
Learning in Worlds with Objects

Leslie Pack Kaelbling

Tim Oates

Natalia Hernandez G.

Sarah Finney

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology

December 13, 2000

This is a draft. Please do not copy or distribute.

This work is sponsored by NTT and by the O�ce of Naval Research.

1 Introduction

As we attempt to build systems that learn in environments made up of collections of

objects with varying properties and relations, it is highly likely that we will have to develop

new learning techniques. In this research note, we explore some of the representational and

algorithmic issues involved in learning about objects, and outline our �rst experiments.

We'll assume that we are building an agent that is embedded in its environment. The

agent can take actions that change the underlying state of the environment, and can make

observations of the environment's state. In general, the observations will not reveal the

true state of the environment: they will be noisy, and many underlying environmental

states will look the same. The agent also has a special scalar input signal, called reward,

which is correlated with the underlying state of the environment. The agent's goal is to

act in such a way as to gain a large amount of reward over time. It will have to learn

about its environment in order to learn how to behave in a valuable way.

In all of this work, the goal will be to learn to carry out some externally rewarded

task, by taking actions in the environment based on perception. Although we will try to

specify the learning task in a relatively representation-independent way, we believe that

the choice of internal representation and associated learning algorithms will have a huge

e�ect on the e�ciency, and even possibility, of the learning process.

1



2 Simple Example Domain

Consider a simple blocks-world domain, in which there are multiple blocks, stacked in

piles on a table. The blocks are made of di�erent materials and are painted di�erent

colors.

We'll assume the blocks are stacked in orderly piles, so that each block is either on the

table or on a single other block. The agent can perceive all of the blocks, their colors and

materials, and their spatial relations. It can take action by picking up any clear block (a

block is clear if it doesn't have another block on top of it) and putting it down on any

other clear block or on the table.

Within this general domain, the agent is given a task by rewarding it whenever it puts

the blocks in front of it into the appropriate con�guration. We use the term \task" to

describe the kinds of block con�gurations for which the agent is rewarded and \initial

state" to describe an initial con�guration of objects (this may also be called a \problem

instance"). Possible tasks include:

• Pick up a green block.

• Cause every green block to have a red block on top of it.

• Make a copy of the stack of blocks that is on the far left of the table.

Our �rst goal will be to learn general strategies for solving individual tasks from all

(or many) initial con�gurations. Even within a single task, we can investigate \transfer"

of knowledge to see whether learning to solve one initial state will allow the agent to solve

other, similar, initial states more quickly.

We are also interested in the more general question of how learning to solve a particular

task can speed learning of other tasks in the same domain.

(Similar domain used by Whitehead and Ballard; Baum).

3 Perception and Action

Most of the work on reinforcement learning methods assumes that the agent has complete,

perfect perception of its environment state. In the simple blocks world described above,

that might not be implausible; but in any kind of realistic domain, it is. You can't see

everything that is going on in your building; there are occlusions and distant objects.

Furthermore, if you could see everything, you would still have to focus your attention on

some small subset of the available information.

Ideas of attention, both physical attention due to moving gaze and implicit attention

to areas within a �xed visual �eld, have been captured in work on active perception.

The idea is that an agent makes observations of its environments through a fairly narrow

2



channel, such as a visual fovea, and can take action to move the channel around. This

converts the perceptual problem from one of dealing with a vast amount of data in parallel

to a sequential control problem that explicitly selects the data required.

Ullman did early work on characterizing a basic set of visual primitives and describing

their aggregation into visual routines. Chapman took these ideas and applied them in

the visual system for a video-game player. We'll use a similar set of visual primitives in

thinking about the blocks world.

One important idea is that of a visual marker. The agent is assumed to be able to

keep track of a small number (say 5) of objects in its visual �eld. It does so by \putting

a marker" on an object. Having a marker on an object allows it to be the subject of

visual queries, such as \What is the color of the marked object?" or \Is marked object

1 above marked object 2?" Markers can be placed on objects by relative motion: \move

marker 2 to the top of the stack" or \move marker 3 one square to the left". Markers can

also be placed on objects via visual search. For simple image properties, called \pop-

out" properties, this search can be done very quickly in the human visual system (cite

Triesman). Thus, we can have as a visual primitive \move marker 3 to a red object" or

\move marker 4 to a vertically-oriented object". More complex image properties require

a slower, more serial, search process. We may include them in our visual repertoire, but

perhaps model their use with an additional time cost.

With just a small set of visual markers, the amount of information available in a single

observation is fairly small; but by moving the markers around, it is possible, over time,

to gain a fairly complete picture of the environment. This kind of partial observability

requires the agent's strategy to have memory, allowing it to combine observations over time

into an internal \view" of the current situation. It also requires a much more sophisticated

set of learning techniques, which we will discuss in more detail later in this document.

Visual markers can also play a role in specifying parameters for actions. Thus, a grasp

action might always grasp the object that marker1 is on; or the go-to action might cause

a mobile robot to visually servo toward a marked target.

We close this section with two formulations of active perception in the simple blocks-

world domain. The �rst has a \wide" view, giving immediate access to all properties and

relations of marked objects; the second has a \narrow" view, requiring explicit queries.

Wide view The agent has a �xed set of k markers, each of which can be on a block,

on the table, or unused. The agent can immediately observe all properties of all marked

objects, and all relations between marked objects. With two perceptible properties (color

and material) and one relation (on), that makes 2k + k2 observables. Also, the agent

will have some way of knowing whether any two markers are on the same object, and of

knowing when various operations have failed (for instance, find will fail if there are no

blocks with the desired property).

3



The actions available are:

• pickup the object that marker 1 is on (if it is clear)

• putdown the currently held object on the object that marker 2 is on (if it is clear)

• move-marker(i;dir ) for each marker i and each direction (up, down, left, right),

move the marker one unit (it's not yet clear what a unit is, exactly) in that direction

• move-to-top(i) for each marker i, move it to the block that's on the the top of the

stack of blocks containing the block the marker is currently on

• find(i;property) for a given marker i and visual property of a block, put the marker

on some block with that property. Properties will include colors and materials.1

Focused view The agent has a �xed set of k markers, plus a privileged marker called

the focus. Most operations can only be done on the focus; but relations can be observed

between the focus and other markers, and the focus can be easily moved to the location

of one of the other markers. The actions available are:

• pickup the object that the focus is on (if it is clear)

• putdown the currently held object on the object that the focus is on (if it is clear)

• move-focus(dir) for each each direction (up, down, left, right), move the marker

one unit (it's not yet clear what a unit is, exactly) in that direction

• move-to-top move the focus to the block that's on the the top of the stack of blocks

containing the block the focus is currently on

• find(property) for a given visual property of a block, put the focus on some block

with that property. Properties will include colors and materials.2

• mark(i) put marker i on the block that the focus is on

• focus(i) put the focus on the block that marker i is on.

The agent can observe all of the properties of the object that is in focus, and the

relations between the focused object and each of the marked objects. With two perceptible

properties and one relation, that makes 2 + k observables.

1There are some interesting questions having to do with systematicity. In order to do explicit visual

search, or enumeration of all the red blocks, for example, it might be nice to restrict this action to a region

of the image, in order to rule out some objects already accounted for.
2There are some interesting questions having to do with systematicity. In order to do explicit visual

search, or enumeration of all the red blocks, for example, it might be nice to restrict this action to a region

of the image, in order to rule out some objects already accounted for.

4



Narrow view In this model, the agent still has a �xed set of k markers. However, no

properties or relations are immediately observable; the agent must explicitly query to �nd

anything out. Thus, the observation consists of a single bit (or small number of bits, to

allow the query to be, for example, the color of a particular block and the answer to be

one of a small set of possibilities).

The available actions include all of the previous actions, as well as the following query

actions:

• query-color(i) ask the color of the block that marker i is on

• query-material(i) ask the material of the block that marker i is on

• query-on(i; j) ask whether the block that marker i is on is on top of the block that

marker j is on

We would add additional actions for any other properties or relations that the agent might

wish to observe in the environment.

Wide vs narrow The question of whether to have a wide vs narrow view is open. With

a wide view (and many markers), the agent needs less memory because it can \see" more

of the situation at once. In addition, its action space is fairly constrained. The limiting

case of a wide view is to have a marker on every single block. Then, the problems have to

do with too large an observation space. With a narrow view, there is a tiny observation

space, but a huge action space and a requirement for lots of memory. One of our main

early experimental e�orts will be to examine the rami�cations of a choice of view.

The focused view was motivated most directly by Ullman's idea of visual markers and

seems to correspond well to natural foveated visual systems.

4 What to Learn?

An agent embedded in a complex environment, trying to act so as to gain reward, can

learn knowledge about its environment in di�erent forms. There are trade-o�s involved

in learning the di�erent forms of knowledge.

World dynamics The most general thing an agent can learn is a model of the world

dynamics. That is, a predictive model that maps a state of the world and an action of the

agent into a new state of the world (or a probability distribution over new states of the

world). Such a model can be used as the basis for planning (calculating which action to

take given the current situation and a goal), and may be completely independent of the

agent's particular reward function. Thus, knowledge gained about the general workings

of the environment when learning to do one task may be directly applied to another task.

5



When the environment is completely observable, this learning problem is not (con-

ceptually) too di�cult. When it is partially observable, learning the world dynamics is

equivalent to learning a complex �nite-state automaton or hidden Markov model (HMM).

Policy When the agent's reward function is �xed, it is not necessary to learn a model

of the world dynamics. Although the world dynamics, coupled with the reward function,

entail an optimal behavior for the agent, it may be possible to simply learn the policy

directly. In a completely observable environment, a policy is a mapping from states of the

world to actions (or a distribution over actions); in a partially observable environment,

it is typically some kind of �nite state machine that takes in observations and generates

actions.

In general, it is hard to learn policies directly. In completely observable environments,

it is much easier to learn a value function and derive a policy from it, as described below.

In partially observable environments, it remains di�cult to learn policies directly, but

there are fewer good alternative strategies.

The one general-purpose policy-learning method is gradient-descent. If the general

structure of the policy is given as a parametrized model, in which the probabilities of

taking actions are di�erentiable functions of the parameters, then the agent can adjust

those parameters based on its experience in the world. These methods seem to work well

for simple policy classes, but may have serious problems with local optima in larger policy

classes.

An advantage of learning a policy is that, once learned, a policy may be executed very

quickly, with no deliberation required to choose an action. A disadvantage is that there

is usually no knowledge transfer. Having learned a policy for one task, it is not easy to

use it to advantage in learning a policy for another task.

Value function In completely observable environments, it is often advantageous to

learn a value function rather than a policy. A value function maps states of the envi-

ronment to a measure of the long-term reward available from that state (assuming the

agent acts optimally thereafter). Given a value function, it is easy to compute the op-

timal policy, which is to take the action that leads to the highest expected value. Basic

reinforcement-learning methods, such as Q-learning, can e�ectively learn the value func-

tion from experience.

In many cases, though, we �nd the basic reinforcement-learning methods to be too

slow (especially in terms of the amount of data required). Sutton's Dyna architecture

couples world-model learning with reinforcement learning to accelerate learning. It has

the desirable side-e�ect of learning a world model, which can be used later if the task

changes.

In partially observable environments, value functions are not de�ned over observations.

6



One set of learning methods (for example, McCallum's UTree) attempts to partially recon-

struct the state of the environment based on the history of observations and then to apply

standard reinforcement learning to this space. We �nd this technique to be particularly

attractive and will discuss it further below.

(Cite standard RL paper; also Stuart Russell paper (IJCAI89?))

5 Representational Strategies

We need to choose a methods for representing the agent's observations, actions, and

internal representations of states of the world; and to build on those representations to

encode the knowledge that the agent learns about the world over time. The choice of

representation may

• leave out some detail; this may be useful if the detail left out is irrelevant to the

task;

• give opportunities for generalization (make learning easier in terms of number of

examples required);

• make learning computationally easier or harder; or

• make planning computationally easier or harder.

5.1 Propositional vs First-Order

A state of the simple blocks world is a con�guration of the blocks, including their col-

ors, materials, and support relationships. Let us assume that individual blocks of the

same material and color are completely interchangeable; there is no reason to distinguish

particular individuals.3

Consider a domain with n blocks, each of which can be one of c colors andmmaterials,

and which can be on any of the other blocks (this is not possible, because any block

may have at most one other block on top of it, but this restriction doesn't change the

order-of-magnitude calculations we will make here). There are about cn possible color

con�gurations, mn possible material con�gurations, and nn possible support relations,

yielding (cmn)n possible complete con�gurations.4

3Note that this would not be true if, for instance, we could put things inside the boxes; then it might

be of crucial importance which green plastic box contains my house key.
4Actually, there may be signi�cantly fewer if we factor in the interchangeability properly.

7



Atomic representation The most naive representational strategy would assign an

atom to each possible con�guration. We could speak of con�guration 5434, for exam-

ple, leading to con�guration 10334 after taking a particular action. This representation

is simple in the sense that a single number can represent an entire state. Because it is

completely unstructured, however, it doesn't give any leverage for generalization; there

is no reasonable notion of two states being similar, based on this representation. In a

domain with ten blocks, three colors, and two materials, there would be on the order of

1017 possible states; it would require the square of that to store a transition model.

Propositional representation The next level of representational structure would be

to encode a state of the world using a set of Boolean-valued variables corresponding to

propositions that are true or false of the current con�guration of the world. Example

propositions would include: block10-is-green, block2-is-plastic, and block3-is-in-
block5.5 A particular state of the world would be a vector of bits, one corresponding

to each possible primitive proposition that could be true in the world. In this domain,

we would have approximately nc color propositions (for each block and each color, there

would be a proposition asserting that the block had that color6), nmmaterial propositions,

and n2 support propositions. So, a world state would be described using about n(n+m+c)

bits. In our ten-block example, that comes to 150 bits.7

Propositional representations a�ord much opportunity for generalization; the distance

between states can be measured in terms of the number of bits that are di�erent in their

encodings. Learning algorithms such as neural networks and decision trees take advantage

of propositional structure in the encoding of objects. It might be possible to learn, for

instance, that any state in which all of the blocks are green has high reward, independent

of the values of the stacking propositions. This knowledge could be stored much more

compactly and learned from many fewer examples in the propositional rather than the

atomic representation.

In many cases, the number of bits that are on (corresponding to the number of propo-

sitions that are true) is signi�cantly fewer than the number that are o�. Consider a

situation in which only ten percent of the bits are on. In that case, it might be more

space e�cient to simply encode which propositions are true. In our ten-block example,

that would mean that 15 propositions are true. If there are 150 propositions, then it will

5How does this work when blocks don't have identity? We have to give the blocks arbitrary names,

which is very unsatisfactory.
6Technically we really only need to have c - 1 such propositions, since if a block doesn't have one of

the �rst c - 1 colors, then it must have the remaining color; furthermore, it is impossible that more than

one color bit for a particular block would be on, since a block cannot be two colors at the same time; that

constraint is not directly encoded in this representation.
7You can see the ine�ciency in this encoding, because there are 2150 = 10

45 possible assignments to the

bit vector, but only 10
17 possible states. Ine�ciency isn't always a bad thing, though; it can sometimes

make generalization easier.

8



take about 7 bits to name each proposition, requiring 105 bits for the entire representa-

tion. As the number of propositions increases, the savings from using this representation

can increase signi�cantly.

Relational representation In the propositional representation, only part of the struc-

ture is revealed. That the propositions are derived from properties and relations among

underlying objects is lost. In a relational representation, we retain the idea of objects.

Thus, rather than having a �xed bit to stand for block4-is-on-block2, we would en-

code that fact relationally as on(block4,block2). A state is typically encoded by listing

the true (or known) propositions, but this time describing the propositions using their

relational structure.

Such a representation a�ords even more opportunity for generalization. We might be

able to learn and represent much more e�ciently that, for example, states in which any

block is on top of block2 are rewarding.

We can get further generalization if we allow quanti�cation in our representation. So

far, we have had to name the individual blocks and haven't been able to directly take

advantage of the idea, described at the beginning of this section, of interchangeability. If

we allow individual states to be described using existential quanti�cation over the objects,

then we don't have to name them. We can say

∃x; y:red(x)^ blue(y)^ on(x; y)

to describe a situation in which a red block is on a blue block, generalizing over which

particular red and blue blocks are on one another.

More discussion here

5.2 Deictic Representations

From the perspective of opportunity to generalize, relational representations seem like the

best choice. However, we have much more experience and facility with learning and with

probabilistic representation in propositional representations. We may be able to have the

best of both worlds by taking advantage of deictic or indexical-functional representations.

A deictic expression is one that \points" to something; its meaning is relative to the

agent that uses or utters it and the context in which it is used or uttered. \Here," \now,"

and \the book that is in front of me" are examples of deictic expressions in natural

language.

Two important classes of deictic representations are derived directly from perception

and action relations between the agent and objects in the world. An agent with directed

perception can sensibly speak of (or think about) the-object-I-am-fixated-on. And

agent that can pick things up can name the-object-I-am-holding. The objects that are

9



designated by these expressions can be directly \gotten at" by perception. It should be

easy to answer the question of whether the-object-I-am-fixated-on is red.

Given a few primitive deictic names, such as those suggested above, we can make

compound deictic expressions using directly perceptible relations. So, for example, we

might speak of

the-object-on-top-of(the-object-I-am-fixated-on)

or

the-color-of(the-object-to-the-left-of(the-object-I-am-fixated-on)) :

We can evaluate predicates, such as

bigger-than(the-object-I-am-fixated-on, the-object-to-the-left-of(the-object-I-am-fixated-on)) :

One crucial property of these expressions is that they are perceptually e�ective; that

is, that the agent can always foveate (or mark) them by taking a sequence of perceptual

actions that is derived directly from the expression. It is for the agent to test for equality

of two of these expressions by: following the �rst expression, putting a marker on the

resulting object, following the second expression, putting a marker on the resulting object,

and then testing to see whether the two markers are on the same object.

Another important property of these deictic representations is that they implicitly per-

form a great deal of generalization. It is true, for instance, that holding(the-object-I-am-holding)
no matter what particular object I am holding. Using deictic representations, we have a

method for naming, and for generalizing over, objects without resorting to ad hoc names

like block5.
Deixis can also be used in the action space. Rather than have an action like pickup(block)

that takes the particular block to be picked up as a parameter, we might instead have a

single action, pickup that always picks up the block that is currently �xated (or that has

the \action" marker on it). In such a situation, we might be able to learn the rule:

red(the-block-I-am-fixated-on)^ pickup! next red(the-block-I-am-holding)

Although it has no quanti�ers, it expresses a universal property of all blocks.8

So far, we have been illustrating deixis in the context of relational representations. It

can also be used in propositional representations, to limit the number of objects (and there-

fore propositions) under consideration, and to do some generalization for us. Thus, if we

8This example illustrates a number of other questions we'll have to deal with eventually. We happen

to know that, in fact, the block I am holding now is the same block as the one that I was �xated on a

minute ago. How we can learn that is not clear. It requires a strong inductive leap. Even if we can't learn

that, we'd like to learn the second-order fact that all of the properties of the block I'm holding now held

of the block I was �xated on a minute ago.

10



have an active vision system with k markers, we might build propositional representation

with bits for each property of each marked object and for each relation between marked

objects. With 5 markers, in our 10-block example world, we would have 5∗(5+2+3) = 50

bits in our perceptual vector. This representation captures the interchangeability of blocks

of the same color and material. It also makes some other distinctions imperceptible, at

least directly. Thus, to learn in a domain with this observation space, we need to use

techniques suited to partial observability.

Include some story about symbol grounding?

(Cite Agre and Chapman; Whitehead and Ballard; Ballard et al.; Ullman (Visual

Routines); Scott Benson)

5.3 Partial Observability

When the agent is unable to observe the entire true state of the world at each time step, it

must remember something about its history of actions and observations in order to behave

e�ectively in the world. There are two ways to think about this aggregation: histories

and belief states.

In the history-based model, the agent really does remember all, or as much of its

history as it can. It may be selective about what it remembers, but the knowledge is

represented in its historical context: two time steps ago I was looking at a red block, or

the last block I was holding was green.

An alternative view is to aggregate the perceptual information into a belief state,

which encodes what the agent currently knows about the state of the world. The fact

that two time steps ago I was looking at a red block may actually mean that there is a

red block to the left of my hand.

These two styles of representation may be equivalent at an information-theoretic level;

howver, the choice between them seems to have important consequences for learning and

planning..

5.4 The Role of Probability

An independent representational question is whether, and, if so, how, to represent the

uncertainty in the domain. There may be uncertainty (noise) in the agent's perception,

in the e�ects of its actions, or in the dynamics of the environment, independent of the

agent's actions.

Markov models capture uncertain world dynamics with atomic state representations.

Dynamic Bayesian networks do the same for propositional representations. There is some

initial work on probabilistic relational models (cite Koller, Pfe�er), but these models are

not yet rich enough to capture probabilistic world dynamics we're interested in. Look,

again, at probabilistic logic programs (Muggleton, Cussins, Poole, Bacchus).

11



These models allow representation of any probabilistic world dynamics; to the extent

that there are independence relations in the propositional and relational cases, the models

can be represented compactly. However, there is considerable overhead in learning and

working with such models.

On the other hand, strictly logical models have serious problems with inconsistency

when applied to real environments.

One idea would be to learn and use a model that is a deterministic idealization of the

true stochastic world model, and to somehow degrade gracefully when the idealization is

violated. Some kinds of default logic (Reiter, etc.) or theories of in�nitesimal probability

(Pearl, Goldszmidt) might be appropriate.

6 Learning Algorithms

In this section we consider which learning algorithms would be appropriate for learning

policies (possibly via a value function) and world models, based on the choice of repre-

sentation of observations.

6.1 Policy learning

First, we'll consider the completely observable case.

When the states of the world are represented atomically, something like Q-learning or

SARSA is appropriate.

Most current research in reinforcement learning addresses the problem of learning in

a propositional representation. The goal is to learn a value function, mapping state of the

world into long-term values, but to do so in a compact way that a�ords generalization.

Two main approaches are neurodynamic programming (ndp) and decision-tree methods

(why not nearest neighbor?). In ndp, the value function is stored in a feed-forward neural

network. An alternative is to incrementally build a decision tree, with values stored at

the leaves. An advantage of this method is that it has a direct extension to the partially

observable case; in addition, it makes clear which of the propositional attributes are

important. It might be of interest to combine these approaches into regression trees,

using a decision tree to divide the space into regions that are �t with linear regression

models.

There has been very little work on relational reinforcement learning. The most obvious

idea is to adapt methods from inductive logic programming to the task. Cite Djeroski

and deRaedt (ICML 98).

The question of most interest to us, for now, is how to do reinforcement learning with

a deictic representation, which is by its very nature partially observable. There are two

general strategies for learning in partially observable environments. The �rst is to learn

policies directly, typically by performing local search in the space of policies. The second

12



is to try to reconstruct the underlying world state from histories of actions and obser-

vations, then to do standard propositional RL on a representation of the reconstructed

state. We feel that this second approach will be more generally applicable, and o�ers

more opportunity for between-task transfer. We will begin by using McCallum's utree

algorithm, which is an extension of decision-tree learning that also considers properties of

historic actions and observations.

Add a section here or elsewhere on POMDPs more generally. Dual views of

the information state as observation histories or probability distributions over world

states. Di�culty of optimal control. Availability of reasonable heuristics.

6.2 World model

atomic model learning: tables and counters

propositional model learning: drescher, 2TBN, association rule learning methods

relational model learning: ILP, PRMs

deictic: drescher?, association rules, propositional method over utree props

7 First Experiments

Although many people have argued e�ectively for the utility of deictic representation

on intuitive grounds, we know of no empirical demonstrations of its value in learning.

Our �rst experiments are aimed at understanding the utility of deictic representation in

reinforcement learning.

We will use a simulated agent in the simple blocks world domain outlined above. The

agent will have a single goal, such as to put a green block on top of every red block.

We will compare the following learning algorithms and representations in that domain:

• Complete propositional representation and ndp

• Complete propositional representation and G-learning

• Deictic propositional representation and utree

Our conjecture is that the deictic representation will allow the system to learn much

more e�ciently (in terms of the number of learning examples required), even though it is

solving an ostensibly harder (partially observable) problem. We believe the utree algo-

rithm is the most straightforward option for learning in this type of partially observable

domain. Its direct analogue for completely observable domains is G-learning, a decision-

tree method for RL, so that is a natural choice for the complete representation experiment.

13



However, ndp has become the default choice for propositional RL, so we will compare its

performance as well.9

8 Future Work

Transfer between tasks by learning a model driven by distinctions made by u-tree on the

�rst task.

Selectively generating deictic expressions (a la Benson).

Build up to reinforcement learning and model learning and planning in relational

deictic representation.

9G-learning and ndp were compared once before on a very simple domain (cite Chapman and Kael-

bling), but we think it will be informative to do it again here.

14


