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In this research note, we outline a research strategy for learning first-order world
models. We have already begun the early steps of this work.

1 Probabilistic Propositional Models

Before we attempt to design algorithms for learning first-order models, it is important
to understand the propositional case. In a propositional model, states of the world are
described by state variables (also sometimes called aspects or fluents). The state variables
in a factory control domain might be, for example, the temperature and pressure at
different points in the factory.

It is popular to represent probabilistic propositional models of the world dynamics
as dynamic Bayesian networks (dbns). dbns consist of two parts: a graph and a set of
probability tables. The graph encodes the dependence relationships between the state
variables at some generic time t and the state variables on the next time step, t + 1. The
tables encode the conditional probability distributions describing exactly how the value of
a variable depends on its parents in the graph. (For more detail, see Dean and Kanazawa
(1989).)

dbns (and Bayesian networks, in general) have been successful representationally be-
cause they take advantage of the fact that in most large domains, not all variables are
dependent on all others. By making independence an unstated default, dbns often provide
very compact representations of complex domains.

In this project, we are going to explore an alternative, rule-based representation lan-
guage, inspired by the work of Drescher (1991). There are two reasons for this shift. First,
we believe that rules will, in general, provide an even more compact representation of typ-
ical dynamic domains. Second, it seems more straightforward to to extend a rule-based
representation to the first-order case.

Our rules will be of the form P
a,p−→ Q, with approximate semantics: if P is true at

time t, R is false at time t, and action a is taken, then R will be true at time t + 1 with
probability p. There is a major implicit default assumption here: If there is no rule to
indicate otherwise, then state variables retain their values over time. This is the solution
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that the strips (Fikes and Nilsson, 1971) representation system uses to the frame problem.
In addition, we make a default independence assumption: given the rules P

a,p1−→ Q and
R

a,p2−→ S, we conclude by default that if P and R are true and Q and S are false at time t,
then after doing action a, Q and S will be true with probability p1 · p2. If this is not the
case, then the rule set must contain another rule, with antecedent P, R that will override
this default combination.

We have shown, though the details are omitted here, that rule sets of this kind describe
well-defined joint probability distributions over the state variables at time t + 1 given
the state variables at time t, and that any possible joint probability distribution can be
represented in a rule set.

To give intution for the relationship between our rule sets and dbns, we will work
through a simple example. Consider the following rule set:

P, Q
a,.9−→ R

S, T
a,.6−→ Ū (1)

P
a,.7−→ R

The corresponding dbn, including probability tables, is shown in figure 1 (The action is
left implicit here; it would just be another node in the first layer, with arcs going into
each node in the second layer). The tables are clearly inefficient at encoding the local
conditional probability distributions. Using tree-structured tables (Boutilier et al., 1996),
we get a more compact representation, as shown in figure 2. Nonetheless, for domains in
which most things stay the same from time step to time step, the rule set is a much more
economical representation.

2 Learning Probabilistic Rules

The following is an adaptation of parts of Drescher’s rule-learning algorithm. The algo-
rithm proceeds in two major steps.

First, we look for situations in which an action seems to have an effect on some state
variable. We will look for rules of the form

a,p−→ R by comparing empirical estimates
of Pr(Rt+1|at, R̄t) with Pr(Rt+1|āt, R̄t). If the first is significantly greater, then we can
conclude that R turns on more often as a result of doing action a than as a result of doing

other actions, and will spawn the rule
a,Pr(Rt+1|at,R̄t)−→ R.

The next step is to strengthen existing rules by adding antecedents. For example, we
might consider adding Q as an antecedent to the previously constructed rule. We would
compare empirical estimates of Pr(Rt+1|at, R̄t, Qt) with Pr(Rt+1|at, R̄t, Q̄t). If the first

is significantly greater, then we will spawn the rule Q
a,Pr(Rt+1|at,R̄t,Qt)−→ R, which is more

reliable in predicting effects.
We will have to add considerably to this basic sketch to get a working algorithm.

Important extensions include:
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P 1.0
P̄ 0.0

Rt+1

PQR 1.0
PQR̄ 0.9
PQ̄R 1.0
PQ̄R̄ 0.7
P̄QR 1.0
P̄QR̄ 0.0
P̄ Q̄R 1.0
P̄ Q̄R̄ 0.0

Tables for Q, S,
and T are the
same as for P .

Ut+1

STU 0.4
STŪ 0.0
ST̄U 1.0
ST̄ Ū 0.0
S̄TU 1.0
S̄T Ū 0.0
S̄T̄U 1.0
S̄T̄ Ū 0.0

Figure 1: Dynamic Bayesian network corresponding to rule set 1.
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Figure 2: Compact representation of conditional probability tables from figure 1 using tree
structures. The tree on the left encodes the conditional probability of Rt+1 as a decision
tree; the one on the right, Ut+1.
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• Adding heuristics to limit which conjunctions of antecedents are considered. For
instance, it may make sense to start by looking at state variables that represent
information that is spatially “near”. This will actually make more sense in the
first-order case.

• Detecting dependencies and adding rules that override the default independence
assumptions.

• Working in environments that are k-Markov, rather than completely observable, by
considering as antecedents the values of state variables from previous time steps.

3 Limited First-Order Models

Our first ideas about working with limited first-order models make admittedly unrealistic
assumptions about the perceptual system. In the course of this research, we expect to
weaken these assumptions and, in particular, add an attentional mechanism to the vision
system that will require the learning system to explicitly focus perception on “interesting”
aspects of the current visual image.

A more naive perceptual model is that the vision system can deliver an existentially
quantified statement of the form:

∃xy.P (x) ∧ Q(y) ∧ R(x, y) .

That is, it describes a set of objects, their properties and relations. The statement may
have an uncertainty attached; or the perception system might deliver a set of alternative
hypotheses about what it its viewing.

We can learn a model in the form of universally quantified probabilistic rules that
describe the general dynamics of the environment:

∀xy.P (x) ∧ R(x, y)
a,p−→ ¬Q(y) .

Such a rule, in combination with the perceptual statement described above, would allow
us to infer, with probability p that at time t + 1

∃xy.P (x) ∧ ¬Q(y) ∧ R(x, y) .

The same notions of default independence and unchanging truth values over time will
apply to these rule sets. Because of their very limited form, matching and forward inference
will be very simple. We believe we can extend the algorithm for learning propositional
rules fairly directly to this limited first-order case.

4 Extensions

A large number of important questions and extensions arise:
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• The model described above does not preserve any notion of object identity across
time steps. The x for which P holds at time t is not identified with the x for which
it holds at t + 1. We will consider the question of when and how object identity is
important for planning, and try to develop ways of expressing it in the rule base.
It will have to arise, logically, from some built-in knowledge about objects, such as
the fact that if two very similar objects are seen at the same location (or slightly
different locations) in two successive frames, then it’s highly likely that those objects
are identical.

• What is the role of indexical-functional (or deictic) representations? Agre and Chap-
man (1987) argue that it is useful to describe objects in descriptive terms, such as
the-block-that-is-in-front-of-me. This seems reasonable, and we will investigate the
use of such representations in this system.

• How can we parameterize actions? Once we can speak of objects, it may be appropri-
ate to describe our actions in an object-centered way, such as pickup(x). Indexical-
functional names for objects might be especially useful here, so we could say things
like pickup(the-object-I-am-fixated-on). By moving our visual fixation point, we im-
plicitly change the parameterization of the action and therefore don’t need to include
the parameter explicitly.

• How can we handle partial observability? It is relatively easy to think about search-
ing back through recent time steps to look for attributes on which our rules should
be conditioned, at least in the propositional case. In the first-order case, it’s harder,
because of the lack of identification of objects across time steps. Drescher’s “syn-
thetic item” mechanism provides an interesting way to name new conditions in the
world in terms of their connection to other conditions and actions we already know
about. For instance, the system might decide that it’s important to consider “the
state of my car such that when I turn the key the starter works.” It may be useful to
name and work with that condition, trying to discover, for instance, which actions
make it true in which circumstances.
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