
Hardware Synthesis from Term Rewriting Systems

Computation Structures Group Memo 421A
August 20, 1999

James C. Hoe and Arvind
MIT Laboratory for Computer Science

Cambridge, MA 02139
fjhoe,arvindg@lcs.mit.edu

In Proceedings of X IFIP International Conference on VLSI (VLSI 99).

This paper describes research done at the MIT Laboratory for Computer Science. Funding
for this work is provided in part by the Defense Advanced Research Projects Agency of the
Department of Defense under the Ft. Huachuca contract DABT63-95-C-0150 and by the
Intel Corporation. James C. Hoe is supported by an Intel Foundation Graduate Fellowship.





Chapter 1

HARDWARE SYNTHESIS FROM
TERM REWRITING SYSTEMS

James C. Hoe and Arvind
Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA

{jhoe,arvind}@lcs.mit.edu

Abstract Term Rewriting System (TRS) is a good formalism for describing concurrent sys-
tems that embody asynchronous and nondeterministic behavior in their specifica-
tions. Elsewhere, we have used TRS’s to describe speculative micro-architectures
and complex cache-coherence protocols, and proven the correctness of these sys-
tems. In this paper, we describe the compilation of TRS’s into a subset of Verilog
that can be simulated and synthesized using commercial tools. TRAC, Term
Rewriting Architecture Compiler, enables a new hardware development frame-
work that can match the ease of today’s software programming environment.
TRAC reduces the time and effort in developing and debugging hardware. For
several examples, we compare TRAC-generated RTL’s with hand-coded RTL’s
after they are both compiled for Field Programmable Gate Arrays by Xilinx
tools. The circuits generated from TRS are competitive with those described
using Verilog RTL, especially for larger designs.

Keywords: Term Rewriting Systems, high level description, high level synthesis, TRAC

1. MOTIVATION

Term Rewriting Systems (TRS’s)[Baader and Nipkow, 1998] have been used
extensively to give operational semantics of programming languages. More
recently, we have used TRS’s in computer architecture research and teaching.
TRS’s have made it possible, for example, to describe a processor with out-of-
order and speculative execution succinctly in a page of text[Arvind and Shen,
1999]. Such behavioral descriptions in TRS’s are also amenable to formal
verification because one can show if two TRS’s “simulate” each other. This
paper describes hardware synthesis from TRS’s.
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We describe the Term Rewriting Architecture Compiler (TRAC) that com-
piles high-level behavioral descriptions in TRS’s into a subset of Verilog that
can be simulated and synthesized using commercial tools. The TRAC compiler
enables a new hardware design framework that can match the ease of today’s
software programming environment. By supporting a high-level abstraction
in design entry, TRAC reduces the level of expertise required for hardware
design. By eliminating human involvement in the lower-level implementation
tasks, the time and effort for developing and debugging hardware are reduced.
These same qualities also make TRAC an attractive tool for experts to prototype
large designs.

This paper describes the compilation of TRS into RTL via simple exam-
ples. Section 2. presents an introduction to TRS’s for hardware descriptions.
Section 3. explains how TRAC extracts logic and state from a TRS’s type dec-
laration and rewrite rules. Section 4. discusses TRAC’s strategy for scheduling
rules for concurrent execution to increase hardware performance. Section 5.
compares TRAC-generated RTL against hand-coded RTL after each is com-
piled for Field Programmable Gate Arrays (FPGA) using Xilinx Foundation 1.5i
synthesis package. Section 6. surveys related work in high-level hardware de-
scription and synthesis. Finally, Section 7. concludes with a few brief remarks.

2. TRS FOR HARDWARE DESCRIPTION

A TRS consists of a set of terms and a set of rewriting rules. The general
structure of rewriting rules is:

pat lhs if p ! exprhs

A rule can be used to rewrite a term s if the rule’s left-hand-side pattern patlhs
matches s or a subterm in s and the predicate p evaluates to true. A successful
pattern match binds the free variables of patlhs to subterms of s. When a rule
is applied, the resulting term is determined by evaluating the right-hand-side
expression exprhs in the bindings generated during pattern matching.

In a functional interpretation, a rule is a function which may be expressed
as:

� s. case s of
pat lhs ) if p then exprhs else s

) s

The function uses a case construct with pattern-matching semantics in which
a list of patterns is checked against s sequentially top-to-bottom until the
first successful match is found. A successful match of patlhs to s creates
bindings for the free variables of patlhs, which are used in the evaluation of the
“consequent” expression exprhs. If pat lhs fails to match to s, the wild-card
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pattern ‘ ’ matches s successfully and the function returns a term identical to
s.

In a TRS, the effect of a rewrite is atomic, that is, the whole term is “read”
in one step and if the rule is applicable then a new term is returned in the
same step. If several rules are applicable, then any one of them is chosen
nondeterministically and applied. Afterwards, all rules are re-evaluated for
applicability on the new term. Starting from a specially-designated starting
term, successive rewriting progresses until the term cannot be rewritten using
any rule.

Example 1 (GCD): Euclid’s Algorithm for finding the greatest common divi-
sor (GCD) of two integers may be written as follows in TRS notation:

GCD Mod Rule
Gcd(a, b) if (a�b)^(b 6= 0) ! Gcd(a�b, b)

GCD Flip Rule
Gcd(a, b) if a<b ! Gcd(b, a)

The terms of this TRS have the form Gcd(a,b), where a and b are positive
integers. The answer is the first sub-term of Gcd(a,b) when Gcd(a,b) cannot
be reduced any further. For example, the term Gcd(2,4) can be reduced by ap-
plying the Flip and Mod rules to produce the answer 2: Gcd(2,4) ! Gcd(4,2)
! Gcd(2,2) ! Gcd(0,2) ! Gcd(2,0) 2

TRS’s for hardware description are often nondeterministic (“not confluent”
in the programming language parlance) and restricted so that the terms cannot
grow. The latter restriction guarantees that a system described by our TRS’s
can be synthesized using a finite amount of hardware. The nondeterministic
aspect of TRS’s has a strong flavor of modeling distributed algorithms as
state-transition systems. (See for example [Manna and Pnueli, 1991, Lamport,
1994, Lynch, 1996, Chandy and Misra, 1988]). The focus of this paper,
however, is on automatic synthesis rather than on formal verification of an
implementation against a specification.

In the rest of this section we will describe the TRS notation accepted by
TRAC. It includes built-in integers, booleans, common arithmetic and logical
operators, non-recursive algebraic types and a few abstract datatypes such as
arrays and FIFO’s. Other user-defined abstract datatype, with both sequential
and combinational functionalities, can be included in synthesis by providing
an interface declaration and its implementation.
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2.1 SIMPLE TYPES

The language accepted by TRAC is strongly typed, that is, every term has a
type specified by the user. The complete list of allowed type declarations are:

TYPE :: STYPE
[] CPRODUCT
[] ABSTRACT

CPRODUCT :: CNk(TYPE1, ..., TYPEk) where k > 0

ABSTRACT :: Array[STYPEidx] STYPE
[] Fifo STYPE
[] ArrayCAM [STYPEidx] STYPEkey, STYPE
[] FifoCAM STYPEkey, STYPE

We begin by describing simple types (STYPE), which include built-in inte-
ger, product and algebraic (disjoint) union types. Product types are designated
by a constructor name followed by one or more elements. An algebraic union
is made up of two or more disjuncts. A disjunct is syntactically similar to a
product except a disjunct may have zero elements. An algebraic union with
only zero-element disjuncts is also known as an enumerable type. Product and
algebraic unions can be composed to construct an arbitrary type hierarchy, but
no recursive types are allowed.

STYPE :: Bit[N ]
[] PRODUCT
[] ALGEBRAIC

PRODUCT :: CNk(STYPE1, ..., STYPEk) where k > 0

ALGEBRAIC :: DISJUNCT k DISJUNCT
[] DISJUNCT k ALGEBRAIC

DISJUNCT :: CNk(STYPE1, ..., STYPEk) where k � 0

The TRS in Example 1 should be accompanied by the type declaration:

Type GCD = Gcd(NUM, NUM)
Type NUM = Bit[32]

Example 2 (GCD2): We give another implementation of GCD to illustrate
some modularity and types issues. Suppose we have the following TRS to
implement the mod function.

Type VAL = Mod(NUM, NUM) k Val(NUM)
Type NUM = Bit[32]
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Mod Iterate Rule
Mod(a, b) if a�b ! Mod(a�b, b)

Mod Done Rule
Mod(a, b) if a<b ! Val(a)

Using this definition of mod, GCD can be written as follows:

Type GCD2 = Gcd2(VAL, VAL)
GCD2 Flip&Mod Rule

Gcd2(Val(a), Val(b)) if b 6=0 ! Gcd2(Val(b), Mod(a, b)) 2

2.2 ABSTRACT TYPES

Abstract datatypes are defined by their interfaces only and are included to
facilitate hardware description and synthesis. An interface can be classified
as either combinational or state-transforming. We discuss array, FIFO and
content addressable memory abstract datatypes next.

Array is used to model register files and memories, and has only two op-
erations defined in its interface. Syntactically, if a is an Array then a[idx]
represents a combinational “read” operation which gives the value stored in the
idx’th location, and a[idx :=v], a state-transforming “write” operation gives a
new Array identical to a except location idx has been updated to value v . We
only support Array of STYPE with an enumerable index type.

Fifo buffers provide the primary means of communication between different
modules and pipeline stages. The two main state-transforming operations on
Fifo’s are enqueuing and dequeuing. Enqueuing element e to q appears as
enq(q,e) while dequeuing the first element from q appears as deq(q). An
additional state-transforming interface clr(q) clears the contents of the Fifo.
The combinational operation first(q) gives the value of the first element in q.
In the description phase, Fifo is abstracted to have a bounded but unspecified
size. A rule that makes use of Fifo interfaces has an implied predicate condition
that tests whether the Fifo is not empty or not full, as appropriate. We also
support access to other Fifo entries with appropriate projection functions. Fifo
entries are also restricted to be of STYPE.

ArrayCAM is similar to Array except its data fields are subdivided into a
key field and a normal-data field. The same is true for FifoCAM and Fifo.
The content-associative lookup interface cam(a,key) returns true if an entry
with a matching key field is found. The content-associative lookup interface
camidx(a,key) returns the index of an entry with a matching key field whereas
camdata(a,key) returns the data field. The value of camidx(a,key) and cam-
data(a,key) are undefined when cam(a,key) is false.
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As can be seen from the definition of TYPE, abstract datatypes are not
allowed in algebraic disjuncts. Thus, only a complex product type can have
elements of abstract types.

2.3 RULE SYNTAX

Syntactically, a rule is composed of a left-hand-side pattern and a right-hand-
side expression. The predicate and where bindings are optional. The where
bindings on the left-hand-side can require pattern matching. Any failure in
matching PATi to EXPi in the where bindings also deems the rule inapplicable.
The expression on the right-hand-side, exprhs, can also have where bindings,
but RHS where bindings can be made only to simple variables and do not in-
volve pattern matching. In the following ‘ ’ represents the “don’t care” symbol.

RULE :: LHS ! RHS
LHS :: PATlhs [if EXPp] [where PAT1=EXP1, ..., PATn=EXPn]
PAT :: [] variable [] constant [] CN0( ) [] CNk(PAT1, ..., PATk)

RHS :: EXPrhs [where variable1=EXP1, ..., variablen=EXPn]
EXP :: [] variable [] constant [] CN0( ) [] CNk(EXP1, ..., EXPk)

[] Prim-Op (EXP1, ..., EXPk)
Prim-Op :: Arithmetic [] Logical [] Array-Access [] FIFO-Access

The type of PATlhs must be either CPRODUCT or ALGEBRAIC. In addi-
tion, each rule must have PATlhs and EXPrhs of the same type. This restriction,
together with non-recursive type declaration, guarantees that the size of every
term is finite and the size does not change by applying the rewriting rules. In
Example 2, VAL is an ALGEBRAIC type with two disjuncts, Val and Mod. It
is because of this type declaration that the Mod Done Rule does not violate the
type discipline - both sides of the rule have the type, VAL.

Example 3 (Single-Cycle RISC Processor): The state of an unpipelined,
simple RISC processor is described by its program counter (PC), register file
(RF) and memory (MEM). This information is captured in the following type
declaration:
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Type PROC = Procs(PC, RF, MEM)
Type PC = Bit[N ]
Type VAL = Bit[N ]
Type RF = Array VAL[RNAME]
Type RNAME = Reg0( ) k Reg1( ) k Reg2( ) k . . . . Regm( )
Type MEM = Array INST[PC]
Type INST = Loadc(RNAME,VAL)

k Loadpc(RNAME)
k Add(RNAME,RNAME,RNAME)
k Sub(RNAME,RNAME,RNAME)
k Bz(RNAME,RNAME)
k Load(RNAME,RNAME)
k Store(RNAME,RNAME)

The processor we synthesized in Section 5. has four 32-bit general purpose
registers, i.e. N=32, m=4. The behavior of the 7 instructions — move PC to
register, load immediate, register-to-register addition and subtraction, branch if
zero, memory load and store — can be specified as a TRS by giving a rewrite
rule for each instruction. The following rule conveys the execution of the Add
instruction.

Procs(pc, rf , mem)
where Add(rd ,r1,r2)=mem[pc]

! Procs(pc+1, rf [rd :=(rf [r1]+rf [r2])], mem) 2

Example 4 (Pipelined RISC Processor): The processor in Example 3 can be
pipelined by introducing FIFO’s as pipeline-stage buffers and by systematically
splitting each rule into local rules for various pipeline stages. For example,
in a two-stage pipeline design, the processing of an instruction can be broken
down into separate fetch and execute steps. We model buffers between pipeline
stages as a Fifo of an unspecified but finite size. In a behavioral description, it
is convenient if the operation of each stage can be described without reference
to other stages. FIFO buffers provide this isolation; most pipelined design rules
dequeue an input from one FIFO and enqueue the result into another FIFO. In
the synthesis phase these FIFO buffers are replaced by a fixed-depth FIFO or
simply registers, and flow control logic ensures that a rule does not fire if the
destination FIFO is full.

Here, we introduce the pipeline buffer BS in the declaration of the PROCp
term.
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Type PROCp = Procp(PC, RF, BS, MEM)
Type BS = Fifo ITEMP
Type ITEMP = Loadc(RNAME,VAL)

k Loadpc(RNAME)
k Add(RNAME,VAL,VAL)
k Sub(RNAME,VAL,VAL)
k Bz(VAL,VAL)
k Load(RNAME,ADDR)
k Store(ADDR,VAL)

The Add and Bz instruction rules are split into Fetch and Execute stage rules:

Fetch Rule
Procp(pc, rf , bs, mem)

! Procp(pc+1, rf , enq(bs,mem[pc]), mem)
Add Rule

Procp(pc, rf , bs, mem)
where Add(rd ,r1,r2) = first(bs)

! Procp(pc, rf [rd :=(rf [r1]+rf [r2])], deq(bs), mem)
Branch-Taken Rule

Procp(pc, rf , bs, mem)
if rf [rc]=0 where Bz(rc,ra) = first(bs)

! Procp(rf [ra], rf , clr(bs), mem)
Branch-Not-Taken Rule

Procp(pc, rf , bs, mem)
if rf [rc]6=0 where Bz(rc,ra) = first(bs)

! Procp(pc, rf , deq(bs), mem)

Notice the Fetch rule is always ready to fire. At the same time one of the
execute stage rules may be ready to fire as well. This is the first example we
have seen where more than one rule can be enabled on a given state. Even
though according to TRS semantics, only one rule should be fired in each step,
we will see that our compiler tries to fire as many rules in parallel as possible
while maintaining correct TRS execution semantics. Without parallel firing of
rules we won’t get the pipelining effect we want.

Since there is a race to update the pc between the Fetch and the Branch Taken
rules, the above rules can exhibit nondeterministic behavior. Specification of
microprocessors and cache-coherence protocols often entails nondeterminism,
even though a given realization is usually completely deterministic. Our com-
piler can handle such nondeterministic TRS’s. 2

In addition to the TRS-to-RTL compilation to be described in Sections 3.
and 4., we are developing source-to-source TRS transformations that can
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achieve the kind of pipelining described in Example 4. The dependence be-
tween the rules has to be analyzed carefully to ensure the correctness of all
such transformations. Presently, human intervention is required to guide the
transformation process at the high level. It is also possible to automatically
derive the rules for a superscalar version of the pipelined processor in Example
4 [Arvind and Shen, 1999].

2.4 INPUT AND OUTPUT

Traditionally a TRS describes a closed system, but we are experimenting
with new notations and semantics to support description of a system with input
and output (I/O) ports. In an approach that only requires minimal deviation
from a standard TRS, the designer assigns I/O specific semantics to terms using
source code annotations. For example, a wrapper to start and terminate a GCD
computation can be given as:

Type TOP = Top(MODE, NUMI, NUMI, NUMO, GCD)
Type MODE = iport Load( ) k Run( )
Type NUMI = iport NUM
Type NUMO = oport NUM
GCD Start

Top(Load( ), x, y, , )
! Top( , , , 0, Gcd(Val(x), Val(y)))
GCD Done

Top(Run( ), , , , Gcd(Val(ans), Val(0)))
! Top( , , , ans, )

Ignoring the I/O annotations ( iport and oport ), the type declaration
and rules can be interpreted exactly as before. In fact, the combinational logic
generated by TRAC is the same irrespective of I/O annotations. The first rule
states as long as the first subterm of TOP is Load( ), the GCD term can be
rewritten using the second and third subterms of TOP. The second rule states
if the first subterm of TOP is Run and the GCD computation is done (when
the second subterm of GCD is 0), then copy the first subterm of GCD to the
fourth subterm of TOP.

The only effect of annotating the fourth subterm of TOP as an oport is
that TRAC will attach wires to the output of the registers in that subterm and
make their content externally visible through an output port. Conversely, the
effect of annotating a term as an iport is that the wires normally connected
to the output of the registers in that term are redirected to an input port instead.
A rule cannot rewrite a term labeled as an iport since the value of the
term does not correspond to any internal register. From the TRS perspective,
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an iport term may change unexpectedly, but atomically, without any rule
application.

By driving the appropriate values on the input ports corresponding to the
first three subterms of TOP, a new GCD computation is started. Asserting
signals corresponding to Run( ) at the input port enables GCD to execute to
completion, and at which point, the answer appears on the output port as a
consequence of the GCD Done rule.

3. BASIC SYNTHESIS STRATEGY

Although TRS’s provide great flexibility in specifying hierarchically orga-
nized state and state transitions, a TRS, where recursive types are not allowed
and rules are required to have the same type on both sides of !, can only
describe a finite state machine (FSM). TRAC maps a TRS to a synchronous
FSM by

� Mapping TRS terms to storage elements (e.g., registers, register files and
other abstract datatypes)

� Mapping TRS rules to combinational logic that generates next state
values and enable signals for storage elements.

In this section we first describe a functional interpretation of each rule and then
derive an “action on state” view of the same rule. The latter view is the starting
point for hardware synthesis.

3.1 FUNCTIONAL INTERPRETATION OF A RULE:
� AND � FUNCTIONS

In a functional interpretation, a rule of the form

pat lhs
if expp where pat1 = explhs;1, ..., patn = explhs;n

! exprhs
where var1 = exprhs;1, ..., varm = exprhs;m

is a function of typeof(patlhs)!typeof(patlhs), and returns a term identical to
the input term if the rule is not applicable. If the rule is applicable, the return
value is a new term based on the evaluation of exprhs using the bindings created
during pattern matching.
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rule = � s. case s of
pat lhs )

case explhs;1 of
pat1 )

...
case explhs;n of

patn )
if expp then

let
var1 = exprhs;1, ..., varm = exprhs;m

in
exprhs

else

s
) s

...
) s

) s

This function can be broken down into its two components: � and �.
The � function determines a rule’s applicability to a term and has the type,
typeof(patlhs)!Boolean. The � function, on the other hand, determines the
new term in case � evaluates to true.

� = � s. case s of
pat lhs )

case explhs;1 of
pat1 )

...
case explhs;n of

patn ) expp
) false

...
) false

) false

� = � s. let
pat lhs = s
pat1 = explhs;1, ..., patn = explhs;n
var1 = exprhs;1, ..., varm = exprhs;m

in
exprhs
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Figure 1.1 A graph representation of the GCD2 type structure from Example 2. NUM is
treated as a type alias for Bit[32].

Using � and �, an equivalent functional representation of a rule is

rule = � s. if �(s) then �(s) else s

3.2 A RULE AS A STATE TRANSFORMER

In the architectural context, terms represent state, and rules define how the
state can be transformed. If we restrict ourselves to synchronous circuits then
each rule “reads” the state at the beginning of the clock cycle and if it can fire, it
modifies the state at the end of the same clock cycle. In this “actions on state”
view of a rule, one needs to update only those parts of the state that actually
change. If two rules are enabled simultaneously and affect disjoint parts of the
state then it is possible to execute both rules in the same clock cycle. After
discussing the hardware to execute one rule in this section, we will return to
the issue of concurrent firings in the next section.

Mapping Terms to Storage Elements: A term can be represented as a tree
based on its type. For example, the tree representation of GCD2 is shown in
Figure 1.1. Algebraic types have an extra branch, Tag, where a register of width
dlog2de records which of the d disjuncts the term belongs to. An ALGEBRAIC
node has a branch for each of the disjuncts, but, at any time, only the branch
whose tag matches the content of the tag register holds meaningful data. As
an example we have shaded the active portions of the tree corresponding to
Gcd(Val(2), Mod(4, 2)) in Figure 1.1.

We can assign an unique name to each storage element based on its path
(also known as projection) from the root. For example, the name for the second
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(from the left) NUM register in Figure 1.1 would be “Proj1.Mod.Proj2”. The
storage implied by a term can be represented as a set of <proj , REG[N ]>
pairs. For example the storage elements of GCD2 are represented by the set

f<Proj1.Tag, REG[1]>, <Proj1.Val.Proj1, REG[32]>,
<Proj1.Mod.Proj1, REG[32]>, <Proj1.Mod.Proj2, REG[32]>,
<Proj2.Tag, REG[1]>, <Proj2.Val.Proj1, REG[32]>,
<Proj2.Mod.Proj1, REG[32]>, <Proj2.Mod.Proj2, REG[32]>g

As an optimization, registers on different disjuncts of an ALGEBRAIC
node can share the same physical register. In Figure 1.1, the registers aligned
horizontally are mappable to the same register. This idea can be expressed
as allowing multiple pathnames to be associated with a single register state
element. In a type structure that includes Array and other abstract datatypes,
nodes corresponding to the abstract datatypes appear at the leaves of the tree.

The value embedded in the storage elements of a term can be represented in
a similar manner using a set of <proj , value> pairs. For example the values
of storage elements of Gcd(Val(2), Mod(4, 2)) are represented by the set

f<Proj1.Tag, Val>, <Proj1.Val.Proj1, 2>,
<Proj2.Tag, Mod>, <Proj2.Mod.Proj1, 4>, <Proj2.Mod.Proj2, 2>g

The procedure extract-state(s,proj) to extract the values of storage elements
from term s is defined below. Initially it is called with an empty projection
�. Since we propose to use this function only at compile time, we assume the
representation of a term includes its type structure.

extract-state(s,proj)=
case s of

Bit[N ] ) f<proj , s>g
CPRODUCT: CNk(s1, ..., sk) )

extract-state(s1 ,proj .Proj1)[ ... [ extract-state(sk ,proj .Projk)
ALGEBRAIC: CNk(s1, ..., sk) )

extract-state(s1 ,proj .CNk.Proj1) [ ...
[ extract-state(sk ,proj .CNk.Projk) [ f<proj .Tag, CNk>g

Array: ) f<proj .Array, s>g
Fifo: ) f<proj .Fifo, s>g

Rules as Actions on Storage Elements: Because a rule’s patlhs and exprhs
are required to have the same type, the term resulting from a rewrite must have
the same storage structure as the initial term. In other words, beginning with
a TRS’s starting term and its storage elements, successive rewrite operations
never add or delete any storage elements. To implement a TRS, TRAC generates
a state structure that is extracted from the starting term, and the rules are
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implemented as combinational logic that updates the content of the storage
elements.

The pattern matching on the left-hand-side of a rule (the � function) es-
sentially tests the values of some of the storage elements. � can also include
combinational functions from the interface of abstract datatypes. � for the
Flip&Mod rule of Example 2 will look like the following:

� = (Proj1.Tag(state) = Val) ^ (Proj2.Tag(state) = Val)
^ (Proj2.Val.Proj1(state) 6= 0)

The right-hand-side of a rule (or �) can be viewed as specifying actions on
the storage elements of the input term. The actions can be represented in a set
of <proj , action> pairs. Possible actions include setting a register to a value
(set(v)) or invoking an abstract datatype’s state-transforming interface. The
� of the Flip&Mod rule in Example 2 can be viewed as the following set of
actions:

f<Proj1.Tag, set(Val)]>, <Proj1.Val.Proj1, set(b)>,
<Proj2.Tag, set(Mod)>, <Proj2.Mod.Proj1, set(a)>,
<Proj2.Mod.Proj2, set(b)>g

Recall, a and b refer to some subterms in the initial term s as established by
the pattern matching semantics. In cirucit implementation, a and b refer to the
initial values of the corresponding storage elements.

Notice, the left-hand-side of the rule requires the first tag register (Proj1.Tag)
to be Val when this rule is applicable. Thus we can detele the action<Proj1 .Tag,
set(Val)> without affecting the outcome. Thus, if a compiler can detect that a
storage element is assigned the same value as its original content, it can delete
that particular action. In general, the necessary actions when a rule fires are

extract-state(�(s),�) � extract-state(s,�)

where ‘�’ represents the set difference. In practice, instead of dynamically
testing for equality between the next and current state values of a register to
eliminate actions, TRAC statically eliminates actions in which a register is
updated by a value coming from itself and when a register is updated by the
same value that it must have for � to be satisfied.

In another example, consider the pipelined processor of Example 4, whose
storage elements are

f<Proj1, pc>, <Proj2.Array, rf>,
<Proj3.Fifo, bs>, <Proj4.Array, mem>g.
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The Add rule specifies the following actions on this state:

f<Proj2.Array, array-update(rd ,rf [r1]+rf [r2])> <Proj3.Fifo, deq( )>g

In general, a rule can be applied to a subterm of a whole term. In these
cases, extract-state(s,proj) is called by a projection, relative to the whole term,
that corresponds to the subterm. Furthermore, a rule can be applied to many
parts of a term. In these cases, a rule’s logic is instantiated multiple times, once
for each state sub-structure where the rule is to be applied. In an alternative
interpretation, a subterm-applicable rule needs to be lifted to the same type
as the TRS’s starting term prior to analysis. The effect of applying the lifted
rule to the whole term is the same as applying the original rule to the subterm
within the whole term. A subterm rule may be applicable to multiple positions
in the whole term. A separate lifted version must be created for each possible
application. For example, the Mod Done rule from GCD2 in Example 2 could
be applicable to both the first and second subterms of a GCD2 term. The two
lifted versions of the Mod Done rule are:

Gcd2(Mod(a, b), t) if a<b
! Gcd2(Val(a), t)

and

Gcd2(t , Mod(a, b)) if a<b
! Gcd2(t , Val(a))

3.3 CIRCUIT SYNTHESIS

The � and � functions for the two GCD rules, GCD Mod and GCD Flip,
in Example 1 are given below. A valid starting term for this TRS has the
form Gcd(x, y) where x and y are postive integers. This starting term implies
the set of storage elements: f<Proj1, REG[32]>, <Proj2, REG[32]>g. For
conciseness, we refer to these registers as a and b in the following definitions:

�Mod = a�b ^ b 6=0
�F lip = a<b
�Mod;a = set(a� b)
�F lip;a = set(b)
�
F lip;b = set(a)

For hardware synthesis we break down � into actions on individual storage
elements as specified above. Therefore, for each storage element e affected by
a rule R, �R;e gives its next state value. �R is the latch-enable signal of all the
affected registers. Two state transition circuits corresponding to the two GCD
rules, considered indenpendently, is first shown in Figure 1.2.
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Figure 1.3 Circuit for computing Gcd(a, b) from Example 1.

The final circuit is arrived by combining the two circuits. In these cases,
both rules affect the storage element a but only one of them can actually fire in a
given state. When merging the actions from rules with mutally-exclusive firing
conditions (�), the final latch enable is simply the logical-OR of their firing
conditions (e.g., �Mod + �F lip in this example), and the next state values are
chosen from all of the �’s using a multiplexer where a rule’s � enables its own
�. A sample update circuit that merges �’s from two mutually-excluisve rules
is illustrated as circuit A in Figure 1.4. Figure 1.3 shows the FSM generated
by combining the � and � from both GCD rules.

However, in general, several �’s could be asserted, i.e., several rules could be
applicable. In the simplest solution, a new set of disjoint triggers �1; :::; �n can
be generated using a round-robin priority encoder fed by �1; :::; �n. �’s, which
are mutually exclusive, globally replace �’s at all multiplexers and at all latch
enable OR-gates. A sample update circuit that merges �’s from two possibly
conflicting rules is illustrated as circuit B in Figure 1.4. This arbitration is
simple and correct, but the circuit is inefficient and allows only one rewrite per
cycle.



Hardware Synthesis from Term Rewriting Systems 17

1
δ

1
δ

1
π π

2

2
ϕ

ϕ
1

1
δ

2
ϕϕ

2
ϕ

ϕ
1

1
δ

2
ϕϕ

π
2
1

π
π

2
1

π

π
2
1

π
π

2
1

π

latch enable

δ
2

δ

latch enable

δ
2

δ

Encoder
Priority

RR latch enable

δ
2

δ

1

Encoder
Priority

latch enable

δ
2

δ

1

Static

 

(D) Dominating

(B) Conflicting

(C) Sequential Composition

π π
12

πRule 1 <  Rule 2

(A) Conflict Free

Figure 1.4 Circuits for combining two rules’ � actions on the same state element.

TRAC does not synthesize any state structures for abstract datatypes. When
an abstract datatype is used in a TRS, TRAC instantiates the corresponding
Verilog module in the RTL and makes appropriate connections to the interfaces.
The user or the library is expected to provide a Verilog module in RTL for each
abstract datatype. A state transforming interface has an implied signal driving
by � (or �) to enable the state changes when the corresponding rule is fired.

4. EXPLOITING PARALLELISM

According to TRS semantics, if multiple rules can simultaneously become
applicable on a given term s, one of the rules is chosen nondeterministically
and applied atomically to rewrite s to s’. Next, a new round of rewriting
is started from scratch on s’. When a TRS exhibits such nondeterminism,
multiple behaviors are allowed. Using a scheduler based on a round-robin
priority encoder as discussed in Section 3.3, TRAC implements one of the
allowed behaviors in a deterministic circuit that fires one rule per clock cycle.
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If the simultaneously applicable rules involve mutually disjoint parts of the
term, then these rules can be executed in any sequence successively to reach
the same final term. In this scenario, although the semantics of a TRS specifies
a sequential and atomic term rewriting, a hardware implementation can exploit
the underlying parallelism and execute the rules concurrently in the same clock
cycle. In general it is not safe to allow two arbitrary applicable rules to execute
in the same clock cycle because executing one of them can alter the value of
the � or the � function of the other. This section formalizes the conditions for
simultaneous rule execution and suggests a scheduling that improves hardware
performance by firing multiple rules in the same clock cycle when allowed.

4.1 TRANSPARENCY

The minimum condition for allowing two simultaneously applicable rules to
fire in the same clock cycles is captured by the �-transparent relationship.

Definition 1 (�-transparent)
RuleR1 is �-transparent to ruleR2, denoted asR1 <� R2, if 8s:�1(s)^�2(s)
) �2(�1(s))

This condition states that if two rules ever become applicable on the same
term andR1<�R2, then firingR1 first does not preventR2 from firing on the re-
sulting term. Firing in the reverse order may not necessarily be allowed, unless
a stronger condition of mutual-transparency (or �-conflict-free) is satisfied.

Definition 2 (�-conflict-free)
Rules R1 and R2 are �-conflict-free if (R1 <� R2) ^ (R2 <� R1)

Given two rules where R1<�R2, there are two basic approaches to allow
both rules to fire in the same clock cycle. The first approach cascades the com-
binational logic from the two rules such that R1 is applied first to the physical
state elements, and R2 is applied to the effective state after attempting to apply
R1. In effect, we are creating a composite rule where

� s . if �1(s) then
if �2(s) then �2(�1(s)) else �1(s)

else if �2(s) then �2(s) else s

Arbitrary cascading does not always improve circuit performance since cas-
cading combinational logic may lead to a longer cycle time, especially when
several rules are composed. In a synchronous design, if the clock period
increases, every rule firing is penalized, even when at most one rule can fire.

In a more practical approach, the input to the combinational logic from all
rules are driven directly by state elements. Two transparent rules are allowed
to execute in the same clock cycle only if the correct resulting state can be
constructed from independent evaluation of the same current state.
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4.2 PARALLEL COMPOSIBILITY

Two rules that do not affect the same storage elements are parallel composi-
ble, provided allowing them to execute concurrently on the same state produces
a behavior that corresponds to at least one ordering of rule-execution in TRS.

Definition 3 (Parallel-Composible Transparency)
Rule R1 is PC-transparent to rule R2, denoted as R1 <PC R2, if

(R1 <� R2) ^ 8s:(�1(s) ^ �2(s))) �2(�1(s)) = PC(s; �1(s); �2(s))

Definition 4 (Parallel Composition)
PC(s, s1, s2) =

case s of
Bit v)

if s1 = s2 then s1
else if s1 = v then s2
else if s2 = v then s1
else ?

CNk(:::))

if s1 = s2 then s1
else if s1 = n then s2
else if s2 = n then s1
else if (Tag(s1) =CNk) ^ (Tag(s2) = CNk) then

CNk(PC(Proj1(s);Proj1(s1);Proj1(s2)), ...,
PC(Projk(s);Projk(s1);Projk(s2))

else ?
Arrayn a) 81�i�n: a[i:= PC(a[i],s1[i],s2[i])]
Fifo f )

if (s1 is suffix of f) ^ (f is prefix of s2) then
chop prefix( chop suffix(s1; f);s2)

if (s2 is suffix of f) ^ (f is prefix of s1) then
chop prefix( chop suffix(s2; f);s1)

else ?
Essentially what this definition says is that, if both rules R1 and R2 want

to update a register, then they must produce the same value. In the case of
an array, if the two rules update different elements of the array, then parallel
composition will work assuming the array has multiple write ports. In the
case of a FIFO, if one rule enqueues and the other dequeus then they can be
combined to execute in the same cycle.

Note R1 <PC R2 does not imply that the outcome is confluent. Consider
the following two rules that operate on four registers:

R1: F(1,rB ,rC ,rD) ! F(1,rB ,1,rD)
R2: F(rA,1,rC ,rD) ! F(0,1,rC ,1)
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Now consider the starting term F(1,1,rC ,rD). The effect of executing R1

after R2 is F(0,1,1,1). On the other hand if R2 is executed first the result would
be F(0,1,rC ,1) and R1 will no longer fire.

For two rules to be confluent we need the following stronger condition.

Definition 5 (Conflict-free)
Rules R1 and R2 are conflict-free if (R1 <PC R2) ^ (R2 <PC R1)

If two rules are parallel composible, the �’s do not collide and no special
merging circuit is required to arbitrate their actions on the affected storage
elements.

4.3 SEQUENTIAL COMPOSIBILITY

Even if two rules do affect some common state, by carefully prioritizing the
effect of the two rules such that the effects of R2 overrides R1 (in case R1 <�

R2), a legal outcome can still be constructed from simultaneous evaluation of
the two rules on the same current state.

Definition 6 (Sequentially-Composible Transparency)
Rule R1 is SC-transparent to rule R2, denoted as R1 <SC R2, if

(R1 <� R2) ^ 8s:(�1(s) ^ �2(s))) �2(�1(s)) = SC(s; �1(s); �2(s))

Sequential composition that implements the priotization is defined as

Definition 7 (Sequential Composition)
SC(s, s1, s2) =

case s of
Bit v) if s2= v then s1 else s2
CNk(:::))

if s2= s then s1
else if (Tag(s1) =CNk^(Tag(s2) = CNk) then

CNk(SC(Proj1(s);Proj1(s1);Proj1(s2)), ...,
SC(Projk(s);Projk(s1);Projk(s2))

else s2
Arrayn a) 81�i�n: a[i:= SC(a[i],s1[i],s2[i])]
Fifo f )

if (s1 is suffix of f) ^ (f is prefix of s2) then
chop prefix( chop suffix(s1 ; f);s2)

if (s2 is suffix of f) ^ (f is prefix of s1) then
chop prefix( chop suffix(s2 ; f);s1)

else ?

If R1 and R2 are sequentially composible (R1<�R2), then prioritized �1
and �2 can be generated. However, instead of applying them globally, they are
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only used to replace �1 and �2 at state elements that are affected by both rules.
If a register is only affected by either R1 or R2 then � can be used directly.
Circuit (C) in Figure 1.4 illustrates the update circuit for this case.

4.4 DOMINANCE

Definition 8 (Dominance)
Rule R2 dominates rule R1, denoted as R1 <D R2, if

(R1 <� R2) ^ 8s:(�1(s) ^ �2(s))) �2(�1(s)) = �2(s)

If two rules, R1 and R2 are conflicting, but R2 dominates R1, we can
include this information in the priority encoder when generating �’s for global
replacement of their �’s. If �1 and �2 are both asserted on a cycle, instead
of using a fair round-robin priority encoder, the encoder would statically give
priority to �2. For a two rule circuit, �2=�2 and �1=�1^:�2. Circuit (D) in
Figure 1.4 illustrates the update circuit for this case.

4.5 SCHEDULING FOR SIMULTANEOUS FIRING

To conclude this section, we describe a scheduler that is currently imple-
mented in TRAC that makes use of conflict-free (CF ) relationships. In general,
an exact test for CF relationship between two arbitrary rule instances is ex-
pensive (Finding an s such that �i(s) ^ �j(s) is like solving SAT ). Instead,
TRAC performs several conservative tests to find as many CF relationships as
possible. First, two rule instances that read and write non-overlapping parts of
the systems are CF . If two rule instances do not rewrite the same registers, and
if none of the registers affected by the � of one is used by the � and � of the
other, and vice versa, then the two rules are CF since this condition is stronger
than the requirement for CF . Lastly, TRAC symbolically analyzes pairs of �’s
to conservatively determine when a pair can never be satisfied simultaneously
and thus are CF by default.

TRAC makes use of certain axioms when analyzing the conflict relationships
between rules that reference abstract datatype interfaces. For example,

(a[idx :=v])[idx]=v
((a[idx :=v])[idx’:=v])[idx]=v if idx 6= idx’

deq(enq(q,e)) = enq(deq(q),e) if q is not empty
first(q) = first(enq(q,e)) if q is not empty

Based on the analysis above and taking into account the properties of FIFO
buffers, it can be shown that the rules of Example 4 are CF except for the Fetch
and the Branch-Taken rule. However, it can be shown that the Branch-Taken
rule dominates the Fetch rule in the sense that the effect of applying the Branch-
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Taken rule after the Fetch rule is the same as not applying the Fetch rule at all
i.e., (�BzN (s) = �BzN (�Fetch(s))). Thus, instead of arbitrating between these
two rules, the compiler gives priority to the Branch-Taken rule.

After TRAC has establish CF relationships between as many rule instances
as possible, a graph of rule instances can be constructed by adding an edge
between each non-CF pairs. Scheduling groups is formed by partitioning the
graph into connected components. Different groups never interfere and can be
scheduled independently. For each group, a round-robin priority encoder can
be used to map � to � for arbitration. For a small group, an n � n look-up
table can be computed off-line to encode � to � where more than one � can be
asserted if the rules of the asserted �’s are CF .

5. PERFORMANCE EVALUATION

TRAC generates RTL Verilog that can be synthesized to a variety of tech-
nologies by commercial tools like Synopsys and Xilinx hardware compilers.
In this paper, we evaluate the quality of the TRAC-generated RTL’s against
hand-coded RTL when compiled for Xilinx FPGA’s.

Synthesis of the GCD Circuit: Both Example 1 and 2 are compiled to RTL
by TRAC. The compile time is less than 2 sec on a 166MHz PowerPC604e. As
a reference, our colleague, Daniel L. Rosenband, provided a hand-optimized
Verilog RTL for GCD that uses only two 32-bit registers, a single subtracter, and
simple boolean logic gates. The three RTL’s are compiled for XC4010XL-09
FPGA using Xilinx Foundation 1.5i tools. We report the number of flip-
flops and the overall utilization of the FPGA. In addition to the maximum
clock frequency, we also report the number of clock cycles needed to compute
GCD(53857�10957,91159�10957).

Version FF Util. Freq. Elapse
(bit) (%) (MHz) (cyc)

Example 1 64 20 44.2 54
Example 2 102 38 31.5 104
Hand RTL 64 16 53.1 54

The RTL generated by TRAC from Example 2 is significantly worse than
the hand-coded RTL because the input TRS maps to a sub-optimal hardware
structure. TRAC does not have the same ingenuity that allowed our colleague
to realize the high-level transformations that lead to the smaller and simpler
circuit of the hand-optimized RTL. However, the necessary information to
achieve the same high-level transformation can be expressed at the TRS level.
Given Example 1, TRAC produces an RTL that is structurally similar to the
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hand-coded version and compiles to within 25% of the hand-written RTL in
terms of circuit size and 17% in terms of circuit speed.

Synthesis of the Unpipelined Microprocessor: Hand-optimization can often
produce much more efficient implementations than machine compilation on
small designs. However, as the problem size increases, the pay-back of hand
optimizations diminishes while the effort required increases dramatically. This
is evident in the synthesis of the simple microprocessor from Example 3.
The TRAC generated RTL and a hand-coded Verilog RTL of the unpipelined
processor, when targeting an XC4013XL-08 FPGA, are comparable both in
size and speed.

Version FF Util. Freq.
(bit) (%) (MHz)

Example 3 161 60 % 40.0
Hand RTL 160 50 % 41.0

6. RELATED WORK

A behavioral description refers to specifying a component by its input/output
behavior without implementation or structural details. In industry, such descrip-
tions are given typically in a sequential language like the behavioral portion
of Verilog. Another approach is to extend or adapt a popular software lan-
guage. Transmorgafier-C[Galloway, 1995] and HardwareC[HardwareC, 1990]
compile hardware from a source language based on C. In these systems, some
constructs in C are overloaded to convey hardware related information such as
clocking and registered storage. In the Programmable Active Memory (PAM)
project, Vuillemin, et al. synthesize from an RTL in C++ syntax[Vuillemin
et al., 1996]. Algorithms described in data-parallel C languages have been
used to program an array of FPGA’s in Splash 2 [Gokhale and Minnich, 1993]
and CLAy[Gokhale and Gomersall, 1997]. Sequential C and Fortran programs
have been parallelized to target an array of simple configurable hardware struc-
tures[Babb et al., 1999]. The TRS-based behavioral descriptions are different
from these approaches because on one hand TRS terms convey structural in-
formation about the hardware, but on the other hand, TRS rules can embody a
set of behaviors, including concurrency and nondeterminism. This is not pos-
sible to express in any sequential language. TRS also offers a well-understood
formalism which is useful in verification.

More related to TRS are hardware description languages that have been
developed in the context of formal specification and verification. TRS is
perhaps closest to Lamport’s TLA’s. Windley uses the specification language
from the HOL[HOL, 1997] theorem proving system to describe a pipelined
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processor[Windley, 1995]. Matthews et al. have developed the Hawk language
to create executable specifications of processor micro-architectures[Matthews
et al., 1998]. However, none of these systems has been used in synthesis to the
best of our knowledge. With a somewhat different motivation, Communicating
Sequential Processes have been applied to hardware-software co-design by
Gupta et al.[Gupta and de Micheli, 1993] and Thomas et al.[Thomas et al.,
1993].

7. CONCLUSION

When applied in conjunction with reconfigurable technologies, TRAC can
drastically lower the entry cost of taking on a hardware project by people
who are not hardware designers by training. Compilers like TRAC have the
potential to close the traditional distinction of hardware and software by creating
a continuum of trade-offs between development cost and performance. We
anticipate the day when all computers are shipped with a FPGA next to the
CPU, and developers are just as ready to program the FPGA for a performance
critical application as they would program the processor today.
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