
A Formal Model for Dynamic Computation

Paul Attie, Nancy Lynch

December 20, 1999

DRAFT: PLEASE DO NOT DISTRIBUTE WIDELY

Abstract

We present a formal model for de�ning and reasoning about agent systems. An agent is an

autonomous software entity, who cooperates with other agents in carrying out delegated tasks.

Agent systems are \dynamic" in two senses: (1) agents are created and destroyed as computation

proceeds, and (2) agents change \location." Our model extends the I/O automaton model of [3]

to provide for both kinds of dynamism. We provide explicit \create" and \destroy" operations,

and we model mobility by allowing an agent to dynamically change its external interface. The

overall goal is to develop formal languages and underlying mathematical models to serve as a

foundation for \agent-style" distributed computation.

1 Introduction

An agent is an autonomous software entity which cooperates with other agents in carrying out

delegated tasks. Agent systems are rather general kinds of distributed systems. A key feature is

that they are very "dynamic":

� Agent systems allow the dynamic creation and destruction of processes.

� Agent systems allow the dynamic creation of connections, or moving an end of a connection

from one process to another. We shall model this by dynamically changing the external

interface of an agent.

� Agent systems include an explicit notion of \location", and a notion of mobility by which

agents can move from one location to another. This is also modelled using dynamically

changing external interfaces.

The state of an agent typically includes a knowledge base, which keeps track of facts that it

"knows" (knowledge set), and facts that it "believes" (belief set). However, we are not going to

emphasize this structure in this paper. Instead, we will regard the knowledge and belief sets as

just parts of the agents' states, accessible using some �xed set of operations, but with no special

properties for those operations.

The paper is organized as follows. Section 2 presents a model of dynamic process creation and

destruction. Section 3 extends this model to one where automata can change their signatures.

Section 4 proposes an appropriate notion of forward simulation for our extended model. Section 5

presents an example application: a client agent system for purchasing airline tickets. Section 6

discusses further research and concludes. Appendix A gives technical background on I/O automata

and simulation relations, taken from [3] and [4].

1

2 Modelling Process Creation and Destruction: The Dynamic I/O

Automaton Model

In this section, we present an extension of the basic I/O automaton model to make it suitable for

expressing agent systems. In particular, the semantics of create and destroy actions are de�ned. We

call our model \Dynamic I/O automata" (DIOA).

We assume an underlying universe of I/O automata, and we assume that individual automata

in this universe can be identi�ed by means of a unique identi�er (for automaton A, we use A:id to

denote the corresponding unique identi�er). In writing automata for our example, we shall identify

automata using a \type name" followed by some parameters. This is only a notational convention

to permit convenient description, and is not part of our underlying model.

In addition to the usual input, output, and internal actions, we will also have create and destroy

actions. A create action has the form create(Ai:id ; Bj :id), where Ai is the automaton invoking the

create, and Bj is the automaton being created. A destroy action has the form destroy(Ai:id ; Bj:id),

where Ai is the automaton invoking the destroy, and Bj is the automaton being destroyed. Thus,

a particular create or destroy action will be in the signature of at most one automaton. Since

create/destroy actions are not used for synchronization, we make them internal actions.

It is clearly possible to write an I/O automaton A which invokes the operation create(Ai:id ; Bj :id)

(for constant Bj :id) more than once. We interpret this as the creation of clones, i.e., multiple copies

of the same automaton. For the time being, we assume that this does not occur, and relegate the

discussion of clones to Section 2.1 below.

Suppose create(Ai; Bj) is an internal action of Ai. As with any action, execution of create(Ai; Bj)

will, in general, cause a change in the state of Ai. However, we also want the execution of

create(Ai; Bj) to have the e�ect of creating the I/O automaton Bj. To model this, we must

keep track of the set of I/O automata that have been created but not destroyed (we consider the

automata that are initially present to be \created at time zero"). Thus, we require a transition

relation over sets of I/O automata. Moreover, since create and destroy actions can be invoked in

any state, not just in start states, we also need to keep track of the current global state. Thus, we

replace the notion of global state with the notion of a \con�guration," and use a transition relation

over con�gurations.

De�nition 2.1 (Con�guration) A con�guration is a �nite multiset fhA1; s1i; : : : ; hAn; snig where

Ai is an I/O automaton and si 2 states(Ai), for 1 � i � n. A con�guration fhA1; s1i; : : : ; hAn; snig

is compatible i� for all 1 � i; j � n with i 6= j, out(Ai) \ out(Aj) = ; and int(Ai) \ acts(Aj) = ;.

Intuitively, A1; : : : ; An is the current set of agents and si is the current local state of Ai.

If fhA1; s1i; : : : ; hAn; snig is a con�guration, then we de�ne acts(fhA1; s1i; : : : ; hAn; snig) =S
1�i�n acts(Ai), and aut(fhA1; s1i; : : : ; hAn; snig) = fA1; : : : ; Ang. Also, if ' is a multiset of I/O

automata, then we de�ne acts(') =
S
A2' acts(A).

De�nition 2.2 (Transitions) The transitions that a con�guration fhA1; s1i; : : : ; hAn; snig can

execute are de�ned as follows:

1. fhA1; s1i; : : : ; hAn; snig
a
�! fhA1; s

0
1i; : : : ; hAn; s

0
nig if

a is not a create or destroy action and

for 1 � i � n: if a 2 acts(Ai) then si
a
�!Ai

s0i, and if a 62 acts(Ai) then s0i = si.

Thus, transitions not arising from a create/destroy action are de�ned as in the basic I/O

automaton model.

2

2. fhA1; s1i; : : : ; hAn; snig
a
�! (fhA1; s1i; : : : ; hAn; snig n hAi; sii) [fhAi; s

0
ii; hB; tig if

a 2 acts(Ai), a is create(Ai; B), si
a
�!Ai

s0i, and t 2 start(B).

Thus, execution of a create(Ai; B) action by Ai results in both a state change in Ai and the

creation of automaton B, which initially can be in any of its start states. B is added to the

multiset of current I/O automata, and B's initial local state t is added to the global state.

The state of all Aj, j 6= i, is unchanged.

3. fhA1; s1i; : : : ; hAn; sni; hB; tig
a
�! (fhA1; s1i; : : : ; hAn; snig n hAi; sii) [fhAi; s

0
iig if

a 2 acts(Ai), a is destroy(Ai; B), and si
a
�!Ai

s0i.

Thus, execution of a destroy(Ai; B) action by Ai results in both a state change in Ai and the

destruction of automaton B, provided that it exists. B is removed from the multiset of current

I/O automata, and B's local state t is removed from the global state. The state of all Aj,

j 6= i, is unchanged. Note that some actions that were previously output actions may now

become input actions, namely those actions in out(B) \
S

1�i�n in(Ai).

4. fhA1; s1i; : : : ; hAn; snig
a
�! (fhA1; s1i; : : : ; hAn; snig n hAi; sii) [fhAi; s

0
iig if

a 2 acts(Ai), a is destroy(Ai; B), B 62 fA1; : : : ; Ang, and si
a
�!Ai

s0i.

Thus, execution of a destroy(Ai; B) action by Ai, in a con�guration that does not contain B,

results only in a state change in Ai. The multiset of existing I/O automata remains the same.

The state of all Aj, j 6= i, is unchanged.

5. fhA1; s1i; : : : ; hAn; sni; hB; tig
a
�! fhA1; s1i; : : : ; hAn; snig if

a 2 acts(B), a is destroy(B;B).

This corresponds to the special case where an automaton B destroys itself. B is removed from

the multiset of current I/O automata, and B's local state t is removed from the global state.

The state of all Aj, 1 � j � n, is unchanged. Note that some actions that were previously

output actions may now become input actions, namely those actions in out(B)\
S

1�i�n in(Ai).

We shall use the action terminate(B) as syntactic sugar for destroy(B;B).

6. If C and D are con�gurations and � = a1; : : : ; an is a �nite sequence of n � 1 action-

s, then C
�
�!D i� there exist con�gurations C0; : : : ; Cn such that C = C0

a1
�!C1

a2
�! � � �

an�1
�! Cn�1

an
�!Cn = D.

Note that this de�nition does not require fhA1; s1i; : : : ; hAn; snig to be clone-free. In particular,

we de�ne the semantics of create and destroy actions so that automata do not synchronize on them,

i.e., if two automata both have the same create (or destroy) action in their signature, then they can

each execute this action independently of the other.

The entire behavior that a given con�guration is capable of is captured by the notion of con-

�guration automaton.

De�nition 2.3 (Con�guration automaton) Given a con�guration C = fhA1; s1i; : : : ; hAn; snig,

the con�guration automaton con�g(C) corresponding to C is a state machine with four components:

1. a unique start state, start(con�g(C)) = C

2. a set of states, states(con�g(C)) = fD j 9� : C
�
�!Dg

3. a transition relation, steps(con�g(C)) = f(C 0; a; C 00) j C 0 a
�!C 00 and C 0; C 00

2 states(con�g(C))g

3

4. a set of actions, acts(con�g(C)) =
S
D2states(con�g(C)) acts(D)

Thus, con�g(C) is the automaton induced by all the con�gurations reachable from C, and the tran-

sitions between them. We shall usually use \con�guration" to refer to the states of a con�guration

automaton, rather than \state."

It is clear from De�nitions 2.2 and 2.3 that a con�guration automaton is entirely determined by

its start state. In fact, the mapping from con�gurations to con�guration automata is a bijection:

every con�guration automaton is generated by its start con�guration (surjection), and di�erent

con�gurations generate di�erent con�guration automata (injection).

Since each state of a con�guration automaton is a con�guration, we can associate an action

signature with each state. Since di�erent con�gurations may contain di�erent component I/O

automata, the action signature varies with the state. Furthermore, output actions of some con�gu-

ration could be input or internal actions of another con�guration, etc. Thus, there is no reasonable

way to combine the signatures of all the con�gurations to obtain a single overall signature for the

automaton itself. The best we can do is to take the union of all the actions of each con�guration,

and let that be the set of actions of the automaton. The signature of a particular compatible

con�guration is de�ned in the usual way [LT87].

De�nition 2.4 (Con�guration signature) Let C = fhA1; s1i; : : : ; hAn; snig be a con�guration

such that fA1; : : : ; Ang is a compatible set of I/O automata. Then out(C) =
S

1�i�n out(Ai),

in(C) =
S

1�i�n in(Ai)� out(C), int(C) =
S

1�i�n int(Ai), ext(C) = hout(C); in(C)i.

We de�ne an execution fragment of a con�guration automaton in a similar manner to an exe-

cution fragment of an I/O automaton. An execution fragment � of a con�guration automaton X

is a (�nite or in�nite) sequence C0a1C1a2 : : : of alternating con�gurations and actions such that

(Ci�1; ai; Ci) 2 steps(X) for each triple (Ci�1; ai; Ci) occurring in �. Furthermore, � ends in a con-

�guration if it is �nite. An execution of X is an execution fragment of X whose �rst con�guration

is start(X). We use execs(X) to denote the set of executions of a con�guration automaton X.

Given an execution fragment � = C0a1C1a2 : : : , the trace of � (denoted trace(�)) is the sequence

that results from removing all the con�gurations, and also all actions ai such that ai is not an

external action of Ci�1. traces(X), the set of traces of a con�guration automaton X, is the set

f� j 9� 2 execs(X) : � = trace(�)g.

We write C 0 a
�!X C 00 i� (C 0; a; C 00) 2 steps(X), and C 0 a

=)X C 00 i� there exists an execution

fragment � of X such that C 0 �
�!C 00 and trace(�) = a.

2.1 Clone-freedom

In the I/O automaton model, composed I/O automata must be compatible, that is, any pair of

automata have disjoint (sets of) output actions, and the internal actions of one are disjoint from

the actions of the other. Now it is possible, in principle, to have compositions of I/O automata

with multiple copies of a particular automaton (which will, therefore, have equal identi�ers). We

call such copies clones, and say that a composition of I/O automata is clone-free i� no two of its

constituent I/O automata have the same identi�er (we give the technical de�nition of clone-freedom

in the sequel). Clearly, copies of an automaton are not compatible. Thus, compatibility requires

that the composition be clone-free. Furthermore, if the composition is clone-free, then we can assure

compatibility, by, for example, pre�xing all the output and internal action names of an automaton

with its identi�er. Thus, clone-freedom is a necessary and suÆcient condition for compatibility.

In the basic I/O automaton model, assuring clone-freedom is straightforward: if the clone-

freedom condition holds initially (for a particular system), then it holds always, since the set of

4

composed I/O automata is �xed. Thus, one need only compare pairwise the identi�ers of these I/O

automata. In the extended I/O automaton model, clone-freedom is a little more subtle, since the

set of composed I/O automata changes dynamically. In particular, it is possible that, at runtime,

automata A1 and A2 both invoke a \create" operation on the same automaton type and with

identical parameter values. This will result in two clones existing at the same time (i.e., composed

together). Thus, even if clone-freedom holds initially, it may be violated at some later point in the

system's execution. In general, assuring that this does not occur requires an analysis of run-time

behaviour, e.g., establish an appropriate invariant. We discuss clone-freedom in more detail below.

Our technical results will, for the most part, assume that clone-freedom has been assured.

We can now formalize the de�nition of clone-freedom. As mentioned above, clone-freedom

assures compatibility since we pre�x the names of output and internal actions of an automaton

with its identi�er.

De�nition 2.5 (Clone-free) A con�guration fhA1; s1i; : : : ; hAn; snig is clone-free i� for all 1 �

i; j � n; i 6= j: Ai:id 6= Aj :id . A con�guration automaton is clone-free i� all of its con�gurations

are clone-free.

One way of assuring clone-freedom is to establish that (1) the starting con�guration is clone-

free, and (2) execution from any clone-free con�guration can only lead to clone-free con�gurations,

i.e., clone-freedom is \stable." Towards this end, we de�ne:

De�nition 2.6 (Clone-preserving) A con�guration automaton X is clone-preserving i�, for all

clone-free con�gurations C 2 states(X), con�g(C) is clone-free.

It is easy to see that clone-freedom always holds if it holds initially, and the con�guration

automaton is clone-preserving. That is, the condition \the current con�guration is clone-free" is

an invariant of the con�guration automaton.

Proposition 2.1 Let X = con�g(C) be a con�guration automaton. If C is clone-free and X is

clone-preserving, then X is clone-free.

Showing that a given con�guration is clone-free is a straightforward matter of comparing pair-

wise the identi�ers of all the I/O automata in the con�guration. One way of establishing that a

con�guration automaton is clone-preserving is to show that no step introduces clones.

Proposition 2.2 Let X be a con�guration automaton. If, for all (C; create(Ai; Bj);D) 2 steps(X)

such that C is clone-free, we have Bj 62 aut(C), then X is clone-preserving.

Proof: Assume the antecedent, and let C be an arbitrary clone-free con�guration ofX. LetD be an

arbitrary con�guration reachable from C, via some execution fragment � of X. It is straightforward

to establish, by induction on the length of �, that D is clone-free. Hence, con�g(C) is clone-free,

since it is just the automaton induced by the con�gurations reachable from C.

The antecedent of Proposition 2.2 states that any step of a clone-free con�guration does not

introduce clones. This is a semantic condition, since it is expressed as a condition on the transi-

tions of the con�guration. One way of establishing this is to adopt a syntactic\naming scheme,"

i.e., a particular convention for assigning identi�ers to newly created I/O automata (the use of a

naming scheme essentially amounts to using a suÆcient, easily veri�able, condition that guarantees

clone-preservation). Since an identi�er consists of the type name and parameters only, the only

5

exibility we have here is to add \dummy" parameters|parameters that do not convey any neces-

sary information to the newly created automaton, but serve to distinguish it from other automata.

For example, a \hierarchical" naming scheme could include the name of the creating automaton as

a parameter to the created automaton. If this scheme were used, then the resulting con�guration

automaton would clearly be clone-preserving, since the identi�er of a newly created I/O automaton

would contain within it the identi�er of the creating automaton. A disadvantage of this particular

naming scheme is that the size of identi�ers grows with the depth of the \creation tree." We do not

assume that this scheme is actually used; it's just one possible way of assurring clone-preservation.

2.2 Composition

Two con�gurations can be composed by multiset union.

De�nition 2.7 If C = fhA1; s1i; : : : ; hAn; snig and D = fhB1; t1i; : : : ; hBm; tmig are con�gura-

tions, then their composition C k D is the multiset union of C and D.

Since a con�guration automaton is uniquely determined by its start state, it makes sense to

de�ne the composition of two con�guration automata X;Y as simply the composition automaton

determined by the composition of the start con�gurations of X and Y .

De�nition 2.8 (Composition) Let X = con�g(C) and Y = con�g(D) be con�guration automa-

ta. Then X k Y , the composition of X and Y , is de�ned to be con�g(C k D).

We would like to establish the usual \projection" and \pasting" results for compositions: if �

is an execution of X k Y , then the projection of � onto X is an execution of X (projection), and, if

the projections of � onto X;Y are executions of X;Y , respectively, then � is an execution of X k Y

(pasting). First, we need a rigorous de�nition of projection. The main problem in setting up this

de�nition is that the set of I/O automata in X varies with the current con�guration. We therefore

�rst de�ne:

De�nition 2.9 (Con�guration projection) Let C = fhA1; s1i; : : : ; hAn; snig be a clone-free

con�guration and ' a set of I/O automata. Then Cd' = fhB1; t1i; : : : ; hBm; tmig, where fB1; : : : ; Bmg =

fA1; : : : ; Ang \ ', and tj = si if Bj = Ai, for all 1 � j � m.

De�nition 2.10 (X-descendant) Let X be a con�guration automaton such that start(X) is

clone-free, and let Y be a con�guration automaton. Let � be a sequence E0a1E1a2E2 : : : where

E0 is clone-free, and 8i � 0; Ei 2 states(X k Y), and 8i > 0; ai 2 acts(X k Y). Then, the set of

X-descendants at position i along �, denoted autX(�; i), is de�ned by induction on i as follows.

1. autX(�; 0) = aut(E0) \ aut(start(X))

2. autX(�; i) is determined by autX(�; i � 1) and ai as follows

(a) if ai is not a create or destroy, then autX(�; i) = autX(�; i� 1)

(b) if ai is create(Ak; B) then

if ai 2 acts(autX(�; i � 1)) then autX(�; i) = autX(�; i� 1) [fBg,

otherwise autX(�; i) = autX(�; i � 1)

(c) if ai is destroy(Ak; B) then

autX(�; i) = autX(�; i � 1) n fBg

6

Note that autX(�; i) depends only on E0 and the actions in �; it is independent of the Ei, for

i � 1.

In an execution � of a con�guration automaton X, the X-descendants are just the automa-

ta in the \current" con�guration, i.e., autX(�; i) correctly computes the set of automata in the

con�guration at position i in �.

Proposition 2.3 Let � = C0a1C1a2C2 : : : be an execution of a clone-free con�guration automaton

X. Then, for all i � 0, autX(�; i) = aut(Ci).

Proof: By induction on i. The base case for i = 0 follows, since autX(�; 0) = aut(C0) \

aut(start(X)) = aut(C0) \ aut(C0) = aut(C0). For the induction step, assume the proposition

for i� 1. The proof proceeds by cases on ai.

If ai is neither a create or a destroy, then by De�nition 2.10, autX(�; i) = autX(�; i� 1). By

De�nition 2.2, aut(Ci�1) = aut(Ci). Hence, applying the induction hypothesis (autX(�; i � 1) =

aut(Ci�1)), we obtain autX(�; i) = aut(Ci).

If ai is create(Ak; B), then by De�nition 2.10, autX(�; i) = autX(�; i � 1) [fBg. By Def-

inition 2.2, aut(Ci) = aut(Ci�1) [fBg. Hence, applying the induction hypothesis, we obtain

autX(�; i) = aut(Ci).

The case when ai is destroy(Ak; B) is similar.

Proposition 2.4 Let X k Y be a clone-free con�guration automaton. Let � 2 execs(X k Y).

Then, for all i � 0, autXkY (�; i) is partitioned by autX(�; i) and autY (�; i).

Proof: Let C = start(X) andD = start(Y). The proof is by induction on i. The base case for i = 0

is immediate, since autXkY (�; 0) = aut(C) [aut(D), autX(�; 0) = aut(C), autY (�; 0) = aut(D),

and aut(C) \ aut(D) = ;, since C k D is clone-free.

For the induction step, assume that autXkY (�; i� 1) is partitioned by autX(�; i� 1) and

autY (�; i� 1). We proceed by cases on ai.

If ai is neither a create or a destroy, then autXkY (�; i) = autXkY (�; i� 1), autX(�; i) =

autX(�; i � 1), and autY (�; i) = autY (�; i � 1). Hence the proposition follows by applying the

induction hypothesis.

If ai is create(Ak; B), then by the induction hypothesis, Ak 2 autX(�; i� 1), orAk 2 autY (�; i� 1),

but not both. If Ak 2 autX(�; i� 1), then autXkY (�; i) = autXkY (�; i � 1) [fBg, autX(�; i) =

autX(�; i � 1) [fBg, and autY (�; i) = autY (�; i � 1). If Ak 2 autY (�; i� 1), then autXkY (�; i) =

autXkY (�; i � 1) [fBg, autX(�; i) = autX(�; i� 1), and autY (�; i) = autY (�; i � 1) [fBg. In

either case, the proposition follows from the induction hypothesis.

If ai is destroy(Ak; B), then the proof is analogous to the above case for create(Ak; B).

De�nition 2.11 (Execution projection) Let X k Y be a clone-free con�guration automaton.

Let � be a sequence E0a1E1a2E2 : : : where 8i � 0; Ei 2 states(X k Y), and 8i > 0; ai 2 acts(X k Y).

Then �dX is the sequence resulting from:

1. projecting each Ei onto autX(�; i), i.e., replace Ei by EidautX(�; i), and

2. removing all aiEi such that ai 62 acts(autX(�; i� 1)).

Proposition 2.5 Let X k Y be a clone-free con�guration automaton. Let � be an arbitrary �nite

execution of X k Y . Then last(�dX) 2 states(X).

7

Proof: By induction on j�j, the length of �. Let C = start(X) and D = start(Y). For the

base case of j�j = 0, we have that � is just the con�guration C k D. Hence, �dX is just the

con�guration C. Since C 2 states(X), we are done. For the induction step, assume the propo-

sition for paths of length n � 1, and let � = E0a1E1a2E2 : : : En�1anEn. By the induction hy-

pothesis, En�1dautX(�; n� 1) 2 states(X). If an 62 acts(autX(�; n� 1)), then by De�nition 2.2,

EndautX(�; n� 1) = En�1dautX(�; n� 1), and, by De�nition 2.10, autX(�; n) = autX(�; n� 1).

Hence, EndautX(�; n) = En�1dautX(�; n� 1), and so EndautX(�; n) 2 states(X) and we are done.

If an 2 acts(autX(�; n� 1)), then (En�1dautX(�; n� 1), an, EndautX(�; n)) 2 steps(X), again by

De�nition 2.2. Thus, EndautX(�; n) 2 states(X) by De�nition 2.3, and we are done.

Lemma 2.6 (Execution projection) Let X k Y be a clone-free con�guration automaton. If

� 2 execs(X k Y) then �dX 2 execs(X).

Proof: Let C = start(X), D = start(Y), and � = E0a1E1a2E2 : : : , where E0 = C k D. Let

�dX = C0b1C1b2C2 : : : . By De�nition 2.11, C0 = E0dX, and so C0 = C. Consider an arbitrary

step (Ci�1; bi; Ci) of �dX. By De�nition 2.11, this step is the projection of some step (Ej�1; aj ; Ej)

of �, i.e.:

Ci�1 = Ej�1dautX(�; j � 1), aj = bi, and Ci = EjdautX(�; j).

By Proposition 2.5, Ci�1 2 states(X). Hence, by (Ej�1; aj ; Ej) 2 steps(X k Y), De�nition 2.2, and

the above, we conclude that (Ci�1; bi; Ci) 2 steps(X). Since (Ci�1; bi; Ci) was arbitrarily chosen,

and C0 = C = start(X), we conclude �dX 2 execs(X).

Lemma 2.7 (Execution pasting) Let X k Y be a clone-free con�guration automaton. Let � =

E0a1E1a2E2 : : : where E0 = start(X k Y) and 8i > 0, Ei 2 states(X k Y) and ai 2 acts(Ei).

Furthermore, suppose that

1. �dX 2 execs(X),

2. �dY 2 execs(Y),

3. for all i > 0, if ai 62 acts(autX(�; i� 1)) then

(a) if ai 62 fdestroy(A;B) : B 2 autX(�; i� 1)g then EidautX(�; i) = Ei�1dautX(�; i � 1),

(b) if ai = destroy(A;B) for some B 2 autX(�; i� 1)g then

EidautX(�; i) = (Ei�1dautX(�; i� 1)) n fBg,

4. for all i > 0, if ai 62 acts(autY (�; i� 1)) then

(a) if ai 62 fdestroy(A;B) : B 2 autY (�; i � 1)g then EidautY (�; i) = Ei�1dautY (�; i � 1),

(b) if ai = destroy(A;B) for some B 2 autY (�; i � 1)g then

EidautY (�; i) = (Ei�1dautY (�; i� 1)) n fBg.

Then, � 2 execs(X k Y).

Proof: Let C = start(X) and D = start(Y). Assume the antecedents of the proposition, and

consider an arbitrary step (Ei�1; ai; Ei) along �. Since E0 = start(X k Y) = C k D by assumption,

it suÆces to establish (Ei�1; ai; Ei) 2 steps(X k Y) to conclude � 2 execs(X k Y). The proof

proceeds by cases on whether ai 2 acts(autX(�; i� 1)) and ai 2 acts(autY (�; i� 1)) hold. Since

8

acts(Ei) = acts(autX(�; i � 1)) [acts(autY (�; i� 1)), at least one of these holds, and so there are

three cases.

Consider �rst the case of ai 2 acts(autX(�; i� 1)) and ai 2 acts(autY (�; i� 1)). Consider the

projected steps:

(Ei�1dautX(�; i� 1); ai; EidautX(�; i)) (x)

(Ei�1dautY (�; i� 1); ai; EidautY (�; i)) (y)

By De�nition 2.11, x and y are steps along �dX, �dY , respectively. By assumption, �dX 2 execs(X)

and �dY 2 execs(Y). Thus, x 2 steps(X) and y 2 steps(Y). Since Ei�1 2 states(X k Y) by

assumption, we conclude by De�nition 2.2 that (Ei�1; ai; Ei) 2 steps(X k Y).

Now consider the case of ai 2 acts(autX(�; i� 1)) and ai 62 acts(autY (�; i� 1)). Consider the

projected step:

(Ei�1dautX(�; i� 1); ai; EidautX(�; i)) (x)

By De�nition 2.9, x is a step along �dX. Also, Ei�1dautY (�; i� 1) = EidautY (�; i) by assumption.

Hence, by De�nition 2.2, we have (Ei�1; ai; Ei) 2 steps(X k Y).

The case of ai 62 acts(autX(�; i � 1)) and ai 2 acts(autY (�; i� 1)) is similar, except that the

roles of X and Y are interchanged.

3 Modelling Dynamically Changing Interfaces: The Dynamic Sig-

nature I/O Automaton Model

We now extend the DIOA model to the Dynamic Signature I/O Automaton Model (DSIOA).

De�nition 3.1 (Signature I/O Automaton) A signature I/O automaton A consists of four

components:

� A set states(A) of states. Each state s contains a special signature component s:sig =

hs:out; s:in; s:inti which gives the signature that A has when in state s. s:out, s:in, and s:int

denote the output, input, and internal actions of A in s, respectively.

� A nonempty set start(A) � states(A) of start states.

� A transition relation steps(A) � states(A)� acts(A) � states(A).

� A �xed universal signature sig(A) = hout(A); in(A); int(A)i. We require that 8s 2 states(A) :

s:out � out(A); s:in � in(A); s:int � int(A).

We de�ne s:ext = s:in [s:out, and s:acts = s:in [s:out [s:int. We also de�ne acts(A) =S
s2states(A) s:acts.

We now redo the development of the previous section. Most of the previous de�nition either

remain the same, or are modi�ed in the obvious way.

De�nition 3.2 (Con�guration) A con�guration is a �nite multiset fhA1; s1i; : : : ; hAn; snig where

Ai is a signature I/O automaton and si 2 states(Ai), for 1 � i � n. A con�guration fhA1; s1i; : : : ; hAn; snig

is compatible i� for all 1 � i; j � n with i 6= j, si:out \ sj:out = ; and si:int \ sj:acts = ;.

9

If fhA1; s1i; : : : ; hAn; snig is a con�guration, then we de�ne acts(fhA1; s1i; : : : ; hAn; snig) =S
1�i�n si:acts, and aut(fhA1; s1i; : : : ; hAn; snig) = fA1; : : : ; Ang. Also, if ' is a multiset of I/O

automata, then we de�ne acts(') =
S
A2' acts(A).

De�nition 3.3 (Transitions) The transitions that a con�guration fhA1; s1i; : : : ; hAn; snig can

execute are de�ned as follows:

1. fhA1; s1i; : : : ; hAn; snig
a
�! fhA1; s

0
1i; : : : ; hAn; s

0
nig if

a is not a create or destroy action and

for 1 � i � n: if a 2 si:acts then si
a
�!Ai

s0i, and if a 62 si:acts then s0i = si.

Thus, transitions not arising from a create/destroy action are de�ned as in the basic I/O

automaton model.

2. fhA1; s1i; : : : ; hAn; snig
a
�! (fhA1; s1i; : : : ; hAn; snig n hAi; sii) [fhAi; s

0
ii; hB; tig if

a 2 si:acts, a is create(Ai; B), si
a
�!Ai

s0i, and t 2 start(B).

Thus, execution of a create(Ai; B) action by Ai results in both a state change in Ai and the

creation of automaton B, which initially can be in any of its start states. B is added to the

multiset of current I/O automata, and B's initial local state t is added to the global state.

The state of all Aj, j 6= i, is unchanged.

3. fhA1; s1i; : : : ; hAn; sni; hB; tig
a
�! (fhA1; s1i; : : : ; hAn; snig n hAi; sii) [fhAi; s

0
iig if

a 2 si:acts, a is destroy(Ai; B) and si
a
�!Ai

s0i.

Thus, execution of a destroy(Ai; B) action by Ai results in both a state change in Ai and the

destruction of automaton B, provided that it exists. B is removed from the multiset of current

I/O automata, and B's local state t is removed from the global state. The state of all Aj,

j 6= i, is unchanged. Note that some actions that were previously output actions may now

become input actions, namely those actions in out(B) \
S

1�i�n in(Ai).

4. fhA1; s1i; : : : ; hAn; snig
a
�! (fhA1; s1i; : : : ; hAn; snig n hAi; sii) [fhAi; s

0
iig if

a 2 si:acts, a is destroy(Ai; B), B 62 fA1; : : : ; Ang, and si
a
�!Ai

s0i.

Thus, execution of a destroy(Ai; B) action by Ai, in a con�guration that does not contain B,

results only in a state change in Ai. The multiset of existing I/O automata remains the same.

The state of all Aj, j 6= i, is unchanged.

5. fhA1; s1i; : : : ; hAn; sni; hB; tig
a
�! fhA1; s1i; : : : ; hAn; snig if

a 2 t:acts, a is destroy(B;B).

This corresponds to the special case where an automaton B destroys itself. B is removed from

the multiset of current I/O automata, and B's local state t is removed from the global state.

The state of all Aj, 1 � j � n, is unchanged. Note that some actions that were previously

output actions may now become input actions, namely those actions in out(B)\
S

1�i�n in(Ai).

We shall use the action terminate(B) as syntactic sugar for destroy(B;B).

6. If C and D are con�gurations and � = a1; : : : ; an is a �nite sequence of n � 1 action-

s, then C
�
�!D i� there exist con�gurations C0; : : : ; Cn such that C = C0

a1
�!C1

a2
�! � � �

an�1
�! Cn�1

an
�!Cn = D.

The entire behavior that a given con�guration is capable of is captured by the notion of con-

�guration automaton.

10

De�nition 3.4 (Con�guration automaton) Given a con�guration C = fhA1; s1i; : : : ; hAn; snig,

the con�guration automaton con�g(C) corresponding to C is a state machine with four components:

1. a unique start state, start(con�g(C)) = C

2. a set of states, states(con�g(C)) = fD j 9� : C
�
�!Dg

3. a transition relation, steps(con�g(C)) = f(C 0; a; C 00) j C 0 a
�!C 00 and C 0; C 00

2 states(con�g(C))g

4. a set of actions, acts(con�g(C)) =
S
D2states(con�g(C)) acts(D)

Thus, con�g(C) is the automaton induced by all the con�gurations reachable from C, and the tran-

sitions between them. We shall usually use \con�guration" to refer to the states of a con�guration

automaton, rather than \state."

It is clear from De�nitions 3.3 and 3.4 that a con�guration automaton is entirely determined by

its start state. In fact, the mapping from con�gurations to con�guration automata is a bijection:

every con�guration automaton is generated by its start con�guration (surjection), and di�erent

con�gurations generate di�erent con�guration automata (injection).

Since each state of a con�guration automaton is a con�guration, we can associate an action

signature with each state. Since di�erent con�gurations may contain di�erent component I/O

automata, the action signature varies with the state. Furthermore, output actions of some con�gu-

ration could be input or internal actions of another con�guration, etc. Thus, there is no reasonable

way to combine the signatures of all the con�gurations to obtain a single overall signature for the

automaton itself. The best we can do is to take the union of all the actions of each con�guration,

and let that be the set of actions of the automaton. The signature of a particular compatible con-

�guration is de�ned in the usual way [LT87]. Recall from [LT87] that fA1; : : : ; Ang is a compatible

set of I/O automata i�, for all 1 � i; j � n with i 6= j, the conditions out(Ai) \ out(Aj) = ; and

int(Ai) \ acts(Aj) = ; hold.

De�nition 3.5 (Con�guration signature) Let C = fhA1; s1i; : : : ; hAn; snig be a compatible

con�guration. Then out(C) =
S

1�i�n si:out, in(C) =
S

1�i�n si:in�out(C), int(C) =
S

1�i�n si:int,

ext(C) = hout(C); in(C)i.

We de�ne an execution fragment of a con�guration automaton in a similar manner to an exe-

cution fragment of an I/O automaton. An execution fragment � of a con�guration automaton X

is a (�nite or in�nite) sequence C0a1C1a2 : : : of alternating con�gurations and actions such that

(Ci�1; ai; Ci) 2 steps(X) for each triple (Ci�1; ai; Ci) occurring in �. Furthermore, � ends in a con-

�guration if it is �nite. An execution of X is an execution fragment of X whose �rst con�guration

is start(X). We use execs(X) to denote the set of executions of a con�guration automaton X.

Given an execution fragment � = C0a1C1a2 : : : , the trace of � (denoted trace(�)) is the sequence

that results from removing all the con�gurations, and also all actions ai such that ai is not an

external action of Ci�1. traces(X), the set of traces of a con�guration automaton X, is the set

f� j 9� 2 execs(X) : � = trace(�)g.

We write C 0 a
�!X C 00 i� (C 0; a; C 00) 2 steps(X), and C 0 a

=)X C 00 i� there exists an execution

fragment � of X such that C 0 �
�!C 00 and trace(�) = a.

3.1 Composition

Two con�gurations can be composed by multiset union.

11

De�nition 3.6 If C = fhA1; s1i; : : : ; hAn; snig and D = fhB1; t1i; : : : ; hBm; tmig are con�gura-

tions, then their composition C k D is the multiset union of C and D.

Since a con�guration automaton is uniquely determined by its start state, it makes sense to

de�ne the composition of two con�guration automata X;Y as simply the composition automaton

determined by the composition of the start con�gurations of X and Y .

De�nition 3.7 (Composition) Let X = con�g(C) and Y = con�g(D) be con�guration automa-

ta. Then X k Y , the composition of X and Y , is de�ned to be con�g(C k D).

We would like to establish the usual \projection" and \pasting" results for compositions: if �

is an execution of X k Y , then the projection of � onto X is an execution of X (projection), and,

if the projections of � onto X;Y are executions of X;Y , respectively, then � is an execution of

X k Y (pasting). First, we need a rigorous de�nition of projection. The main problem in setting up

this de�nition is that the set of I/O automata in X (and their signatures) varies with the current

con�guration. We therefore �rst de�ne:

De�nition 3.8 (Con�guration projection) Let C and D be clone-free con�gurations. Then

CdD = C \D.

De�nition 3.9 (X-descendant) Let X be a con�guration automaton such that start(X) is clone-

free, and let Y be a con�guration automaton. Let � be a sequence E0a1E1a2E2 : : : where 8i � 0; Ei 2

states(X k Y) and Ei is clone-free, and 8i > 0; ai 2 acts(X k Y). Then, the set of X-descendants

at position i along �, denoted conf X(�; i), is de�ned by induction on i as follows.

1. conf X(�; 0) = E0dstart(X)

2. conf X(�; i) is determined by conf X(�; i� 1), ai, and Ei as follows

(a) if ai is not a create or destroy, then

conf X(�; i) = fhAj ; s
0
ji j hAj ; s

0
ji 2 Ei ^ hAj ; sji 2 conf X(�; i� 1) ^

[(ai 2 sj:acts ^ sj
ai
�!Aj

s0j) _ (ai 62 sj:acts ^ sj = s0j)]g

(b) if ai is create(Ak; B) then

conf X(�; i) = fhAj ; s
0
ji j hAj ; s

0
ji 2 Ei ^

[(hAj ; sji 2 conf X(�; i� 1) ^ ai 62 sj:acts ^ sj = s0j) _

(hAj ; sji 2 conf X(�; i � 1) ^Aj = Ak ^ ai 2 sj:acts ^ sj
ai
�!Aj

s0j) _

(Aj = B ^ s0j 2 start(B) ^ ai 2 acts(conf X(�; i � 1)))]

g

(c) if ai is destroy(Ak; B) then

conf X(�; i) = fhAj ; s
0
ji jhAj ; s

0
ji 2 Ei ^ hAj ; sji 2 conf X(�; i� 1) ^Aj 6= B ^

[(ai 2 sj:acts ^ sj
ai
�!Aj

s0j) _ (ai 62 sj:acts ^ sj = s0j)]g

In an execution � of a con�guration automaton X, the X-descendants constitute the \current"

con�guration, i.e., conf X(�; i) correctly computes the con�guration at position i in �.

Proposition 3.1 Let � = C0a1C1a2C2 : : : be an execution of a con�guration automaton X. Then,

for all i � 0, conf X(�; i) = Ci.

Proof: By induction on i. The base case for i = 0 follows, since conf X(�; 0) = C0dstart(X) = C0dC0

= C0. For the induction step, assume the proposition for i� 1. From conf X(�; i� 1) = Ci�1, the

induction hypothesis, Ci�1
ai
�!C i, and De�nitions 3.3 and 3.9, we can establish conf X(�; i) = Ci

by straighforward case analysis on ai.

12

Proposition 3.2 Let X k Y be a clone-free con�guration automaton. Let � 2 execs(X k Y).

Then, for all i � 0, conf XkY (�; i) is partitioned by conf X(�; i) and conf Y (�; i).

Proof: Let C = start(X) and D = start(Y). The proof is by induction on i. The base case for

i = 0 is immediate, since conf XkY (�; 0) = C k D, conf X(�; 0) = C, and conf Y (�; 0) = D.

For the induction step, assume that conf XkY (�; i� 1) is partitioned by conf X(�; i� 1) and

conf Y (�; i� 1). We proceed by cases on ai.

If ai is neither a create or a destroy, then conf XkY (�; i) = conf XkY (�; i� 1), conf X(�; i) =

conf X(�; i � 1), and conf Y (�; i) = conf Y (�; i� 1). Hence the proposition follows by applying the

induction hypothesis.

If ai is destroy(Ak; B), then the induction step is straightforward, since removing an I/O au-

tomaton cannot lead from a con�guration which satis�es the proposition to one that violates it.

If ai is create(Ak; B), then by the induction hypothesis, Ak 2 conf X(�; i � 1), orAk 2 conf Y (�; i� 1),

but not both. IfAk 2 conf X(�; i� 1), then, for some t 2 start(B): conf XkY (�; i) = conf XkY (�; i� 1)[

hB; ti, conf X(�; i) = conf X(�; i � 1)[hB; ti, and conf Y (�; i) = conf Y (�; i � 1). IfAk 2 conf Y (�; i � 1),

then, for some t 2 start(B): conf XkY (�; i) = conf XkY (�; i� 1)[hB; ti, conf X(�; i) = conf X(�; i� 1),

and conf Y (�; i) = conf Y (�; i � 1)[hB; ti. In either case, the proposition follows from the induction

hypothesis.

De�nition 3.10 (Execution projection) Let X k Y be a clone-free con�guration automaton.

Let � be a sequence E0a1E1a2E2 : : : where 8i � 0; Ei 2 states(X k Y), and 8i > 0; ai 2 acts(X k Y).

Then �dX is the sequence resulting from:

1. projecting each Ei onto conf X(�; i), i.e., replace Ei by Eidconf X(�; i), and

2. removing all aiEi such that ai 62 acts(conf X(�; i� 1)).

Proposition 3.3 Let X k Y be a clone-free con�guration automaton. Let � be an arbitrary �nite

execution of X k Y . Then last(�dX) 2 states(X).

Proof: By induction on j�j, the length of �. Let C = start(X) and D = start(Y). For the

base case of j�j = 0, we have that � is just the con�guration C k D. Hence, �dX is just

the con�guration C. Since C 2 states(X), we are done. For the induction step, assume the

proposition for paths of length n � 1, and let � = E0a1E1a2E2 : : : En�1anEn. By the induc-

tion hypothesis, En�1dconf X(�; n� 1) 2 states(X). If an 62 acts(conf X(�; n� 1)), then by Def-

inition 3.3, Endconf X(�; n� 1) = En�1dconf X(�; n� 1), and, by De�nition 3.9, conf X(�; n) =

conf X(�; n� 1). Hence, Endconf X(�; n) = En�1dconf X(�; n� 1), and so Endconf X(�; n) 2 states(X)

and we are done. If an 2 acts(conf X(�; n� 1)), then (En�1dconf X(�; n� 1), an, Endconf X(�; n))

2 steps(X), again by De�nition 3.3. Thus, Endconf X(�; n) 2 states(X) by De�nition 3.4, and we

are done.

Lemma 3.4 (Execution projection) Let X k Y be a clone-free con�guration automaton. If

� 2 execs(X k Y) then �dX 2 execs(X).

Proof: Let C = start(X), D = start(Y), and � = E0a1E1a2E2 : : : , where E0 = C k D. Let

�dX = C0b1C1b2C2 : : : . By De�nition 3.10, C0 = E0dX, and so C0 = C. Consider an arbitrary

step (Ci�1; bi; Ci) of �dX. By De�nition 3.10, this step is the projection of some step (Ej�1; aj ; Ej)

of �, i.e.:

13

Ci�1 = Ej�1dconf X(�; j � 1), aj = bi, and Ci = Ejdconf X(�; j).

By Proposition 3.3, Ci�1 2 states(X). Hence, by (Ej�1; aj ; Ej) 2 steps(X k Y), De�nition 3.3, and

the above, we conclude that (Ci�1; bi; Ci) 2 steps(X). Since (Ci�1; bi; Ci) was arbitrarily chosen,

and C0 = C = start(X), we conclude �dX 2 execs(X).

Lemma 3.5 (Execution pasting) Let X k Y be a clone-free con�guration automaton. Let � =

E0a1E1a2E2 : : : where E0 = start(X k Y) and 8i > 0, Ei 2 states(X k Y) and ai 2 acts(Ei).

Furthermore, suppose that

1. �dX 2 execs(X),

2. �dY 2 execs(Y),

3. for all i > 0, if ai 62 acts(conf X(�; i � 1)) then

(a) if ai 62 fdestroy(A;B) : B 2 aut(conf X(�; i� 1))g then Eidconf X(�; i) = Ei�1dconf X(�; i� 1),

(b) if ai = destroy(A;B) for some B 2 aut(conf X(�; i � 1))g then

Eidconf X(�; i) = (Ei�1dconf X(�; i � 1)) n fhB; ti : t 2 start(B)g,

4. for all i > 0, if ai 62 acts(conf Y (�; i� 1)) then

(a) if ai 62 fdestroy(A;B) : B 2 aut(conf Y (�; i � 1)g) then Eidconf Y (�; i) = Ei�1dconf X(�; i � 1),

(b) if ai = destroy(A;B) for some B 2 aut(conf Y (�; i � 1))g then

Eidconf Y (�; i) = (Ei�1dconf X(�; i� 1)) n fhB; ti : t 2 start(B)g.

Then, � 2 execs(X k Y).

Proof: Let C = start(X) and D = start(Y). Assume the antecedents of the proposition, and

consider an arbitrary step (Ei�1; ai; Ei) along �. Since E0 = start(X k Y) = C k D by assumption,

it suÆces to establish (Ei�1; ai; Ei) 2 steps(X k Y) to conclude � 2 execs(X k Y). The proof

proceeds by cases on whether ai 2 acts(conf X(�; i � 1)) and ai 2 acts(conf Y (�; i� 1)) hold. Since

acts(Ei) = acts(conf X(�; i� 1)) [acts(conf Y (�; i � 1)), at least one of these holds, and so there

are three cases.

Consider �rst the case of ai 2 acts(conf X(�; i � 1)) and ai 2 acts(conf Y (�; i� 1)). Consider

the projected steps:

(Ei�1dconf X(�; i� 1); ai; Eidconf X(�; i)) (x)

(Ei�1dconf Y (�; i� 1); ai; Eidconf Y (�; i)) (y)

By De�nition 3.10, x and y are steps along �dX, �dY , respectively. By assumption, �dX 2 execs(X)

and �dY 2 execs(Y). Thus, x 2 steps(X) and y 2 steps(Y). Since Ei�1 2 states(X k Y) by

assumption, we conclude by De�nition 3.3 that (Ei�1; ai; Ei) 2 steps(X k Y).

Now consider the case of ai 2 acts(conf X(�; i � 1)) and ai 62 acts(conf Y (�; i� 1)). Consider

the projected step:

(Ei�1dconf X(�; i� 1); ai; Eidconf X(�; i)) (x)

By De�nition 3.8, x is a step along �dX. Also, Ei�1dconf Y (�; i� 1) = Eidconf Y (�; i) by assump-

tion. Hence, by De�nition 3.3, we have (Ei�1; ai; Ei) 2 steps(X k Y).

The case of ai 62 acts(conf X(�; i� 1)) and ai 2 acts(conf Y (�; i� 1)) is similar, except that the

roles of X and Y are interchanged.

14

4 Simulation

De�nition 4.1 (Forward Simulation) Let X and Y be con�guration automata. A forward sim-

ulation from X to Y is a relation f over states(X)� states(Y) that satis�es:

1. if C = start(X), then start(Y) 2 f [C],

2. if C
a
�!X C 0 and D 2 f [C], then there exists a con�guration D0

2 f [C 0] such that D
â

=)Y D0,

and

3. if D 2 f [C] then ext(D) = ext(C).

We say \X � Y via f" if f is a forward simulation f from X to Y , and X � Y if X � Y via f

for some f .

De�nition 4.2 (Safe preorder) X vs Y i� traces(X) � traces(Y).

Lemma 4.1 If X � Y , then X vs Y .

5 Example: A Travel Agent System

This section contains an informal description of the example we are using in the rest of the paper|

a simple auction problem. For example, it might represent a rudimentary \travel agent system".

(Real travel agent examples would include other features, such as some kind of atomic transaction

facility, wherein sequences of related reservations are connected atomically.)

Very roughly:

A client requests to buy an item, and speci�es a particular maximum price pmax . The re-

quest goes to a static (always existing) \client agent", who then creates a special \request agent"

dedicated to the particular request. That request agent communicates with a static \directory

agent" to discover a set of databases where the request might be satis�ed. Then the request agent

communicates with some or all of those databases.

When a database (really, a \database agent") receives such a communication, it creates a

special \response agent" dedicated to the particular client request. The response agent then tells

the request agent about a price for which it is willing to sell the requested item.

After the request agent has received at least one response with a price that is less than pmax ,

it chooses some such response. It then communicates with the response agent for the selected

database once again, to actually make the purchase. After it does so, the request agent returns

information about the purchase to the client agent, who returns it to the client.

The agents in the system are as follows:

� ClientAgt , who receives all requests from the environment (client of this service).

� DirAgt , who is responsible for dispatching requests for price quotes to various databases.

� DBAgtd, d 2 D, who is responsible for answering requests about quotes for database d. D is

a set that indexes all of the databases.

The ClientAgt can create:

� ReqAgt r, r 2 R, responsible for handling a particular request. R is a set that indexes all of

the request agents.

15

Each DBAgtd can spawn:

� RespAgtd;r, r 2 R.

It is possible to add other little agents, e.g., a request agent may spawn special agents for

communicating with individual database agents. Or special agents can be created for individual

communications.

This system should satisfy some high-level correctness conditions, such as:

1. If (vendor, price) (v; p) is returned to the client, then v has p as a price in its db, and

p � pmax , and the item is actually recorded in the db as having been bought.

We can also formulate correctness properties for the individual components, once we �x the

interfaces between the components. E.g.:

1. If the client agent spawns a request agent then there was a (previous) client request.

2. If a request agent communicates with the directory agent (or, if it communicates with any

database agent), then there was a previous client request. (Well, this isn't quite about an

\individual component", because it involves both the client agent and the request agent.)

3. If a database agent creates a response agent, then it must have received a previous commu-

nication from a request agent.

4. If the client agent gives a response to the client then a response came from a corresponding

request agent.

5. Etc. There must be many such little properties.

These little properties will be useful in proving the bigger properties.

We �rst present a speci�cation automaton, and then an intermediate-level implementation,

expressed in DIOA. This intermediate level does not take location or mibility into account.

16

Speci�cation: Spec

Signature
Input:

request(tinf ;mp), where tinf 2 F and mp 2 <+

DIRupdate(newDBs; retiredDBs), where newDBs ; retiredDBs � D

DBupdate(updates), where updates has an unspeci�ed \database update" type

Output:

response(tinf ; p; ok?), where tinf 2 F , p 2 <+, and ok? 2 Bool

Internal:

buyd(tinf ;mp; p), where tinf 2 F , mp 2 <+, and p 2 <
+

nobuy(tinf ;mp), where tinf 2 F and mp 2 <+

State
req-set � F �<+, outstanding requests, initially empty

resp-set � R�F �<+ �<+ �Bool , responses that have been calculated but not yet sent to client, initially empty

knownDBs � D, the known databases, initially ???

ightDBd where d 2 D, the databases of ights

Actions
Input request(tinf ;mp)

E�: req-set req-set [fhtinf ;mpig

Internal buyd(tinf ;mp; p)

Pre: htinf ;mpi 2 req-set ^

DBbuy(htinf ; pi;ightDBd) ^ p � mp

E�: ightDB DBbuyupdate(htinf ; pi;ightDB);

resp-set resp-set [fhtinf ;mp; p; trueig

Internal nobuy(tinf ;mp)

Pre: htinf ;mpi 2 req-set ^

:9p; d : DBbuy(htinf ; pi;ightDBd) ^ p � mp

E�: resp-set resp-set [fhtinf ;mp; 0; falseig

Output response(tinf ; p; ok?)

Pre: htinf ;mp; p; ok?i 2 resp-set

E�: req-set req-set � fhtinf ;mpig

resp-set resp-set � fhtinf ;mp; ; ig

Input DIRupdate(newDBs ; retiredDBs)

E�: knownDBs

(knownDBs [newDBs)� retiredDBs

Input DBupdated(updates)

E�: ightDBd DBupdate(ightDBd; updates)

We now give the intermediate-level implementation. The following pages contain the relevant

I/O Automaton de�nitions. The initial con�guration is

ClientAgt k DirAgt k (kd2D DBAgtd)

where the initial states can be any that are given in the relevant I/O Automaton de�nitions.

17

Client Agent: ClientAgt

Signature
Input:

request(tinf ;mp), where tinf 2 F and mp 2 <+

req-agent-responser(tinf ;mp; p; ok?), where r 2 R, tinf 2 F , mp; p 2 <+, and ok? 2 Bool

Output:

response(tinf ; p; ok?), where tinf 2 F , p 2 <+, and ok? 2 Bool

Internal:

create(ClientAgt ;ReqAgt r(htinf ;mpi)), where r 2 R, tinf 2 F , and mp 2 <+

State
req-set � F �<+, outstanding requests, initially empty

pend-set � R�F �<+, outstanding requests for whom a request agent has been created, but the response has not

yet returned to the client, initially empty

resp-set � R�F �<+ �<+ �Bool , responses not yet sent to client, initially empty

created � R, indices of created request agents, initially empty

Actions
Input request(tinf ;mp)

E�: req-set req-set [fhtinf ;mpig

Internal create(ClientAgt ;ReqAgt r(htinf ;mpi))

Pre: htinf ;mpi 2 req-set ^

r 2 R� created ^

:9r
0 : hr0;tinf ;mpi 2 pend-set

E�: pend-set pend-set [fhr;tinf ;mpig

created created [frg

Input req-agent-responser(tinf ;mp; p; ok?)

E�: resp-set resp-set [fhr;tinf ;mp; p; ok?ig

Output response(tinf ; p; ok?)

Pre: hr;tinf ;mp; p; ok?i 2 resp-set

E�: req-set req-set � fhtinf ;mpig

pend-set pend-set � fhr;tinf ;mpig

resp-set resp-set � fhr;tinf ;mp; p; ok?ig

The client agent ClientAgt receives requests from a \client environment," which we do not

portray, via the request input action. Each request is speci�ed by two parameters: tinf , the

desired ight, and mp, the maximum price the client is willing to pay for the ight. ClientAgt

accumulates these requests in req-set , and creates a request agent ReqAgtr(htinf ;mpi) for each

request htinf ;mpi 2 req-set . The index r is chosen from the index set R and is not reused. Note

that the purpose of the set created of \used" indices is to prevent the creation of clones, since it is

possible for ClientAgt to receive multiple requests with the same values of tinf and mp. We prefer

this strategy of clone prevention by maintaining a local record of all the creations, rather than by

relying on the behavior of other components, e.g., we could have assumed that the environment is

\well-behaved" in that it does not submit multiple overlapping requests with the same parameters.

This latter option would both make our system less robust, and would make it harder to verify

that our system is clone-preserving. In our current \style," the proof of clone-preservation is local

to each I/O automaton.

The tuple hr;tinf ;mpi serves as a unique identi�er for the request, and is added to the set

pend-set of pending requests. If another request with the same parameters is received while the

current request is pending, then the new request does not initiate the creation of a new request

agent, since both requests can be satis�ed by the same reply.

Upon receiving a response from the request agent, via input action req-agent-responser, the

client agent adds the response to the set resp-set , and subsequently communicates the response to

the client via the response output action. It also removes all record of the request at this point.

18

Request Agent: ReqAgtr(tinf ;mp) where r 2 R, tinf 2 F , and mp 2 <+

Signature
Input:

DIRinformr(dbagents), where dbagents � D

RESPinformd;r(tinf ; p), where d 2 D and p 2 <
+

RESPconfd;r(tinf ; p; ok?), where d 2 D, p 2 <+ and ok? 2 Bool

Output:

DIRqueryr(tinf)

DBqueryr;d(tinf), where d 2 D

RESPbuyr;d(tinf ; p), where d 2 D and p 2 <
+

req-agent-response(tinf ; p; ok?), where p 2 <
+ and ok? 2 Bool

DBdoner;d, where d 2 D

Internal:

terminate(ReqAgtr(htinf ;mpi))

State
resp 2 F � <+ � Bool , ight purchased but not yet sent to client, initially ?

localDB � D �F �<+, ights known whose price is � mp, initially empty

DBagents � D, known database agents, initially empty

DBagentsleft � D, known database agents whose ResponseAgent has not yet returned a negative response, initially

empty

bag 2 Bool , boolean ag, initially false

dag 2 Bool , boolean ag, initially false

Actions
Output DIRqueryr(tinf)

Pre: true

E�: None

Input DIRinformr(dbagents)

E�: DBagents dbagents

DBagentsleft dbagents

Output DBqueryr;d(tinf ;mp)

Pre: d 2 DBagents

E�: None

Input RESPinformd;r(tinf ; p)

E�: localDB localDB [fhd;tinf ; pig

Output RESPbuyr;d(tinf ; p)

Pre: hd;tinf ; pi 2 localDB ^ :bag

E�: bag true

Input RESPconfd;r(tinf ; p; ok?)

E�: if ok? then

resp htinf ; p; ok?i

else

localDB localDB � fhd;tinf ; pig

DBagentsleft DBagentsleft � fdg

bag false

Output req-agent-response(tinf ; p; ok?)

Pre: (resp = htinf ; p; ok?i ^ ok?) _

(DBagentsleft = ; ^ :ok?)

E�: dag true

Output DBdoner;d(tinf ;mp)

Pre: dag ^ d 2 DBagents

E�: DBagents DBagents � fdg

Internal terminate(ReqAgtr(htinf ;mpi))

Pre: dag ^DBagents = ;

E�: None

The request agent ReqAgt r(htinf ;mpi) handles the single request htinf ;mpi, and then ter-

minates itself. It queries the directory agent for the current set of active databases (via ac-

tions DIRqueryr(tinf) and DIRinformr(dbagents)). Each active database has a front end, the

database agent DBAgtd (d indexes all the databases). ReqAgtr(htinf ;mpi) queries these using

DBqueryr;d(tinf ;mp). The query causes DBAgtd to create a response agent, whose function is

to process the query and return the appropriate ight information to ReqAgtr(htinf ;mpi). Upon

receiving the ight information (RESPinformd;r(tinf ; p)), ReqAgtr(htinf ;mpi) attempts to buy a

19

suitable ight (RESPbuyr;d(tinf ; p)), and then receives a con�rmation, RESPconfd;r(tinf ; p; ok?),

either positive or negative, depending on ok?. Once ReqAgtr(htinf ;mpi) has received a positive

con�rmation, it sends the ight information to the client agent via output req-agent-response(tinf ; p; ok?).

Also, rather than have ReqAgtr(htinf ;mpi) attempt inde�nitely to get a positive con�rmation, we

allow it to return a negative response to the client agent once it has received at least one negative

response from each active database agent that it knows about (both these possibilities are accounted

for by the precondition of the req-agent-response(tinf ; p; ok?) output action). Once it has sent the

response, ReqAgtr(htinf ;mpi) sends a \done" to each database agent (DBdoner;d(tinf ;mp)) and

then terminates itself (terminate(ReqAgtr(htinf ;mpi))). The DBdoner;d(tinf ;mp) action tells a

database qgent that it can destroy the response agent that it created for that particular request,

since the appropriate response has been sent, and so the response agent is no longer needed.

20

Directory Agent: DirAgt

Signature
Input:

DIRqueryr(tinf), where r 2 R and tinf 2 F

DIRupdate(newDBs; retiredDBs), where newDBs ; retiredDBs � D

Output:

DIRinformr(dbagents), where r 2 R and dbagents � D

State
knownDBs � D, the known databases, initially ???

Actions
Input DIRqueryr(tinf)

E�: None

Output DIRinformr(dbagents)

Pre: dbagents = knownDBs

E�: None

Input DIRupdate(newDBs ; retiredDBs)

E�: knownDBs

(knownDBs [newDBs)� retiredDBs

The directory agent receives queries from the request agent for the current set of active databases

(DIRqueryr(tinf)), and sends back the reply (DIRinformr(dbagents)). It also receives updates

containing sets of newly active databases (newDBs) and retired databases (retiredDBs) from the

environment (DIRupdate(newDBs ; retiredDBs)). Because of the extreme nondeterminism of the

directory agent, very little state needs to be maintained. In particular, it does not keep track of the

requests it has received, and the responses it has given. Any real implementation would presumably

be more demand-driven, but this speci�cation allows maximum exibility for the directory agent.

21

Database Agent: DBAgtd where d 2 D

Signature
Input:

DBqueryr;d(tinf ;mp), where r 2 R, tinf 2 F , and mp 2 <+

DBdoner;d(tinf ;mp), where r 2 R, tinf 2 F , and mp 2 <+

DBupdate(updates), where updates has an unspeci�ed \database update" type

FLTqueryd;r(tinf), where r 2 R and tinf 2 F

FLTbuyd;r(tinf ; p), where r 2 R, tinf 2 F , and p 2 <
+

Output:

FLTrespd;r(tinf ;ights), where r 2 R, tinf 2 F , and ights � F �<+

FLTconfd;r(tinf ; p; ok?), where r 2 R, tinf 2 F , p 2 <+, and ok? 2 Bool

Internal:

create(DBAgtd;RespAgtd;r(tinf ;mp)), where r 2 R, tinf 2 F , and mp 2 <+

destroy(DBAgtd;RespAgtd;r(tinf ;mp)), where r 2 R, tinf 2 F , and mp 2 <+

State
reqs � R� F � <+, requests that have arrived, but for which a response agent has not yet been created, initially

empty

reqs-created � R�F �<+, requests for which a response agent has been created, initially empty

done � R�F�<+, requests for which a DBdone has arrived, and whose ResponseAgent has not yet been destroyed,

initially empty

ightDB , the database of ights, accessed by the query functions DBlookup and DBbuy , and the update procedures

DBupdate and DBbuyupdate

tqueries � R�F , the queries of ight information received, initially empty

buyorder r 2 F �<
+, where r 2 R, the order from the response agent to buy a ight, initially ?

Actions
Input DBqueryr;d(tinf ;mp)

E�: reqs reqs [fhr;tinf ;mpig

Input DBdoner;d(tinf ;mp)

E�: done done [fhr;tinf ;mpig

reqs reqs � fhr;tinf ;mpig

Input DBupdated(updates)

E�: ightDB DBupdate(ightDB ; updates)

Internal create(DBAgtd;RespAgtd;r(tinf ;mp))

Pre: hr;tinf ;mpi 2 reqs � reqs-created

E�: reqs-created reqs-created [fhr;tinf ;mpig

Internal destroy(DBAgtd;RespAgtd;r(tinf ;mp))

Pre: hr;tinf ;mpi 2 done

E�: done done � fhr;tinf ;mpig

Input FLTqueryd;r(tinf)

E�: tqueries tqueries [fhr;tinf ig

Output FLTrespd;r(tinf ;ights)

Pre: hr;tinf i 2 tqueries

ights = DBlookup(tinf ;ightDB)

E�: None

Input FLTbuyd;r(tinf ; p)

E�: buyorder r htinf ; pi

Output FLTconfd;r(tinf ; p; ok?)

Pre: buyorder r = htinf ; pi ^

ok? = DBbuy(buyorder ;ightDB)

E�: ightDB DBbuyupdate(buyorder ;ightDB)

buyorder r ?

The database agent DBAgtd receives queries from the request agent, and creates a response agent

for each unique query (actions DBqueryr;d(tinf ;mp) and create(DBAgtd;RespAgtd;r(tinf ;mp))).

Once again we use a \local" method to avoid creating clones: the set reqs-created records al-

l the requests for which a response agent has been created (recall that hr;tinf ;mpi is unique

for each request). Even though the same request may be received more than once, only one re-

sponse agent will be created for it. When DBAgtd receives a \done" for the request hr;tinf ;mpi,

via input action DBdoner;d(tinf ;mp), it destroys the response agent for this request (action

destroy(DBAgtd;RespAgtd;r(tinf ;mp))).

22

The input action DBupdate(ightDB ; updates) allows the environment to communicate changes

to the database represented by DBAgtd.

The actions FLTqueryd;r(tinf) and FLTrespd;r(tinf ;ights) accept queries from and send ight

information to the response agent for the request hr;tinf ;mpi. The actions FLTbuyd;r(tinf ; p)

and FLTconfd;r(tinf ; p; ok?) accept buy requests from and send con�rmations to the response agent

for the request hr;tinf ;mpi.

23

Response Agent: RespAgtd;r(tinf ;mp), where d 2 D, r 2 R, tinf 2 F , and mp 2 <+

Signature
Input:

FLTrespd;r(tinf ;ights), where ights � F �<+

RESPbuyr;d(tinf ; p), where p 2 <
+

FLTconfd;r(tinf ; p; ok?), where p 2 <
+ and ok? 2 Bool

Output:

FLTqueryd;r(tinf)

RESPinformd;r(tinf ; p), where p 2 <
+

FLTbuyd;r(tinf ; p) where p 2 <
+

RESPconfd;r(tinf ; p; ok?), where p 2 <
+ and ok? 2 Bool

State
dbinfo � F �<+, initially empty

buy 2 F � <
+, ight that ReqAgt r has asked RespAgtd;r to purchase, initially ?

bought 2 F�<+�Bool , result of purchase attempt; if the boolean component is true, then the �rst two components

indicate the ight bought and the price, respectively, initially ?

Actions
Output FLTqueryd;r(tinf)

Pre: true

E�: None

Input FLTrespd;r(tinf ;ights)

E�: dbinfo ights

Output RESPinformd;r(tinf ; p)

Pre: htinf ; pi 2 dbinfo ^ p � mp

E�: None

Input RESPbuyr;d(tinf ; p)

E�: buy htinf ; pi

Output FLTbuyd;r(tinf ; p)

Pre: buy = htinf ; pi

E�: None

Input FLTconfd;r(tinf ; p; ok?)

E�: bought htinf ; p; ok?i

Output RESPconfd;r(tinf ; p; ok?)

Pre: bought = htinf ; p; ok?i

E�: None

The response agent obtains the relevant ight information from the database (FLTqueryd;r(tinf)

and FLTrespd;r(tinf ;ights)). From the set ights of returned ights, it selects one with an ac-

ceptable price (i.e., less than or equal to the maximum price mp) and sends it to the request agent.

Upon receiving a buy order from the request agent (RESPbuyr;d(tinf ; p)), it forwards the request

on to the database agent (FLTbuyd;r(tinf ; p)). Upon receiving a con�rmation for this order from

the database agent (FLTconfd;r(tinf ; p; ok?)), it forwards the con�rmation onto the request agent

(RESPconfd;r(tinf ; p; ok?)).

24

6 Other research

There are many avenues for further work. Agent systems should be able to operate in a dynamic

environment, with processor failures, unreliable channels, and timing uncertainties. Thus, we

need to extend our model to deal with fault-tolerance and timing. We shall also investigate the

veri�cation of liveness properties [2, 1].

We shall investigate the utility of our model by applying it to the following problem areas:

� De�ne useful communication services for agents, e.g., various forms of multicast, group-

oriented services.

� Extend the group communication framework to include hierarchical group structure, e.g,

changing subgroups of an unchanging top-level group.

� Same of our ideas may be useful for modeling dynamic object-based systems (as in Java

programming).

References

[1] P.C. Attie. Liveness-preserving simulation relations. In Proceedings of the 18'th Annual ACM

Symposium on Principles of Distributed Computing, pages 63{72, 1999.

[2] R. Gawlick, R. Segala, J.F. Sogaard-andersen, and N.A. Lynch. Liveness in timed and untimed

systems. Technical Report MIT/LCS/TR-587, MIT Laboratory for Computer Science, Boston,

Mass., Nov. 1993.

[3] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In

Proceedings of the 6'th Annual ACM Symposium on Principles of Distributed Computing, pages

137 { 151, 1987.

[4] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations | part I: Untimed

systems. Technical Report MIT/LCS/TM-486, MIT Laboratory for Computer Science, Boston,

Mass., 1993.

A Technical Background

The de�nitions below are taken from [2] and [4], to which the reader is referred for details.

De�nition A.1 (Automaton) An automaton A consists of four components:

� a set states(A) of states.

� a nonempty set start(A) � states(A) of start states.

� an action signature sig(A) = (ext(A); int(A)) where ext(A) and int(A) are disjoint sets of

external and internal actions, respectively. Denote by acts(A) the set ext(A) [int(A).

� a transition relation steps(A) � states(A)� acts(A)� states(A).

25

Let s; s0; u; u; ; : : : range over states and a; b; ::: range over actions. Write s0
a
�!A s i� (s0; a; s) 2

steps(A). We say that a is enabled in s0. An execution fragment of A is an alternating sequence

of states and actions that conforms to the transition relation of A. An execution of A is an

execution fragment that begins with a state in start(A). The trace trace(�) of execution fragment

� is obtained by taking the sequence of all the actions of � and removing the internal actions.

Write s0
�

=)A s i� A has a �nite execution fragment � starting in s0, ending in s, and such that

trace(�) = �. traces(A) is the set of traces � such that � is the trace of some execution of A. If L

is a set of executions, then traces(L) is the set of traces � such that � is the trace of some execution

in L. execs(A) is the set of all executions of A.

De�nition A.2 (I/O Automaton) A I/O automaton A is an automaton augmented with an

external action signature ext(A) = (in(A); out (A)) that partitions ext(A) into input and output

actions. In each state, each input action must be enabled.

I/O automata A1; : : : ; AN are compatible i� each output action is an output action of at most

one of A1; : : : ; AN , and all of internal action names of A1; : : : ; AN are unique.

De�nition A.3 (Parallel Composition) The parallel composition A1 k � � � k AN of safe I/O

automata A1; : : : ; AN is the safe I/O automaton A such that

1. states(A) = states(A1)� � � � states(AN)

2. start(A) = start(A1)� � � � start(AN)

3. out(A) = out(A1) [� � � [out(AN)

4. in(A) = (in(A1) [� � � [in(AN)) n out(A)

5. int(A) = int(A1) [� � � [int(AN)

6. ((s1; : : : ; sN); a; (s
0
1; : : : ; s

0
N)) 2 steps(A) i� for all i 2 1::N :

(a) if a 2 acts(Ai), then (si; a; s
0
i) 2 steps(Ai)

(b) if a 62 acts(Ai), then si = s0i

De�nition A.4 (Forward Simulation) A forward simulation from A to B is a relation f over

states(A) � states(()B) that satis�es:

1. If s 2 start(A), then f [s] \ start(()B) 6= ;.

2. If s0
a
�!A s and u0 2 f [s0], then there exists a state u 2 f [s] such that u0

â
=)B u.

We write A �F B if there exists a forward simulation from A to B, and A �F B via f if f is a

forward simulation from A to B.

26

