A Lumigraph Camera for Image Based Rendering

Jason C. Yang Prof. Leonard McMillan May 10, 1999

Overview

- Image Based Rendering
- Video Demo
- System Design
- Obstacles

Image Based Rendering

- Motivation
 - Geometry is hard.
 - Textures are easy.
- Light Field Rendering: Generate novel views using a database of "rays" from a 2D array of images.

State-of-the-art in CG

Rendering Process

Demo System

Goals

- Real Time Camera System
- Off the shelf components
- Desired frame rate:
 30 frames per second
 640 x 480 resolution

Overall Design

Sensor Pod

Sensor Pod

Major Hurdle

- Ideal frame rate is not achievable
 Best Frame rate: 7fps
- Bottlenecks:
 - PCI bus
 - Turnaround time for one pixel
- Potential Solution:
 - Interleaving
 - FIFOs

Actual Frame Rate

- To reach desired 30fps we need: 37MBs
- Maximum Random Access on PCI: 33MBs

• Turn around time (time to access pixel from camera) is not one clock cycle!

Virtual vs. Physical Pixels

When the host requests a pixel it is actually a virtual pixel as indicated by the circles.

The actual pixels requested are the color photocells on the imager.

Each virtual pixel request will return a four byte group of color values.

<Address>+<Access>+<Data>+<Wait>

30ns + 450ns + 30ns + 30ns = 540ns

540ns/pixel => 7fps @ 640x480

Use PCI Burst Mode

• PCI burst mode can achieve 133MBs

• Idea: Use FIFOs to store Addresses and Data

Conclusion

- Tradeoffs
- Technological Needs
 - Random Access CMOS imagers
 - Faster imagers
 - Faster bus protocols