
On Formal Modeling of Agent Computations

Tadashi Araragi�, Paul Attieyz, Idit Keidary, Kiyoshi Kogure�,

Victor Luchangcoy, Nancy Lynchy, Ken Mano�

1 Introduction

This abstract describes a comparative study of

three formal methods for modeling and validating

agent computations. The experiment is part of a

joint project by researchers in MIT's Theory of Dis-

tributed Systems research group and NTT's Coop-

erative Computing research group. Our goal is to

establish a mathematical and linguistic foundation

for describing and reasoning about agent-style dis-

tributed systems.

Agents are autonomous software entities that co-

operate with other agents in carrying out delegated

tasks. Key features of agent systems include: (1)

They are dynamic, in that they allow run-time cre-

ation and destruction of processes, run-time modi-

�cation of communication capabilities, and mobil-

ity. (2) The state of an agent typically includes

a knowledge base, which keeps track of facts that

it \knows" (knowledge set), and facts that it \be-

lieves" (belief set). However, we do not emphasize

this latter structure in this paper.

Our experiment involves examining the power of

three formal methods|I/O automata, knowledge-

based programs, and Nepi2 (a variant of the �-

calculus)|in studying di�erent agent applications.

Here, we summarize our experience modeling a ba-

sic problem arising in e-commerce systems, using

the three formalisms.

�NTT Communication Science Laboratories, 2-4

Hikaridai Seika-cho Soraku-gun, Kyoto 619-0237 Japan.

Phone: +81-774-93-5256, fax: +81-774-93-5285. E-mail:

fararagi, kogure, manog@cslab.kecl.ntt.co.jp
yMIT Laboratory for Computer Science, 545 Tech-

nology Square, Cambridge, MA, 02139, USA. Phone:

(617) 253 6054. E-mail: fattie, idish, victor l,

lynchg@theory.lcs.mit.edu
zOn leave from the School of Computer Science, Florida

International University, Miami, FL 33199.

2 An electronic commerce exam-

ple

We consider a simple ight purchase problem, in

which a client requests to purchase a ticket for a

particular ight, given by some \ight information"

tinf , and speci�es a particular maximum price

mp. The request goes to a static (always existing)

\client agent," who then creates a special \request

agent" dedicated to that particular request. The

request agent communicates with a static \direc-

tory agent" to discover a set of databases where the

request might be satis�ed. Then the request agent

communicates with some or all of those databases.

When a database (really, a static \database agent")

receives such a communication, it creates a special

\response agent" dedicated to the particular client

request. The response agent then tells the request

agent about a price for which it is willing to sell a

ticket for the ight.

After the request agent has received at least one

response with price no more than mp, it chooses

some such response. It then communicates with the

response agent of the selected response once again,

to make the purchase. After doing so, the request

agent returns information about the purchase to

the client agent, which returns it to the client.

After the request agent returns the purchase in-

formation to the client, it sends a \done" message

to all the database agents that it initially queried.

This causes each database agent to destroy the re-

sponse agent it had created to handle the client

request. The request agent then terminates itself.

We have speci�ed some high-level correctness

conditions, e.g., if (tinf ; price) is returned to the

client, then (tinf ; price) exists in some database,

and price � mp, and a seat on the ight is actually

recorded in the database as having been bought.

1

3 Three formal models

3.1 Model using I/O automata

The I/O automaton model [7] is a static model for

reactive systems and their components. The ex-

ternal behavior of an I/O automaton is described

using traces, i.e., sequences of externally visible ac-

tions. The model includes good support for com-

position (by identifying shared actions) and levels

of abstraction. I/O automata are usually described

in a simple guarded command (precondition/e�ect)

style; this style has recently been formalized in the

IOA speci�cation language [5]. The model has been

used extensively for describing and verifying dis-

tributed algorithms and system designs.

The basic I/O automaton model does not have

any built-in support for dynamic behavior. We

have augmented it to a dynamic model, including

process creation and destruction, changing inter-

faces, and mobility [2]. Our model can treat all

three aspects of mobility mentioned in [8], pages

77{78. It has well de�ned notions of composition

of dynamic systems, and abstraction (simulation

relations) from a low-level dynamic system to a

high-level one.

We give two code fragments from our case study:

create(ClientAgt ;ReqAgt
r
(htinf ;mpi))

Precondition:

htinf ;mpi 2 req-set ^

r 2 R� created ^

:9r0 : hr0
;tinf ;mpi 2 pend-set

E�ect:

pend-set pend-set [fhr;tinf ;mpig

created created [frg

This action (of the client agent) creates the request

agent ReqAgt
r
, and passes it parameters containing

the ight information and maximum price. Each

request agent is also given a unique subscript r,

so that di�erent agents can be distinguished, since

it is possible to receive two requests specifying the

same ight information and maximum price.

RESPinformd;r(tinf ; p)

Precondition:

htinf ; pi 2 dbinfo ^ p � mp

E�ect:

None

This action (of the response agent) checks that the

requested ight is available at a suitable price. If

the precondition holds, then the price is commu-

nicated to the request agent, who can then decide

whether or not to purchase this ight (since it could

receive several satisfactory responses, and must se-

lect only one of them).

Our current version of this example involves dy-

namic creation and destruction, but not explicit

mobility and dynamic interfaces. We are currently

augmenting the example with these features. We

regard our example as an executable speci�cation

for a ight purchase system. As such, it contains

a high degree of nondeterminism. For example,

the directory agent can send information to re-

quest agents without being asked (\push" service),

as well as responding to requests (\pull" service).

Also, any ight satisfying a request may be pur-

chased; the agent does not necessarily buy the best

one. The speci�cation is intentionally highly non-

deterministic so as not to constrain the possible im-

plementations. An implementation will most likely

be signi�cantly more deterministic.

3.2 Model using knowledge-based pro-

grams

We have developed a mobile agent programming

system called \Erd�os" [1]. Its main aim is to pro-

vide a simple agent programming language and

a facility for formal veri�cation, speci�cally CTL

model checking [3].

The Erd�os language employs Halpern's

knowledge-based programming test-action style

[4], augmented with control functions for commu-

nication. Each agent maintains a knowledge base.

To execute an action, the agent checks that the

associated \test formula" can be deduced from its

knowledge base. If so, then the agent performs

the action, which could be adding a message in

the form of a logical formula to the knowledge

bases of other agents, removing a message from

its knowledge base, calling a procedure, creating a

new agent, and moving to another place. In Erd�os,

we provide two kinds of logics for expressing test

formulae: modal logic of knowledge and belief,

and a restricted �rst order logic. Communication

between agents is realized by simply adding

2

formulae to the appropriate knowledge bases.

The basic idea for the formal veri�cation of Erd�os

is to divide the agent program into a communica-

tion control part, and a local task part which an

agent can execute without communication. The

�rst part is implemented in Erd�os, and the second

part is implemented in Java, which is called from

Erd�os programs as an external method. The Erd�os

interpreter is implemented in Java. In the veri�ca-

tion, each external method is abstracted away as a

black box function with �nite domain and range.

Each test formula is automatically transformed to

a condition of occurrence of message formulas in

agent knowledge bases, using code analysis. As a

result, we obtain a �nite state asynchronous tran-

sition model.

The following are Erd�os code fragments corre-

sponding to the I/O automata fragments given

above:

if true then ex call1(get ele set(req-set)),

ex call2(get ele set(R � created));

if Return1(?tinf, ?mp) then

ex call(is ele set(pend-set, Ele(-, ?tinf, ?mp)));

if Return2(?r)- and Return(no)- and Return1(?tinf,

?mp)- then

create(?r: req-agt, main, Arg1(self), Arg2(?tinf),

Arg3(?mp)),

ex call(add ele set(pend-set, Ele(?r, ?tinf, ?mp))),

ex call(add ele set(created, Ele(?r)));

if Arg4(?mp) then

ex call(get cond ele set(dbinfo, Less cond(?mp)));

if Return(?tinf, ?p)- and Arg3(?d) and Arg1(?r) then

add(?r: RESPinform(?d, ?tinf, ?p));

The return values of the external methods ex call,

ex call1, ex call2, are placed in the knowledge

base as the formulae Return(: : :), Return1(: : :),

Return2(: : :), respectively. ?mp; ?r; : : : are vari-

ables instantiated in the test procedure and substi-

tuted over the test-action line. A trailing - means

that a test formula is removed from the knowledge

base when the test succeeds. Return is overloaded,

it takes one or two arguments.

An agent and its name are dynamically created.

By passing agent names, agents dynamically decide

to which agent's knowledge base a message is to be

added.

3.3 Model using Nepi2

Nepi2 [6] is a programming language based on the

�-calculus [8]. It extends the �-calculus with data

types and a communication facility with the en-

vironment. In Nepi2 programs, primitives derived

from the �-calculus such as parallel composition,

nondeterministic choice, conditional, and channel

input/output are used for describing concurrent

control structure. We use Lisp functions for data

operations. For communication with the environ-

ment, the standard input and output of Unix are

currently supported. The behavior of Nepi2 pro-

grams is described in the style of structural opera-

tional semantics. Nepi2 is implemented in Lisp.

We give two code fragments corresponding to

those of the previous sections.

(? request (fltinfMp)

(||

(new req (new reqconf

(ReqAgtInit fltinfMp dir req-agt-resp

req reqconf)))

(ClientAgent request response dir

req-agt-resp)))

This fragment �rst receives a tuple fltinfMp of

the ight information and maximum price via the

channel request, and then spawns a request agent

ReqAgtInit. Formally, the primitive || represents

parallel composition, and it creates a request agent

and the continuation of the client agent. The prim-

itive new generates fresh channels, in this case req

and reqconf, and request agents are distinguished

from each other with these channels.

(if (<=* (cadr (car dbinfo)) (cadr fltinfMp))

(+ (? respDone (done) delta)

(! req ((cons resp (car dbinfo)))

...)))

dbinfo is a list of tuples of ight informations and

prices. If an appropriate ight exists, the ight in-

formation and the price are communicated to the

request agent via the channel req. The channel

resp is also communicated, and the \buy" message

would be sent from the request agent via the chan-

nel. The primitive + represents nondeterministic

choice, and (? respDone (done) delta) detects

a \done" message from the database agents, whose

reception causes the response agent to terminate.

3

4 Discussion

Advantages of the I/O automata approach include

the fact that it uses a simple state machine model,

which supports compositional, invariant, and simu-

lation proofs (including computer-assisted veri�ca-

tion). In particular, the I/O automata model has a

well established in�nite-state veri�cation method.

Also, the allowance of nondeterminism is a big ad-

vantage for speci�cations. However, in contrast to

knowledge-based programming and variants of �-

calculus, there is little experience in using I/O au-

tomata to model dynamic systems. In our experi-

ment, we are gaining such experience.

An advantage of Erd�os is that it is suitable for

knowledge-based programming and reasoning, as is

often employed in agent systems. The knowledge-

based style makes the program semantics easy to

understand. Erd�os also o�ers an automated veri-

�cation facility. However, in contrast to I/O au-

tomata, Erd�os's veri�cation methods for in�nite-

state systems require further development. Cur-

rently, we manually abstract to a �nite-state sys-

tem, and then use CTL model checking. However,

we have no systematic method for verifying in�nite-

state systems. We plan to incorporate some of the

the I/O automata ideas and techniques into a ver-

i�cation method for Erd�os.

A major advantage of Nepi2 is that a prob-

lem can be concisely written using sophisticated

�-calculus primitives, which have been used exten-

sively for agent modeling. In particular, the fresh

channel generation operator new is helpful for nam-

ing created agents. Currently, there is no support

for property speci�cation and veri�cation in Nepi2.

It should not be di�cult to adapt these from the

well-developed theory of the �-calculus. The veri-

�cation methods used in the �-calculus di�er from

those used for I/O automata in that they empha-

size algebraic equivalences rather than state asser-

tions, one-way simulation relations, and trace set

inclusion. We are exploring the power of these

di�erent speci�cation and veri�cation methods for

showing properties of practical interest.

Erd�os and I/O automata use global agent names

to access each agent/automaton, while Nepi2 o�ers

the facility of scope of agent names. Erd�os man-

ages the consistency of agent names using a name

server. In the situation where agent creation and

destruction are executed very often, Erd�os's man-

agement may cause problems. The dynamic exten-

sion of I/O automata leaves it to the application to

specify how automata names are created.

Another di�erence between Nepi2 and the other

two methods is that in the other two models an in-

put action is always possible (enabled). In Nepi2,

an input action is possible only when it is per-

formed explicitly, and an output action can block

the execution in the absence of corresponding in-

put actions. This somewhat complicates the code

of the response agent in Nepi2, where to avoid dead-

lock, we perform a choice between regular commu-

nication and `done' reception each time we perform

regular communication. It would be helpful to ex-

tend Nepi2 and the �-calculus with some primitives

representing process `abort'.

References

[1] Tadashi Araragi. Agent Programming and Its For-
mal Veri�cation (in Japanese) Technical report
AI99-47, pp. 47{54, The Institute of Electronics, In-
formation and Communication Engineers, 1999.

[2] P.C. Attie and N.A. Lynch. A formal model for
dynamic computation. Technical report, MIT Lab-
oratory for Computer Science, Nov. 1999.

[3] E. M. Clarke, E. A. Emerson, and P. Sistla. Auto-
matic veri�cation of �nite-state concurrent systems
using temporal logic speci�cations. ACM TOPLAS,
8(2):244{263, Apr. 1986.

[4] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.
Reasoning about Knowledge. The MIT Press, Cam-
bridge, Mass., 1995.

[5] Stephen J. Garland and Nancy A. Lynch. Founda-
tions of Component Based Systems, chapter Using
I/O Automata for Developing Distributed Systems.
Cambridge University Press, USA, 1999. To appear.

[6] Eiichi Horita and Ken Mano. Nepi2: a two-level
calculus for network programming based on the �-
calculus. Proc. 3rd Asian Computing Science Con-
ference (ASIAN'97), LNCS 1345, 1997.

[7] Nancy A. Lynch and Mark R. Tuttle. An intro-
duction to input/output automata. CWI-Quarterly,
2(3):219{246, September 1989. Centrum voor
Wiskunde en Informatica, Amsterdam, The Nether-
lands. Technical Memo MIT/LCS/TM-373, MIT
Laboratory for Computer Science, 1988.

[8] R. Milner. Communicating and mobile systems: the

�-calculus. Addison-Wesley, Reading, Mass., 1999.

4

