisms to speculate on memory values as well but none of these have been implemented so far;

we do not consider such mechanisms in this paper). The address of the speculative instruction is

determined by consulting a table known as the branch target bu�er (BTB), which can be indexed

by the current content of the program counter. If the prediction turns out to be wrong, the

speculative instruction and all the instructions issued thereafter are abandoned and their e�ect on

the processor state nulli�ed. The BTB is updated according to some prediction scheme after each

branch resolution.

The correctness of the speculative processor is not contingent upon how the BTB is maintained,

as long as the program counter can be set to the correct value after a misprediction. However, dif-

ferent prediction schemes can give rise to very di�erent misprediction rates and thus have profound

inuence on the performance. Generally, it is assumed that the BTB produces the correct next

instruction address for all non-branch instructions. We will not discuss the BTB any further be-

cause the branch prediction strategy is completely orthogonal to the mechanisms for speculative

execution.

Any processor that permits speculative execution has to make sure that a speculative instruction

either does not modify the programmer visible state until it can be \committed", or save enough

of the processor state so that the correct state can be restored in case the speculation turns out

to be wrong. Most implementations use a mixture of these two ideas: speculative instructions do

not modify the register �le or memory until it can be determined that the prediction is correct,

but are allowed to update the program counter. Both the current and the speculated instruction

address are recorded so that the correctness of speculation can be determined later, and the correct

program counter can be restored in case of wrong prediction. Typically, all the temporary state is

maintained in the ROB itself.

5 PS: A Speculative Processor

We now present the rules for a simpli�ed micro-architecture that does register renaming and specu-

lative execution. The simpli�cation is achieved by not showing all the pipelining and not giving the

details of some hardware operations. The memory system is modeled as operating asynchronously

with respect to the processor. Thus, a memory instruction in the ROB is dispatched to the memory

system via an ordered processor-to-memory bu�er (pmb); the memory provides its responses via a
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memory-to-processor bu�er (mpb). Exactly how the memory system is organized is not discussed.

However, memory system details can be added in a modular fashion without changing the processor

description presented here [10, 9].

We need to add two new components, rob and btb, to the processor state. Reorder bu�er rob

is a complex device to model because di�erent types of operations need to be performed on it. It

can be thought of as a FIFO queue which is initially empty (�). We use the constructor `�', which

is associative but not commutative, to represent this aspect of rob. It can also be considered as

an array of instruction templates where array index serves the purpose of a renaming tag. It is

well known that a FIFO queue can be implemented as a circular bu�er using two pointers into an

array. We will hide these implementation details of rob and assume that the next available tag can

be obtained.

An instruction template in rob contains the instruction address, opcode, operands and some

extra information needed to complete the instruction. For instructions that need to update a

register, the Wr(r) �eld records the destination register r. For branch instructions, the Sp(pia)

�eld holds the speculated instruction address pia which will be used to determine the correctness

of the prediction. Each memory access instruction maintains an extra ag to indicate whether

the instruction is waiting to be dispatched (U), or has been dispatched to the memory (D). The

memory system returns a value for a load and an acknowledgment (Ack) for a store. We have taken

some syntactic liberties in expressing various types of instruction templates below:

ROB Entry � Itb(ia,t:=v,Wr(r))

[] Itb(ia,t:=Op(tv1,tv2),Wr(r))

[] Itb(ia,Jz(tv1,tv2),Sp(pia))

[] Itb(ia,t:=Load(tv1,mf),Wr(r))

[] Itb(ia,t:=Store(tv1,tv2,mf))

where tv stands for either a tag or a value, and the memory ag mf is either U or D. The tag used

in the Store instruction template is intended to provide some exibility in coordinating with the

memory system, and does not imply updating of any register.

5.1 Instruction Fetch Rules

Each time an instruction is issued, the program counter is set to the address of the next instruction

to be issued. For non-branch instructions, the program counter is simply incremented by one.

Speculative execution happens when a Jz instruction is issued: the program counter is then set to

the instruction address obtained by consulting the btb entry corresponding to the address of the Jz

instruction.

When an instruction is issued, an instruction template for the issued instruction is allocated in

the rob. If the instruction is to modify a register, an unused renaming tag (typically the index of the

slot in the rob) is used to rename the destination register and the destination register is recorded

in the Wr �eld. The tag or value of each operand register is found by searching the rob from the

youngest bu�er (rightmost) to the oldest bu�er (leftmost) until an instruction template containing

the referenced register is found. If no such bu�er exists in the rob, then the most up-to-date value

resides in the register �le. The following lookup procedure captures this idea:

lookup(r, rf, rob)

� rf[r] if Wr(r) =2 rob

lookup(r, rf, rob1�Itb(ia,t:=-,Wr(r))�rob2)

� t if Wr(r) =2 rob2

7



Rule Name Instruction at ia New Template in rob Next pc

Fetch-Loadc r:=Loadc(v) Itb(ia,t:=v,Wr(r)) ia+1

Fetch-Loadpc r:=Loadpc Itb(ia,t:=ia,Wr(r)) ia+1

Fetch-Op r:=Op(r1,r2) Itb(ia,t:=Op(tv1,tv2),Wr(r)) ia+1

Fetch-Jz Jz(r1,r2) Itb(ia,Jz(tv1,tv2),Sp(btb[ia])) btb[ia]

Fetch-Load r:=Load(r1) Itb(ia,t:=Load(tv1,U),Wr(r)) ia+1

Fetch-Store Store(r1,r2) Itb(ia,t:=Store(tv1,tv2,U)) ia+1

Figure 5: PS Instruction Fetch Rules (Current state: Proc(ia, rf, rob, btb, im))

It is beyond the scope of this paper to give a hardware implementation of this procedure but it

is certainly possible to do so using TRS's. Any implementation that can look up values in the rob

using a combinational circuit would su�ce.

For example, the fetch rule for an Op instruction simply puts the instruction after register

renaming at the end of the rob as follows:

Fetch-Op Rule

Proc(ia, rf, rob, btb, im) if im[ia] = r:=Op(r1,r2)

! Proc(ia+1, rf, rob�Itb(ia,t:=Op(tv1,tv2),Wr(r)), btb, im)

where t represents an unused tag; tv1 and tv2 represent the tag or value corresponding to the

operand registers r1 and r2, respectively, i.e., tv1 = lookup(r1, rf, rob), tv2 = lookup(r2, rf, rob).

The instruction fetch rules are summarized Figure 5. In any implementation, there are a �nite

number of rob entries, and the instruction fetch has to be stalled if rob is full. This availability

checking can be easily modeled, and we leave it as a simple exercise for the interested reader. It

should be noted that a fast implementation of the lookup procedure in hardware is quite di�cult.

Often a renaming table that keeps the association between a register name and its current tag is

maintained separately.

5.2 Arithmetic Operation and Value Propagation Rules

The arithmetic operation rule states that an arithmetic operation in the rob can be performed if

both operands are available. It assigns the result to the corresponding tag. Note that the instruction

can be in any position in the rob.

Op Rule

Proc(ia, rf, rob1�Itb(ia1,t:=Op(v1,v2),Wr(r))�rob2, btb, im)

! Proc(ia, rf, rob1�Itb(ia1,t:=v,Wr(r))�rob2, btb, im) where v = Op(v1,v2)

There are two value propagation rules, the forward rule and the commit rule. The forward

rule sends the value of a tag to other instruction templates, while the commit rule writes the value

produced by the oldest instruction in the rob to the destination register and retires the corresponding

renaming tag. Notation rob2[v/t] means that one or more appearances of tag t in rob2 are replaced

by value v.

Value-Forward Rule

Proc(ia, rf, rob1�Itb(ia1,t:=v,Wr(r))�rob2, btb, im) if t 2 rob2
! Proc(ia, rf, rob1�Itb(ia1,t:=v,Wr(r))�rob2[v/t], btb, im)

Value-Commit Rule

Proc(ia, rf, Itb(ia1,t:=v,Wr(r))�rob, btb, im) if t =2 rob

! Proc(ia, rf[r:=v], rob, btb, im)
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Rule Name rob = rob1�Itb(ia1,Jz(0,nia),Sp(pia))�rob2 Next rob Next pc

Jump-CorrectSpec pia = nia rob1�rob2 ia

Jump-WrongSpec pia 6= nia rob1 nia

Rule Name rob = rob1�Itb(ia1,Jz(v,-),Sp(pia))�rob2 Next rob Next pc

NoJump-CorrectSpec v 6= 0, pia = ia1+1 rob1�rob2 ia

NoJump-WrongSpec v 6= 0, pia 6= ia1+1 rob1 ia1+1

Figure 6: PS Branch Completion Rules (Current state: Proc(ia, rf, rob, btb, im). btb update is not

shown)

It is worth noting that the rob pattern in the commit rule dictates that the register �le can

only be modi�ed by the oldest instruction after it has forwarded the value to all the bu�ers in

the rob that reference its tag. Restricting the register update to just the oldest instruction in the

rob eliminates output (write-after-write) hazards, and protects the register �le from being polluted

by incorrect speculative instructions. It also provides a way to support precise interrupts. The

commit rule is needed primarily to free up resources and to allow the reuse of the tag by the

following instructions.

5.3 Branch Completion Rules

The branch completion rules determine if the branch prediction was correct by comparing the

speculated instruction address and the resolved branch target instruction address. If they do

not match (indicating that the speculation was wrong), all instructions issued after the branch

instruction are aborted, and the program counter is set to the new branch target instruction. The

branch target bu�er btb is updated according to some prediction algorithm. The branch resolution

cases are summarized in Figure 6.

The reader may want to ponder over the fact that the branch rules allow branches to be resolved

in any order. The branch resolution mechanism becomes slightly complicated, if certain instructions

needed to be killed are waiting for responses from the memory system or some functional units.

In such a situation, killing may have to be postponed until no instruction in rob2 is waiting for a

response. (This is not possible for the rules that we have presented).

5.4 Memory Access Rules

Memory requests are sent to the memory system strictly in order and only when there is no

unresolved branch instruction in front of it. This dispatch rules ip the U bit to D, and enqueue

the memory request into the pmb. The memory system can respond to the requests in any order

and the response is used to update the appropriate entry in the rob. The `;' is used to represent an

ordered queue, and the `j' an unordered queue (i.e., it is both commutative and associative). The

memory access rules are given in Figure 7.

We do not present the rules for how the memory system handles memory requests from the

pmb. The table in Figure 8 shows a simple interface between the processor and the memory

that ensures memory accesses are processed in order by the external memory system to guarantee

sequential consistency in multiprocessor systems. More aggressive implementations of memory

access operations are possible than the ones presented here, but they lead to various relaxed memory

models in multiprocessor systems. A discussion of such optimizations is beyond the scope of this

paper.
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Rule Name itb pmb Next itb Next pmb

Load-Dispatch Itb(ia1,t:=Load(a,U),Wr(r)) pmb Itb(ia1,t:=Load(a,D),Wr(r)) pmb;ht,Load(a)i

U, Jz =2 rob1

Store-Dispatch Itb(ia1,t:=Store(a,v,U)) pmb Itb(ia1,t:=Store(a,v,D)) pmb;ht,Store(a,v)i

U, Jz =2 rob1

Rule Name itb mpb Next itb Next mpb

Load-Retire Itb(ia1,t:=Load(a,D),Wr(r)) ht,vijmpb Itb(ia1,t:=v,Wr(r)) mpb

Store-Retire Itb(ia1,t:=Store(a,v,D)) ht,Ackijmpb � (deleted) mpb

Figure 7: PS Memory Access Rules (Current state: Sys(Proc(ia, rf, rob1�itb�rob2, btb, im), pmb,

mpb))

dm pmb mpb Next dm Next pmb Next mpb

dm ht,Load(a)i;pmb mpb dm pmb mpbjht,dm[a]i

dm ht,Store(a,v)i;pmb mpb dm[a:=v] pmb mpbjht,Acki

Figure 8: Processor-Memory Interface Speci�cation

6 Correctness of the PS Model

One way to prove that the speculative processor is a correct implementation of the AX instruction

set is to show that PB and PS can simulate each other in regards to some observable property. A

natural observation function is the one that can extract all the programmer visible state, including

the program counter, the register �le and the memory from the system. One can think of an

observation function in terms of a print instruction that prints a part or the whole of the programmer

visible state. If model A can simulate model B, then for any program, model A should be able to

print whatever model B prints during the execution.

The programmer visible state of PB is obvious { it is the whole term. The PB model does

not have any hidden state. It is a bit tricky to extract the corresponding values of pc, rf and dm

from the PS model because of the partially or speculatively executed instructions. However, if we

consider only those PS states where the rob, pmb and mpb are empty then it is straightforward to

�nd the corresponding PB state. We will call such states of PS as the drained states.

It is easy to show that PS can simulate each rule of PB. Given a PB term s1, a PS term t1 is

created such that it has the same values of pc, rf, im and dm, and its rob, pmb and mpb are all

empty. Now, if s1 can be rewritten to s2 according to some PB rule then we can apply a sequence

of PS rules to t1 to obtain t2 such that t2 is in a drained state and has the same programmer visible

state as s2. In this manner, PS can simulate each move of PB.

The simulation in the other direction is tricky because we need to �nd a PB term corresponding

to each term (not just the terms in the drained state) of PS. We somehow need to extract the

programmer visible state from any PS term. There are several ways in which a PS term can be

driven to a drained state using the PS rules, and each way may lead to a di�erent drained state.

We illustrate this via an example.

Consider the snapshot shown in Figure 9(a) (we have not shown pmb and mpb and let us assume

both are empty). There are at least two ways to drive this term into a drained state. One way is

to stop fetching instructions and complete all the partially executed instructions. This process can

be thought of as applying a subset of the PS rules (i.e., all the rules except the instruction fetch
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Figure 9: Draining the Processor

rules) to the term. After repeated application of such rules the rob should become empty, and the

system should reach a drained state. Such a situation is shown in Figure 9(b), where in the process

of draining the pipeline, it is discovered that the branch speculation was wrong. An alternative

way is to rollback the execution by killing all the partially executed instructions and restoring the

pc to the address of the oldest killed instruction. The drained state obtained in this manner is

shown in Figure 9(c). Notice, this drained state is di�erent from the one obtained by completing

the partially executed instructions.

It is worth pointing out that the two draining methods represent two extremes. By carefully

selecting the rules that are applied to reach the drained state, we can allow certain instructions

in the rob to be completed and the rest to be killed. Regardless of which method is chosen for

draining, we have to show that the draining method itself is correct. This is trivial when no new

rules are introduced for draining. Otherwise, one will have to prove that, for example, the rollback

rule does not take the system into an illegal state.

The simulation of PS by PB is shown in Figure 10, where `!! ' represents zero or more rewriting

steps. We have proven the following theorem using standard techniques of TRS's elsewhere [8].

Several subtle errors were discovered while proving this simulation theorem.

Theorem 1 (PB simulates PS) Suppose t1 !! t2 and t1 !! td1 in PS where td1 is a drained

state, and s1 is the PB term corresponding to td1. Then there exists a reduction t2 !! td2 in PS

such that td2 is a drained state, and s1 !! s2 in PB where s2 is the PB state corresponding to td2.

7 Conclusions

TRS's provide a natural way to describe microprocessors and memory systems because in such

systems several actions may take place asynchronously. Such systems are not amenable to sequential

descriptions because sequentiality either causes over speci�cation or does not allow one to consider

situations that may arise in a real implementation. Using proper abstractions, the TRS descriptions

can be given in a highly modular fashion. For example, elsewhere we have de�ned a new memory
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model and associated cache-coherence protocols [10, 9]; these can be incorporated in the speculative

processor model simply by replacing the processor-memory interface rules given at the end of

Section 5.4. Similarly, more rules can be given to describe fully pipelined versions of both the

micro-architectures described in this paper.

It is worth emphasizing that the formulation for the correctness using drained states is quite

general. For example, the states of a system with caches can be compared to a system without

caches using the idea of \cache ushing" to show the correctness of cache coherence protocols. The

idea of a rewriting sequence that can take a system into a drained state has an intuitive appeal for

designers. When a system has a large number of rules, the correctness proofs can quickly become

tedious. The use of theorem provers (e.g., PVS) and model checkers (e.g., Murphi) can alleviate

this problem; we are exploring the use of such tools in our veri�cation e�ort.

Finally, we are also developing a compiler for hardware synthesis from TRS's. It translates

TRS's into a standard hardware description language like Verilog [5]. We restrict the generated

Verilog to be structural, so that commercial tools can be used to go all the way down to gates and

layout. The grammar of the terms, when augmented with details like instruction formats and sizes

of various register �les, bu�ers, memories etc, precisely speci�es the state elements. Each rule is

then compiled such that the state is read in the beginning of the clock cycle and updated at the

end of the clock cycle. This single-cycle implementation methodology automatically enforces the

atomicity constraint of each rule. All the enabled rules �re in parallel unless some modify the same

element of the state. In case of such a conict, based on some policy, one of the conicting rules is

selected to �re.

There are several challenging problems in the synthesis area. First, good scheduling in the

presence of resource constraints can be quite di�cult. For example, rules dictate the number of

concurrent ports a register �le needs for single-cycle synthesis. If the register �le provided has fewer

ports, a rule may take several cycles to implement. Naive implementation of this idea can lead to

implementations with poor performance. Second, one is often interested in synthesizing only a part

of the system described by a set of rules. For example, while synthesizing a microprocessor from

the speculative processor rules, one may want to ignore the memory system and instead produce

an interface speci�cation for the external memory. A general solution to these problems is under

current study. Nevertheless, we are able to compile many TRS descriptions into Verilog today, and

have already tested a few examples by generating FPGA code from the Verilog produced by our

compiler.
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Figure 11: The GCD Circuit

Hardware Synthesis of GCD

James C. Hoe, MIT

Euclides algorithm for computing the greatest common divisor of two numbers can be

expressed as follows in TRS notation:

GCD(x,y) if x < y ! GCD(y,x)

GCD(x,y) if x � y and y 6= 0 ! GCD(x-y,y)

TRAC, Term Rewriting Architectural Compiler [5], generates a Verilog description for

the circuit shown in Figure 11. The � wires represent the new state values while the �

wires represent the �ring condition of the corresponding rules. After synthesis by the

latest Xilinx's tools, the circuit with 32-bit x and y registers runs at 40.1 MHz using 24%

of a XC4010XL-0.9 FPGA. For reference, a hand-tuned RTL code written by Daniel L.

Rosenband resulted in 53 MHz and 16% utilization in the same technology.

Source-to-source transformations of TRS's also help in high-level synthesis. For example, if

the generated circuit does not meet the clock requirement, then the o�ending rules in the TRS

have to be split into simpler rules. We have systematically transformed the non-pipelined archi-

tecture represented by PB into a simple 5-stage pipeline, and then further transformed the TRS

obtained this way into a TRS representing a 2-way superscalar architecture. Such source-to-source

transformations dramatically reduce the number of rules a designer has to write.

The promise of TRS's for computer architecture is the development of a set of integrated

design tools for modeling, speci�cation, veri�cation, simulation and synthesis. The conciseness

and preciseness of TRS's coupled with good tools may radically alter the teaching of computer

architecture in future.
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