
Dynamic Cache Partitioning via Columnization

Computation Structures Group Memo 430

Derek Chiouy

Larry Rudolphy

Srinivas Devadasy

Boon S. Angz

yMassachusetts Institute of Technology

Laboratory for Computer Science

545 Technology Square, Cambridge, Massachusetts

fderek,rudolph,devadasg@lcs.mit.edu

zHP Labs

Palo Alto, California

boonang@exch.hpl.hp.com

This paper describes research performed at the Laboratory for Computer Science

of the Massachusetts Institute of Technology. Funding for this work is provided

in part by the Advanced Research Projects Agency of the Department of Defense

under the O�ce of Naval Research contract N00014-92-J-1310.





Dynamic Cache Partitioning via Columnization

Derek Chiouy Larry Rudolphy Srinivas Devadasy

Boon S. Angz

yMassachusetts Institute of Technology

Laboratory for Computer Science

545 Technology Square, Cambridge, Massachusetts

fderek,rudolph,devadasg@lcs.mit.edu

zHP Labs

Palo Alto, California

boonang@exch.hpl.hp.com

Abstract

This paper introduces column caching, a exible mechanism that allows software

to dynamically customize cache behavior through �ne-grain control of its placement

policy. For a set-associative cache, speci�c data can be restricted to a subset of the

usual target cache set during replacement. Through this simple enhancement, column

caching enables the cache to be partitioned. When done properly, this improves cache

utilization through both constructive and destructive interference, leading to overall

better system performance. Column caching provides a basic mechanism which can em-

ulate many di�erent hard-wired specializations, such as dedicated SRAM and separate

temporal and spatial cache, and further o�ers the advantage of dynamical repartition-

ing under software control. This paper introduces column caching, describes possible

implementations and presents a few example usages including preliminary performance

numbers.

1



1 Introduction

This paper proposes column caching as a simple enhancement to conventional cache

design that enables exible, dynamic partitioning of a cache under software control.

With this general mechanism the same cache hardware can emulate several distinct

specialized hardware mechanisms that are commonly used to deal with cache conicts

when memory reference patterns do not conform to the assumptions of LRU cache-

line replacement strategies. Existing solutions typically utilize separate, dedicated,

associative-memory hardware structures. Unfortunately, �xed division of fast memory

into separate pieces cannot achieve e�cient utilization of fast memory across all ap-

plications. In contrast, column caching pools the fast memory resources, deferring its

partitioning to run-time so that the system only allocates what is needed, when it is

needed.

As software and microprocessor architecture evolved over the years, memory ref-

erence pattern has changed too. The presence of an increasing amount of streaming

data and the incorporation of multi-threaded parallel processing into microprocessors

results in memory reference pattern that have less temporal locality. For example,

processing of a data stream can result in a long series of accesses to data that will not

be used again in the near future and simply thrashes the cache. Another example is

garbage collection, during which a large number, and possibly all, items in an execution

are examined, again thrashing the cache. Multitasking and multithreading makes the

problem worse by interleaving logically unrelated, but possibly physically interfering

cache accesses. Such reference patterns pollute standard caches with data that will

not be accessed again in the near future, potentially replacing data that will soon be

accessed again.

2



One perception of this problem is that these applications and systems have larger

cache footprints. A typical response is to adopt the brute-force solution of increasing

the cache size. Although this is a logically simply solution, caches currently already

occupy nearly three quarters of the chip area[17] and an even larger fraction of the

transistors on a processor die[11, 5]. A better approach is to seek ways of improving

cache utilization, e�ectively reducing application cache footprints. This paper shows,

in Section 3.3, that appropriate cache partitioning can have this bene�cial e�ect.

Static cache partitioning is an old idea. Instruction and data caches have long been

split in Harvard architectures and spatial/temporal caches are becoming popular[26, 29,

16, 2, 21, 13]. The static nature of these partitionings, however, often waste resources,

allocating too much to one partition and not enough to another. Column caching, with

its dynamic partitioning capability is thus vital for achieving the best partitioning.

The unpredictability of caches have made them unusable for time-critical data in

real-time embedded systems. Cache partitioning can overcome this unpredictability by

ensuring that a time critical data region is given its own region of cache where conict

will not occur. Section 3.1 shows how the column caching mechanism can be used in

this manner to emulate RAM.

The next section describes column caching, how it works, and how it is implemented.

In Section 3, several examples of how column caching can be used to emulate several

existing special-purpose solutions are described. Experiment results and comparison

to related work can also be found in this section. As this is still an early piece of work,

many open questions remain; some of these are mentioned in the conclusion (Section 4).

Additional information can be found elsewhere [6, 7, 8].

3



address

Associative search entire set on lookup

Restrict replacement to specific columns

Figure 1: Basic Column Caching: Restricting Replacement in a Set-Associative Cache

2 Column Caching

This section describes the basic column caching mechanism that implements dynamic

cache partitioning. Our unit of partition granularity is that of a \way" or column of a

set-associative cache; hence the name \column caching." A column cache behaves just

like any set-associative cache, except in its placement/replacement policy { the decision

as to where a new item is placed (Figure 1). The innovation is that speci�c data can

be restricted to be only placed into a particular subset of columns. A column cache

can be almost instantaneously remapped to a normal cache by removing all restrictions

(which we call mappings). An implementation of column caching is unlikely to lengthen

critical timing because replacement decisions are only made on cache misses. A cache

miss generally requires at least a few cycles to service during which the replacement

decision can proceed in parallel.

Column caching allows software to specify that certain data, characterized by cri-

teria such as address, memory operation type and instruction address, are restricted

to speci�c columns de�ned by a bit-vector, one bit per column. Di�erent data can be

4



mapped to exactly the same columns, completely di�erent columns or a mix of both.

Column caching can also be used by hardware-implemented policies that dynamically

determine in which columns certain data can reside.

2.1 Tints

The simplest form of column caching associates all cache-lines in a page with the same

set of columns. Rather than directly mapping pages to columns, each page is mapped

to a tint
1. Each tint, in turn, is mapped to a set of columns. For example, an entire

streaming data structure may be tinted red, while all other pages tinted blue. If the

red tint is mapped to just column 1 and the blue tint to columns 2, 3, and 4, then

accesses to items in blue pages will not evict cache items that came from red pages

and vice-versa. A traditional cache can be simulated with a white tint specifying all

columns. The use of tint introduces a level of indirection achieve the following: (i)

isolate the user from machine-speci�c information such as the number of columns or

the number of levels of the memory hierarchy and (ii) make re-mapping easier.

Tints are stored in page table entries. To change the tint of a region of memory, a

process called re-tinting, the tint entry in each page table entry of that region needs

be updated and any TLB's caching those page table entries either updated or ushed.

Re-tinting, which corresponds to rede�ning memory region boundaries should occur

very infrequently compared to remapping tints to bit-vectors.

The mapping between memory and cache columns partitions the cache; modifying

the mappings repartitions the cache. A strength of column caching is its ability to

quickly repartition. A tint to bit-vector table is used to map each tint to a set of

1We use the term tint to distinguish it from page \coloring".

5



columns. A table of size 4KB is required to support 1024 tints and a 32-way associative

cache. Changing the tint to column set mapping can be accomplished quickly by

updating the table entry.

Remapping only a�ects future replacements. Since an associative lookup is per-

formed on each cache access, items present in the cache will always be found whether

or not they are in the correct column. Repartitioning is thus a lazy operation. Some

transient thrashing due to repartitioning is possible as active data is replaced then

brought back into the correct set of columns, but can be mitigated through the use of

a victim cache [19].

A protection mechanism enables user-level access to mapping structures. A process

is allocated a set of columns and tints. It is free to map them in any way and at

any time. By spreading the entries of the mapping table over several pages, the virtual

memory system limits which tints a process may map. A bit mask, associated with each

process limits the values that a process may store into the table. When a process stores

a new bit vector into the mapping table, hardware automatically ANDs this value with

the bit mask to produce the value stored. This bit mask requires maintenance. As

columns are allocated and deallocated to a process, the operating system must update

the bit mask and it must be saved and restored on each context switch. If the columns

assigned to a process change, the corresponding tint-to-bit-vector table entries must be

updated accordingly and the process must be noti�ed that its columns have changed.

Such noti�cation can be performed via a callback routine provided by the application

for the operating system to reclaim columns. Such routines have been proposed for

user-level page management [20].

6



Virtual addressOp

Replacement Unit

Hit?

TLB

BIU

BIU
Data

Tint to

BV

Column 0 Column 1 Column 2 Column 3

Figure 2: Basic Column Caching. Three modi�cations to a set-associative cache are necessary: (i)

augmented TLB to hold tints, (ii) a tint-to-bit-vector unit between the TLB and the replacement

unit, and (iii) modi�ed replacement unit that uses mapping information.

2.2 Implementation

In a standard cache, lower-order bits are used to select a set of cache-lines which are

then associatively searched for the desired data. There are two control units normally

associated with the cache. The hit unit determines whether or not there is a hit on

each access using the address tags and cache state tags stored in the cache itself along

with the requested physical address and the opcode of the request. Though physical

caches are assumed throughout, column caching works just as easily with virtual caches.

The replacement unit determines which cache-line should be replaced if replacement is

necessary.

Column caching is implemented by three small modi�cations to a set-associative

cache (Figure 2). The TLB must store the tints, a tint-to-bit-vector unit must be added

between the TLB and the replacement unit and the replacement unit must respect the

mapping restrictions.

The replacement algorithm is modi�ed to limit replacement to the columns speci�ed

by the bit vector. Column caching is compatible with any replacement policy but may

require changes to certain implementations of those replacement policies to emphasize

7



repartitioning. For example, a standard LRU algorithm may prevent the repartition-

ing from occurring when frequently accessed memory locations are still cached in old

columns. Assume a red tint that is initially mapped to two columns. A remapping

occurs that reduces the red tint to a single column. If data from red tinted pages that

reside in the abandoned column are accessed su�ciently often, a standard LRU scheme

would likely not replace these items. The repartitioning basically has no e�ect. One

way to solve this problem is to not update the LRU state of a cache-line that is caching

data not currently mapped to the column it resides in.

Basic column caching depends on highly-associative caches to provide su�ciently

small mapping granularities. High-associative caches, however, are becoming more

common, especially in embedded processors [16, 1]. Such associativity is generally im-

plemented with Content Addressable Memories (CAMs) that require between two and

four times more area but consume less power than traditional associative structures.

It may be desirable to map regions of memory smaller than a page. To achieve

�ner granularity mapping, additional tints can be provided within each page. Such

additional tints are trivial to implement if the smaller granularity regions are constant

sized and aligned. Additional tints can also be provided for di�erent memory operation

types or memory operation modi�ers (additional bits such as are found in the IA-64

that further specify memory operations).

2.3 E�ect of Multi-Level Caches

Column caching can be applied independently to each level of the cache hierarchy since

they di�er in size and in associativity, making it both undesirable and impractical to

reuse the same partitioning across all levels. Tint information from the TLB can be

8



easily used by all levels that are on the same chip, although each level will have its

own tint-to-bit-vector. Tint information may be duplicated in each memory hierarchy

level o�-chip to eliminate the need to pass tint information between chips.

Inclusive caches can implement a form of column caching by just implementing

column caching in lower-levels of the memory hierarchy. For example, restricting the

amount of space that a region of memory can consume in L2 automatically limits the

amount consumed in L1.

2.4 Low Associativity

Though it is desirable to have some associativity in a cache to avoid conict misses, as-

sociativity is fairly expensive to implement, requiring area proportional to the amount

of associativity. Modern set-associative caches are generally low in associativity, per-

haps four to eight way, making each column fairly large. For example, the HP PA-8500

with a four way set-associative 1MB cache will have columns of 256KB each [17].

Column caching can be implemented in its basic form in a low-associative cache

but then su�ers from the inability to have any two pages conict within the cache

since two physical pages do not necessarily map to the same sets in the cache. Even if

they do, the amount of space that those pages take up in the cache can only vary by

the amount of associativity in the cache. For example, an 8 page contiguous region of

memory mapped onto a 4-way set-associative column cache where each column is four

pages long can only be set to consume 0, 4 or 8 pages.

Using a separate cache address to specify the sets in each column, i.e. retargetting

[7], can dramatically reduce this problem by allowing each page to reside in a di�erent

cache page within each column. A simple version makes the cache address a cache

9



page number for each column. Retargeting enables any set of pages to share the

same region of the cache. A level of indirection similar to tints either in the page

table entries or in the TLB that is then converted to the respective page numbers can

simplify remapping. Separate cache addresses are needed at each level of the memory

hierarchy that supports retargetting. An identical mechanism to reduce conicts in

direct-mapped caches has been independently proposed [28].

Using retargetting, our 8 continuous pages example can be mapped to 0, 1, 2, 3, 4,

5, 6, and 7 cache pages by mapping the 8 pages across all four cache pages in column

0, 2 cache pages in column 1 and 1 cache page in column 2 (Figure 3). To map to

1 page, set the tint-to-bit-vector to replace to column 2; to map to 3 pages set the

tint-to-bit-vector to replace columns 1 and 2; to map 7 pages set the bit vector to map

columns 0, 1, and 2. Of course, the extra column is still available for mapping.

Such a mechanism requires that the cache addresses be generated before the cache

is accessed, since the cache addresses determine where to look in the cache for the data.

This fact, however, makes it expensive to remap a page into a di�erent cache page,

since the original cache page must be ushed to avoid coherence problems.

3 Using Column Caching

With column caching, evictions occur only in the partition where the newly inserted

data can reside. By careful mapping, memory regions can be isolated in the cache

to eliminate replacement errors. This simple ability enables the emulation of more

complex mechanisms.

In this section we examine three uses of column caching: scratchpad memory emu-

10



0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Column 0 Column 1 Column 2 Column 3

Figure 3: In column 0, pages 0 and 4 are mapped to cache page 0, pages 1 and 5 are mapped to

cache page 1, pages 2 and 6 are mapped to cache page 2 and so on. Such a mapping, made possible

by retargeting, allows a three column cache to vary the amount of cache space allocated to this

eight page region of memory to any integer number of pages up to 7.

lation, optimization of multitasking/multithreading and optimization of stream-based

computing.

3.1 Scratchpad Memory

Scratchpad memory is explicitly addressed and managed memory found in many em-

bedded processors and virtually all DSPs. Since the performance of scratchpad memory

is extremely easy to predict, it is used extensively to hold the data of timing-critical

applications. For programming ease, a cache is used to hold data for which predictable

access time is less important.

Though both types of memory are generally useful, di�erent applications require

di�erent amounts of each. Standard caches and scratchpad memories, however, are

static structures hard-wired into the processor with no way to convert one into the

other, often leading to sub-optimal allocation of resources. Even if the static partition-

ing is customized for a speci�c application's needs, the next generation of software will

11



likely have a new set of needs.

Current solutions exist that allow cache to be used as scratchpad memory by pinning

cache-lines or cache columns. Cache-line pinning is available in processors such as the

Cyrix MII[12], while column-pinning for instructions is provided in processors such

as the Motorola 8240[22]. The 8240 column-pinning allows software to specify that a

speci�c column in the instruction cache not be replaced. Pinning eliminates a particular

cache-line as a candidate for replacement. These mechanisms, however, do not provide

a way to determine whether the right data is in the cache when the pinning occurs.

In addition, they can increase execution time by requiring one instruction to pin and

another to unpin each cache-line.

Column caching can emulate scratchpad memory by dedicating a region of cache to

an equal-sized region of data that maps to the cache with no conicts. Thus, once the

data is brought into the cache it will remain there. After it is no longer needed, a remap-

ping will eventually cause the data to be evicted. To provide performance guarantees,

software must �rst explicitly load the relevant data into cache, in a manner similar

to a dedicated SRAM an ensure exclusive allocation of the columns. Column caching

emulation of scratchpad memory is superior to scratchpad memory, however, since the

data will be automatically (but lazily) recopied back to memory upon remapping.

Panda [24] has demonstrated the variation in performance of embedded software

for di�erent cache to scratchpad memory ratios. We replicate the graphs for three

routines namely dequant, plus and idct in Figure 4. For the �rst two routines,

optimal performance is obtained when the scratchpad memory is 1KB and the cache

is 0KB. For the idct routine, however, optimal performance is obtained when both

the scratchpad and the cache are are 512B. Fixing the ratio of scratchpad and cache

12



1000

10000

100000

0:4 1:3 2:2 3:1 4:0

Cache Size : Scratchpad Size

C
y
c
le

 C
o

u
n

t

DEQUANT

PLUS

IDCT

Figure 4: Performance of Dequant, Plus, and Idct routine with varying the ratio of cache

to scratchpad memory.

causes one or more routines to have sub-optimal performance.

Using a column cache, one can dynamically vary the amount of available scratchpad

memory and cache, prior to executing the routine. Thus, optimal performance can be

achieved for all three routines, improving overall application performance.

3.2 Multitasking/Multithreading

Standard cache management allows each currently running process to consume the

entire cache. In a heavily used timesharing or multitasking system, it is unlikely that a

process will �nd any of its data in the cache when it returns from a context switch. The

common solution is to schedule in large time quantums to amortize the cost of cache

starts. As caches get bigger and the number of processes increases, time quantums

must get even bigger still.

A few select processes can be exclusively assigned dedicated columns to avoid cold

cache starts. Short time quantums are then practical for such jobs, while the other

jobs being scheduled at the old time quantums will behave as usual. Thus, both overall

system throughput and the response time of the select jobs improves.

13



Sun Microsystems Corporation holds a patent on a mechanism [23] very similar to

column caching that allows partitioning of a cache between processes at cache column

granularity. As part of a process state, a bit mask is speci�ed that indicates which

columns can be replaced by that process. The Sun technique is limited to partitioning

between processes and thus cannot emulate scratchpad memories or help within a single

application.

To demonstrate how column caching can improve multitasking, consider two con-

currently executing applications, GZIP that requires a signi�cant amount of cache and

MGRID that does not. Assume further that MGRID is the critical application. The

two applications are time sliced and scheduled in a round-robin fashion. The quantum

execution time slice is varied. Figure 5 presents the results for a 32KB, 8-way set-

associative cache. Two memory traces were generated by the SimpleScalar simulator[4]

running -O3 optimized codes, then processed by our own cache simulator[7] at varying

time quantums. Two sets of experiments were performed. The �rst assumed a stan-

dard LRU cache. For very small time quantums, the cache misses of each application

evict data important to the other application. Larger time quantums are required to

make e�ective use of the cache (as seen by the dip in the miss rate starting at about

4096). Such time quantums and shorter will become more common with the advent of

multithreaded architectures such as the Compaq Alpha EV8.

With column caching, the MGRID application is exclusively allocated two columns

and six columns are dedicated to the GZIP application. By separating the applications,

the performance of the critical application is improved at the expense of the less critical

application.

Partitioning the cache in such a fashion essentially breaks the cache into multiple

14



0

5

10

15

20

25

30

1 4 16 64 25
6

10
24

40
96

16
38
4

65
53
6

26
21
44

10
48
57
6

Context Switch Time

%
 
M
i
s
s
 
R
a
t
e Total

Total Column

MGRID

MGRID Column

GZIP

GZIP Column

Figure 5: Comparing LRU and Column Caching with respect to multitasking cache perfor-

mance.

smaller caches. Thrashing between jobs is eliminated, but the application loses the

bene�t of having the entire cache. Of course, if the allocated cache space is large

enough, there is no degradation of performance, just the elimination of thrashing.

Partitions can be overlapped to allow processes to have some dedicated cache and

some shared cache. Then, the most frequently accessed data tend to end up in a

dedicated region that avoids thrashing, while less frequently accessed data tends to

end up in a shared region that is more quickly replaced.

3.3 Stream Processing

Video, audio and communications applications perform a signi�cant number of accesses

to stream data that pollute standard caches. Conventional replacement algorithms are

tuned for temporal locality, assuming that all recently accessed data will be accessed

again in the near future. This assumption allows stream data to occupy more of the

15



cache than it should and replace temporal data that should not be replaced.

Many solutions have been proposed to address this problem. Perhaps the most

common is a split cache, one part for spatial locality and the other part for temporal

locality [26, 29, 16, 2, 21, 13]. These designs statically partition the available real-estate

between the two caches. Some rely on hardware-based algorithms that separate the

reference streams into one or the other cache while others keep information indicating

which cache to use in the page table, allowing software to specify the mapping of

memory to a speci�c cache.

Another solution has data bypass certain levels of the cache, allowing pollution

to be restricted to a subset of cache levels. The MIPS R8000[14, 27] caches oating

point data in the L2 cache but not the L1 since oating point data tends to have

very little temporal data that the L1 could exploit. The QED RM7000[25] on the

other hand provides caching modes that bypass L2 and L3 caches on writes, updating

only memory and sometimes L1. Some processors, such as the Intel IA-64[15] family,

provide instructions that can specify in which level of the cache accessed data should

be cached.

Another way to determine when to bypass a level of the cache relies on the observa-

tion that for some applications only a few memory instructions cause most of the cache

misses in speci�c levels of the cache[30, 18]. Simple hardware (or compilers) can track

these \missing" memory instructions to determine whether to cache accessed data on a

level-by-level, instruction-by-instruction basis. Bypass techniques attack speci�c cache

pollution causes, but requires additional support, in the form of read bu�ers, to exploit

spatial locality. In addition, they generally do not deal well with data that should be

cached, but that should take less space that a standard replacement algorithm allocates

16



it.

Page coloring[3, 28] uses selective mappings of virtual-to-physical addresses in order

to reduce conicts within a direct-mapped cache. It can make a direct-mapped cache

perform like a low-way set-associative cache. Page coloring, however, cannot map a

contiguous region of address space to a smaller region of cache space and thus cannot

reduce certain stream footprints. In order to give a page of memory a dedicated

cache page, all other pages that map to that cache page cannot be used. In addition,

page coloring requires a memory copy to remap pages from one region of the cache to

another.

By appropriate mapping, column caching can emulate a separate spatial/temporal

cache, but dynamically alter the amount of space allocated to each. Of course, a

dedicated spatial cache often has larger cache-lines which cannot be directly emulated

by a column cache2, but the pollution containment ability of a spatial/temporal cache

is supported. Column caching can also provide cache bypass by mapping data to no

columns (e�ectively uncached) in a certain level, though such an ability is likely not to

be used often since all spatial data can be mapped to a single column that will exploit

spatial locality without causing pollution.

To demonstrate the e�ectiveness of column caching, consider a synthetic stream

application that loosely models a network router lookup code which reads data in,

performs some table lookup on the incoming data and outputs the result of the lookup.

Eight-word cache-lines, and a 32K lookup table are assumed.

The corresponding miss rates are shown in Figure 6. A column cache that maps

the lookup table across the entire cache and the stream data to a single column limits

2The addition of curious caching[7] and a slightly modi�ed memory controller, however, enables emulation

of larger block sizes.

17



0

5

10

15

20

25

30

35

40

3 4 5 6 7 8 9

Number of 4KB Columns

%
 
M
i
s
s
 
R
a
t
e

LRU

Isolate

SS

SS/FT

Figure 6: Miss Rates of a Synthetic Streaming Application where data is read in, looked

up in a table and written out. The various mapping strategies are (i) standard LRU, no

partitioning (ii) Isolated where each stream is allocated one column and the lookup table

the rest of the cache (iii) Single Stream column (SS) where the two streams share the same

column and the lookup table takes the rest of the cache and (iv) SS/Full Temporal, the same

as (SS) but the lookup table uses the entire cache.

the stream data's footprint to a single column while reserving the lookup table the rest

of the cache. This substantially improves the hit rate, enough to allow a 32K column

cache to perform almost as well as a 64K LRU cache. For a 36KB sized cache, column

caching lowers the miss rate from 16 percent to 8 percent.

More telling is the breakdown of the hit rates. The stream data will miss once per

cache-line, creating a miss rate of 12.5% with eight-word cache-lines. Without some

form of prefetching, this miss rate is unavoidable. The miss rate for the lookup table,

however, can be signi�cantly improved if the stream data is kept from interfering with

the lookup data. Figure 7 gives miss rates for a standard LRU cache versus a column

cache mapped in the same three ways.

18



0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8 9

Number of 4KB Columns

% 
M
i
s
s
 
R
a
t
e

LRU

Isolate

SS

SS/FT

Figure 7: Miss Rates of the temporal regions of a Synthetic Streaming Application. The

miss rates of the streaming data cannot be improved without prefetching of some sort.

4 Conclusions and Ongoing Work

Column caching is a mechanism that enables rapid partitioning of cache resources.

Column caching is straightforward to implement, the base design requiring only sim-

ple changes to a standard set-associative cache. It provides software with substantial

control over cache resources enabling new functionality as well as cache allocation tun-

ing for higher performance and a reduction in resource consumption. Our preliminary

investigations show that this control can be exploited to improve multi-tasking perfor-

mance over a wide range of time quanta, to improve the performance of applications

with streaming data, and to improve performance and predictability of real-time em-

bedded software.

Column caching was designed to work with curious caching[6, 7], a mechanism that

enables caches to incorporate snooped data. Software speci�es the memory regions

about which it is curious. Any memory accesses to these addresses that are observed

19



by the snooping hardware are brought into the cache. When the curiosity mecha-

nism is combined with the column caching mechanism, message passing bu�ers can be

implemented within a cache without causing adverse cache pollution.

We have been investigating implementing memo tables[9] within caches, where the

memo table key is used to generate a restricted address while the data is stored at

that address as well as for use in data compaction[10]. Column caching is used to

control the amount of cache for such exotic uses. Additional support, such as block-

address-translation (BAT) structures found in PowerPC processors that enable the

block translation of a large address space, along with techniques such as a hashed

memory to reduce the memory usage of such tables, can make column caching even

more useful.

We have also been looking into using columns for thread-speculation. By providing

support to prevent writebacks from occurring and mapping all accessed data after a

certain point to a speci�c set of \clean" columns (with no dirty data) where write-

backs are disabled, the cache can be used to store speculative writes. If speculation

is successful, the writebacks can be reenabled; otherwise, the columns can be cleared.

Limiting writebacks to speci�c writeback-disabled columns enables cache to be used as

a speculative bu�er.

In NUMA architectures, non-local variables have a higher reload cost and should

remain in the cache even if a more frequently accessed local variable must be evicted.

In addition, data that can resolve speculation, such as predicate data, might also

be kept cached over other data to reduce speculation and thereby increase potential

instruction-level parallelism.

We have also been looking at how column caching can improve bandwidth to the

20



cache by ensuring that data that will be accessed at the same time will reside in di�erent

columns of the cache. Cache structures can be designed to allow concurrent access to

di�erent columns. Mapping data to di�erent columns enables concurrent access.

References

[1] ARM. The ARM 10 Thumb Family, November 1999.

[2] K. Asanovic. Vector Microprocessors. PhD thesis, University of California at

Berkeley, May 1998.

[3] B. K. Bershad, B. J. Chen, D. Lee, and T. H. Romer. Avoiding Conict Misses

Dynamically in Large Direct-Mapped Caches. In ASPLOS VI, 1994.

[4] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0. Technical

Report 1342, Computer Sciences Department, University of Wisconsin, Madision,

WI, June 1997.

[5] D. Burger, A. K�agi, and J. R. Goodman. The Declining E�ectiveness of Dynamic

Caching for General Purpose Microprocessors. Technical Report 1261, Computer

Sciences Department, University of Wisconsin, Madision, WI, Jan. 1995.

[6] D. Chiou. RISCy Memory: Column and Curious Caching. In Proceedings of the

1998 MIT Student Workshop on High-Performance Computing in Science and

Engineering, Jan. 1998.

[7] D. Chiou. Extending the Reach of Microprocessors: Column and Curious Caching.

PhD thesis, Department of EECS, MIT, Cambridge, MA, Aug. 1999.

[8] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Application-Speci�c Memory

Management for Embedded Systems Using Software-Controlled Caches. Techni-

cal Report 427, MIT Laboratory for Computer Science Computation Structures

Group, Oct. 1999.

[9] D. Citron, D. Feitelson, and L. Rudolph. Accelerating multi-media processing

by implementing memoing in multiplication and divison units. In Architectural

Support for Programminig Languages and Operating Systems (ASPLOS), Oct.

1998.

[10] D. Citron and L. Rudolph. Creating A Wider Bus Using Caching Techniques.

In First International Symposium on High Performance Computer Architecture,

Jan. 1995.

[11] D. E. Culler and A. Singh, Jaswinder Pal with Gupta. Parallel Computer Archi-

tecture: A Hardware/Software Approach. Morgan Kaufmann Publishers, 1998.

[12] Cyrix. Cyrix MII Data Book, Feb. 1999.

[13] G. Faanes. A CMOS Vector Processor with a Custom Streaming Cache. In Hot

Chips 10, August 1998.

[14] P.-Y.-T. Hsu. Design of the R8000 Microprocessor. IEEE Micro, 1993.

21



[15] Intel. IA-64 Application Developer's Architecture Guide, May 1999.

[16] Intel. Intel StrongARM SA-1100 Microprocessor, April 1999.

[17] D. Johnson. Techniques for Mitigating Memory Latency E�ects in the PA-8500

Processor. In Hot Chips 10, August 1998.

[18] T. L. Johnson and W. Hwu. Run-time Adaptive Cache Hierarchy Management via

Reference Analysis. In Proceedings of the 24st Annual International Symposium

on Computer Architecture (ISCA), June 1997.

[19] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition

of a Small Full-Associative Cache and Prefetch Bu�ers. In The 17th Annual

International Symposium on Computer Architecture, pages 364{373, May 1990.

[20] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt, D. Mazieres,

T. Pinckney, R. Grimm, J. Jannotti, and K. MacKenzie. Application Performance

and Flexibility on Exokernel Systems. In 16th Symposium on Operating Systems

Principles, Saint-Malo, France, October 1997.

[21] B. Lynch and G. Lauterbach. UltraSPARC III: A 600 MHz 64-bit Superscalar

Processor for 1000-Way Scalable Systems. In Hot Chips 10, 1998.

[22] Motorola. MPC8240 Integrated Processor User's Manual, July 1999.

[23] B. Nayfeh and Y. A. Khalidi. Us patent 5584014: Apparatus and method to

preserve data in a set associative memory device, Dec. 1996.

[24] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-on-

Chip: Optimizations and Exploration. Kluwer Academic Publishers, 1999.

[25] Quantum E�ect Devices. RM7000 Family User Manual v2.0.

[26] F. S�anchez, A. Gonz�alez, and M. Valero. Software Management of Selective and

Dual Data Caches. In IEEE Computer Society Technical Committee on Computer

Architecture: Special Issue on Distributed Shared Memory and Related Issues,

pages 3{10, Mar. 1997.

[27] SGI. R8000 Microprocessor Product Information.

[28] T. Sherwood, B. Calder, and J. Emer. Reducing Cache Misses Using Hardware

and Software Page Placement. In Proceedings of the International Conference on

Supercomputing, Rhodes, Greece, June 1999.

[29] M. Tomasko, S. Hadjiyiannis, and W. Najjar. Experimental Evaluation of Array

Caches. In IEEE Computer Society Technical Committee on Computer Architec-

ture: Special Issue on Distributed Shared Memory and Related Issues, pages 11{16,

Mar. 1997.

[30] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A Modi�ed Approach

to Data Cache Management. In Proceedings of the 28th Annual International

Symposium on Microarchitecture Ann Arbor, MI, November/December 1995.

22


