
Extracting Textured Vertical Facades

From Controlled Close-Range Imagery
�

Satyan Coorg Seth Teller

Computer Graphics Group

MIT Laboratory for Computer Science

fsatyan,sethg@graphics.lcs.mit.edu

Abstract

We are developing a system to extract geodetic, tex-

tured CAD models from thousands of initially uncon-

trolled, close-range ground and aerial images of urban

scenes. Here we describe one component of the sys-

tem, which operates after the imagery has been con-

trolled or geo-referenced. This fully automatic compo-

nent detects signi�cant vertical facades in the scene,

then extrudes them to meet an inferred, triangulated

terrain and procedurally generated roof polygons. The

algorithm then estimates for each surface a computer

graphics texture, or di�use re
ectance map, from the

many available observations of that surface.

We present the results of the algorithm on a com-

plex dataset: nearly 4,000 high-resolution digital im-

ages of a small (200 meter square) o�ce park, acquired

from close range under highly varying lighting condi-

tions, amidst signi�cant occlusion due both to multiple

inter-occluding structures and dense foliage. While the

results are of less �delity than that would be achievable

by an interactive system, our algorithm is the �rst to

be demonstrated on such a large, real-world dataset.

1 Introduction

Three-dimensional modeling of existing urban ar-

chitecture has numerous applications, including vir-

tual environments [7, 11], urban planning, military

simulation, etc. It is clearly attractive to employ pho-

tographs in the modeling process: the accuracy of

the 3-D model is enhanced, and the resulting envi-

ronments appear visually realistic.

Automatic 3-D model recovery from photographs

has long been one goal of computer vision research,

leading to signi�cant progress in designing algorithms

that analyze a few images and recover 3-D structure

from them. However, a drawback of most vision algo-

�
Funding for this research was provided in part by the Ad-

vanced Research Project Agency under contract DABT63-95-

C-0009, Intel Corporation and the MIT Lincoln Laboratories.

rithms is their inability to scale to large sets of images,

thereby limiting their applicability to 3-D modeling of

extended regions. Though some recent research ad-

dresses this drawback (Section 1.2), practical meth-

ods for automatically extracting geodetic \computer

graphics" 3-D models from imagery remain elusive.

An alternate approach has been to design semi-

automatic modeling systems and allow a human to aid

the reconstruction process (e.g., by marking and cor-

responding image features). Such systems yield high

quality results [7], but require the user to process each

image in the input dataset and each structure in the

output dataset. Such systems therefore do not scale

to large numbers of images or structures.

This paper presents a novel algorithm that au-

tomatically recovers 3-D information by analyzing a

large set of images. The algorithm is based on three

ideas:

� Each image is annotated with absolute position

and orientation of the acquiring camera. Pose

information provides useful geometric constraints

that aid the reconstruction process. Also, pose in-

formation enables our algorithm to focus on pro-

cessing only the (potentially small) portion of the

data that is relevant to any 3-D region of interest.

� We focus here on extracting vertical facades, as

they are common in urban scenes. This assump-

tion yields an extraction algorithm based on a

\detect-and-verify" paradigm.

� We exploit a large number of observations of each

facade to design a simple and robust technique

that synthesizes a single texture for the facade.

The output of our algorithm, a 3-D textured geometric

model, can be input directly to a computer graphics

rendering system.

1.1 Dataset Acquisition

Our dataset consists of nearly 4,000 images ac-

quired from eighty-one distinct optical centers or

\nodes." Apart from avoiding inclement weather and

darkness, no other restriction (e.g., selection of dif-

fuse lighting conditions) was made on the manner or

time of acquisition. The image acquisition, spherical

mosaicing, and exterior calibration are described else-

where [6].

1.2 Related Work

Interactive modeling systems allow a user to iden-

tify geometric features in photographs and establish

correspondences between them [2, 7]. These systems

include a human to identifying features (for correspon-

dence) and occluded pixels (for texture computation).

This makes them impractical for use on large datasets,

such as ours. Such systems are also di�cult to assess

algorithmically, as they require a \human-in-the-loop"

to perform non-algorithmic tasks.

Mosaicing [4, 18, 20] seamlessly stitches together

multiple images taken from the same viewpoint, for

viewing from a synthetic camera constrained to lie at

the same position as the acquiring camera. In our

work, we use mosaics to organize multiple images to

signi�cant engineering advantage, but recover facade

geometry and texture as well, providing the user full

navigational freedom.

Stereo vision [8] recovers 3-D information from a

few (usually two or three) pose-annotated images.

This technique matches corresponding features (e.g.,

points or edges) across images, and locates 3-D fea-

tures by triangulation. These techniques make an

inherent trade-o� between the inter-camera distance

(baseline) and ease of matching: larger baselines al-

low more stable triangulation, and thus higher qual-

ity 3-D models, but matching across images from

widely separated cameras is an extremely hard prob-

lem. Multi-baseline stereo (e.g., [12]) attempts to ad-

dress this drawback by using several images simul-

taneously. However, in order to perform automatic

matching, such algorithms require images to be taken

from closely-spaced cameras under stable illumination

{ conditions di�cult, if not impossible, to achieve in

extended outdoor environments.

Structure from motion techniques [22, 19, 21, 1] re-

cover both scene structure and camera motion by an-

alyzing correspondences in a closely-spaced image se-

quence (e.g., frames from a video sequence). While

these techniques correlate nearby images in the se-

quence, signi�cant analysis must be performed to re-

late images that are farther apart.

Space-sweep techniques have been used recently

[5, 15, 17] to perform matching and reconstruction

from an arbitrary number of images. These world-

space algorithms traverse the entire 3-D region of in-

terest and identify likely locations of 3-D features.

This paper employs a related space-sweep technique,

but our algorithm handles an arbitrary number of

general camera positions, works in outdoor scenes

with widely varying illumination, and generates a 3-D

model suited for graphics rendering.

1.3 Overview

Tiles FacadesAzimuths

Current
Grid Cell

Relevant
Nodes

Orientation+Edges

Pos
e+

Edg
es

Pose+RGB observations

Pose+Edges

Texture
Estimation

Geometry
Link and
Commit

Space-Sweep
Algorithm

Azimuth
Detection

Pose Image
Database

Figure 1: Overview of vertical facade extraction.

Figure 1 shows a high-level overview of our algo-

rithm. The algorithm executes in communication with

a pose image database, which stores raw data (e.g.,

pose and images) as well as derived data (e.g., de-

tected edges).

First, the algorithm divides the 3-D region of inter-

est into a 2-D XY grid based on a user-supplied grid

size G. Grid-based subdivision enables restriction of

subsequent processing to nodes that are relevant to

the grid cell (e.g., within some world-space distance

D). This subdivision also decouples di�erent parts of

the scene, making the reconstruction process more ro-

bust. For each grid cell, the algorithm computes tiles {

pieces of vertical facade { in a two step process. Likely

tile azimuths are detected based on a histogramming

technique (Section 2). These are veri�ed and located

using a space-sweep technique (Section 3), populating

the grid cell with only those 3-D tiles that are sup-

ported by su�cient image evidence.

Second, the tile geometry recovered is linked to

form complete facades; and many spurious facades in

the model are removed by a facade commitment pro-

cess (Section 4). Textures for the generated vertical

facade geometry are computed from multiple observa-

tions (Section 5).

We report results of the algorithm on our dataset

in Section 6 and conclude in Section 7.

2 Azimuth Detection
This section describes a histogramming algorithm

to identify likely azimuths of tiles, using horizontal

line segments. Such line segments arise often in urban

environments, e.g., from windows and facade bound-

aries.

2.1 Estimating Tile Azimuths

Camera

Spanned
Plane

Vertical
Plane

Image
 Plane

E

E’

X

Y

Z

P

θ

N

x’

y’

Figure 2: Deducing 3D tile azimuth from a 2D edge.

We estimate tile azimuths as follows. When pose

information (speci�cally, orientation) is known, the di-

rection of a horizontal edge is completely determined

by the 2-D line equation of its projection (Figure 2).

Let a 3-D horizontal line segment E on a tile project

to a 2-D edge E0 in some pose image. In the �gure,

the vertical plane through E makes an angle � with

the X axis, i.e., its azimuth is �. The normalN to this

plane is [sin �;� cos �; 0]T . Let P = [px; py; pz]
T be the

normal to the plane spanned by E0 and the camera.

P (in global coordinates) is determined by the orien-

tation of the camera (a 3� 3 rotation matrix R) and

the 2-D image-space line equation ax0 + by0+ c = 0 of

E0 (where a2 + b2 + c2 = 1):

P = R�1

2
4 a

b

c

3
5

Then, the direction of E is given by:

P�N = [pz cos �;�pz sin �; (�px cos � � py sin �)]

As E is horizontal, the z component vanishes. This

yields two solutions for the orientation (when either

px 6= 0 or py 6= 0):

� =

(
tan�1 �px

py
or

tan�1 �px
py

+ �
(1)

Of these, the correct azimuth is the one that faces

the viewing direction. If px = 0 and py = 0, the

camera has observed a horizontal line segment at the

camera height, and no information can be determined.

As most of the nodes in our dataset are taken from

positions near ground level, this case arises very rarely.

Figure 3 shows the results of applying this tech-

nique to two nodes. In this �gure, vertical edges were

�rst identi�ed by thresholding (pz < 0:01). For the

rest, an azimuth � is estimated using Equation 1. Note

that truly horizontal edges from the same facade are

assigned the same azimuth, both within and across

nodes. This property does not hold for edges which are

not horizontal in world space; these tend to be uncor-

related both within a node and across di�erent nodes.

A similar technique has been used in photogramme-

try to generate buildings from monocular (i.e., single)

aerial images [14].

2.2 Histogramming Azimuths

Likely azimuths are identi�ed through the following

idea: 2-D edges arising from truly (i.e., world-space)

horizontal line segments will be assigned identical az-

imuths in di�erent nodes, whereas azimuths of non-

horizontal edges will vary with node position. Thus

histogramming reinforces true azimuths; the rest tend

to be unsupported, as they are uncorrelated across

nodes.
The following algorithm reports a set of likely tile

azimuths in a grid cell C, from edges in C's relevant
nodes 1 : : : k:

Azimuths A = �.

for node i 2 1 : : : k do

Let C project to image-space region C0 in node i.

Find azimuth of each non-vertical edge in C0.

Histogram azimuths (weighted by edge length)1.

Identify the most populated bucket and add its

representative azimuth (e.g., median) to A.

endfor

Histogram A and report each bucket

that contains at least three nodes.

Informally, the algorithm picks a dominant azimuth

from each node, then reports azimuths that are sup-

ported by several nodes. These azimuths are then ver-

i�ed by the space-sweep algorithm described in the

next section.

3 The Space-Sweep Algorithm
The space-sweep algorithm to locate and verify tiles

is based on an incidence counting idea, related to that

proposed by Collins [5]. If any sparse set of features in

several nodes is projected into 3-D, regions with high

incidence of such projections correspond to likely loca-

tions of 3-D features, for the following reasons. If a 3-D

1
We use overlapping � buckets of size 3 degrees.

 G

 G B

 B

 G

 G

 R

 R

 Y

 Y

Figure 3: This �gure shows two nodes (four faces of

a cubical environment map) along with their (long)

edges. Vertical edges are colored blue, and other edges

are colored with (absolute values of) the tile normal

derived from their azimuth (e.g., red is [1; 0; 0]T , green

is [0; 1; 0]T , etc.).

feature is present in multiple nodes, then projections

through the corresponding 2-D features pass near it,

increasing its incidence count. Conversely, since the

set of features are sparse, it is rare that unrelated pro-

jections pass through the same 3-D region by chance.

Given an azimuth �, the sparse features in our al-

gorithm are edges likely to lie on tiles with azimuth

�. Note that identifying such edges in each node is

straightforward; they are those edges whose computed

azimuth is � (Figure 3).

55555555555:::::::::::

55555555:::::::::
:::::::::

::::::::::::55555555555555

E1

E2

N

:::
:::

5555
5555

Facade
 E

A

B

C

(l) (r)

Figure 4: At left, three positions A, B, and C of a

vertical plane. At right, correlation among projected

line segments is indicated by brightness.

Using such edges, Figure 4 shows the application

of incidence counting to tile location. Part (l) shows

three planes with common normalN and di�erent o�-

sets, with projected (and blurred) edges E1 and E2

from two nodes. Note that correlation between hori-

zontal line segments is greatest at the position of the

plane corresponding to the tile location. We use a cor-

relation function de�ned in Section 3.1, and a space-

sweep algorithm described in Section 3.2 that locates

tiles using the maxima of this function.

3.1 Correlation Function

Given a plane and its associated horizontal line seg-

ments, the correlation function computes a measure of

the extent of overlap between di�erent line segments

on the plane. Each line segment L is blurred into a

rectangle of half-width �L to alleviate small errors in

camera pose and smooth the peaks of the correlation

function2.

U

L1
L2

L3V

du
dv

(u,v)

U

V

(u,v)

E1

E2

E3

d1

Sweep Plane

Node 1
Node 2

Node 3

Figure 5: Parameters in the correlation function. The

�gure on the left shows edges E1, E2, and E3 from

three nodes projected onto a plane. The �gure on

the right is a blowup of a small section of the plane.

It depicts overlap of the rectangles L1, L2, and L3
corresponding to the edges.

O =

Z Z kX
i=1

wi(u; v)

kX
i=1

1

d2i
dudv (2)

Consider the function de�ned in Equation 2 (see also

Figure 5). In this equation, u and v range over the

plane. The point (u; v) is inside rectangles L1 : : : Lk
arising from nodes 1 : : : k; the perpendicular distance

from the plane to node i is given by di; and wi(u; v) is

the weight contributed by Li to plane element (u; v).

In our implementation, we use a triangular �lter for

wi(u; v), as it is both e�cient to evaluate and possesses

a well-de�ned peak (Figure 6-a):

wi(u; v) = max(1�
jv � Lvj

�L
; 0)

V LvσL

v

1.0

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

0 100 200 300 400 500 600 700 800 900 1000 1100

V
al

ue

Plane Offset

Correlation

(a) (b)

Figure 6: Edge weights (a); Correlation (b).

2
We use �l = 0:01d, where d is the perpendicular distance

between the node generating l and the vertical plane.

The correlation function favors overlap between line

segments arising from di�erent nodes: \cross-terms"

wi=d
2

j such that i 6= j arise when Li overlaps with

Lj , and contribute to O. An example is shown in

Figure 6-b, in which Equation 2 was evaluated for dif-

ferent plane o�sets using the line segments shown in

Figure 4-(b). Due to the combined e�ect of many line

segments, the function has a well-de�ned peak at the

facade's location.

The function is unbiased toward planes of larger

area. Instead, the function downweights the area of

each plane-element (u; v) by the squared-distance from

the source node. This is advantageous, as such a bias

would favor tiles farther away from the nodes. In ef-

fect, the function measures correlation in each node's

image-space, and aggregates correlation to yield the

total value.

Finally, the correlation function can be evaluated

e�ciently by exploiting the rectangular geometric

structure inherent in Equation 2. The evaluation tech-

nique is a straightforward modi�cation of a segment-

tree based plane-sweep algorithm that computes the

total area of m rectangles in optimal O(m logm) time

[16].

3.2 Maxima Location; Tile Generation

Given a grid cell C, the azimuth � of a tile, and a
set of nodes 1 : : : k, the space-sweep algorithm locates
tiles as follows:

// Project edges from each node onto canonical planes

for node i 2 1 : : : k do

Let C project to image-space region C0 in node i.

Let Pi be a plane with azimuth �, 1 unit from node i.

Project each edge in C0 with azimuth � onto Pi.

endfor

// Sweep plane through C locating and generating tiles

for o�set d in C (with step size S) do

Let plane P = (�; d).

Reproject all edges in P1 : : :Pk to P.

// Identify high-incidence regions and

// tiles corresponding to local maxima

if O(d) > O(d+ S) and O(d) > O(d� S) then

Identify regions with incidence > K in P,

and their corresponding node edges.

Extrude high-incidence regions vertically to

a ground plane, producing tile rectangles.

endif

endfor

In the �rst phase, the algorithm identi�es edges in

each node that are likely to lie on the tile by comparing

their azimuths with �. For e�ciency, such edges are

projected to a canonical plane Pi (with azimuth �)

corresponding to node i. This intermediate projection

permits a simple transformation { a scaling plus a 2-

D translation { to be used to construct horizontal line

segments on any other planeP with the same azimuth.

Next, the algorithm discretizes, using step size S,

the set of all possible plane o�sets corresponding to

grid cell C. At each plane o�set, it computes horizon-

tal line segment positions and evaluates the correla-

tion function. For each local maximum of the corre-

lation function, it identi�es regions on the plane that

correspond to a tile by thresholding on incidence K,

i.e., regions on the plane (if any) that overlap more

than K rectangles (weighted using the triangular �l-

ter). In addition, it identi�es node edges that support

(i.e., give rise to) the tile, by thresholding on the ex-

tent of overlap3 with identi�ed 3-D regions on the tile.

Finally, the 3-D region information generated is con-

verted to rectangles by extruding them onto a ground

plane, and combining overlapping rectangles to pro-

duce tiles. The ground plane is estimated by using

the z values of the camera positions.

The complexity of this algorithm for a single grid

cell is O(G
S
ke(log k + log e)), where G is the grid size,

S is the step size, k is the number of nodes, and e is

number of edges of a node that lie in the cell's projec-

tion.

4 Geometry Link and Commit
The space-sweep algorithm of the previous section

populates a set of grid cells with tiles likely to exist in

the 3-D world. This section describes two techniques

to enhance the quality of the generated 3-D model.

4.1 Facade Commitment

This section describes a technique to eliminate spu-

rious facades present in the recovered 3-D model. Our

technique is based on the idea of facade commitment,

which enforces the following constraint: a facade com-

mitted to the model precludes edges that gave rise to

it from supporting other facades. Such enforcement

can result in the removal of other facades, if the num-

ber of observations supporting them falls below the

incidence threshold K of Section 3.

Figure 7 shows (in 2-D) an example of how a spu-

rious facade might arise from three real facades B, C,

and D with the same normal N. Such spurious fa-

cades can arise from a single facade as well, due to

self-interaction of repeated texture on the facade.

Our spurious facade elimination technique consists

of the following steps. First, the algorithm orders all

facades using some criterion that favors real facades

over spurious facades. Facades are then committed to

3
We use a threshold of 0:8l for an edge with length l, i.e., if

more than 80% of the edge overlaps with high incidence regions

identi�ed on the tile.

N

 False Facade

A

B
C

D

Figure 7: A spurious facade can result from interaction

between unrelated facades with the same azimuth.

the model in this order. Edges giving rise to facades

earlier in the ordering are removed from later facades.

For example, in Figure 7, if the ordering favors either

B, C, or D over A, it would preclude at least one of

A's observations from supporting it, resulting in A's

removal.

We considered two possible facade orderings:

1. Order facades according to occlusion, as in [17].

This ordering favors locations closer to the nodes,

and tends to select spurious facades.

2. Order facades according to higher reported obser-

vations (measured by total length of horizontal

segments on the facade). This ordering heuristic

favors facades that are larger in area and/or have

more line segments.

In practice, we have observed that the �rst ordering

tends to break up facades into several pieces before

their actual location, whereas the second, by favoring

larger facades, tends to retain real facades. The results

in Section 6 are computed using the second method.

5 Texture Estimation
We now describe an algorithm to synthesize a single

(di�use RGB) texture for each facade. Note that the

set of nodes that observe the facade are known, having

been reported by the facade extraction algorithm.

Texel

 Building
Tree

Node 1

Node 2 Node 3 Node 4
Node 5

N

Figure 8: The problem of texture estimation.

Figure 8 illustrates the challenges inherent in tex-

ture estimation. Each observation reports di�erent

colors for a texel on the facade, due to occlusion,

obliqueness, illumination variation, etc. Figure 9

shows these e�ects for four recti�ed facade images.

Signi�cant variations in pixel color due to changes in

illumination and the e�ects of shadows and re
ections,

and aocclusion, make it di�cult to determine (and

use) a single \best" node, or even interpolate between

various nodes based on viewing direction [7]. Instead,

using median statistics, we combine the information

present in all relevant nodes to compute a single fa-

cade texture.

Figure 9: Relevant portions of four nodes, auto-

recti�ed to a facade.

5.1 Median Texture Computation

Our technique divides the facade into a (area de-

pendent) number of texels, and estimates a single dif-

fuse value for each texel. Since raw RGB color of

the same texel can vary signi�cantly in each node,

we use a color space where at least some of the com-

ponents are stable under di�erent lighting conditions.

The CIE xyY color representation [9] decouples chro-

maticity x; y from luminance Y . Under illumination

by (predominantly) white sunlight, the luminance Y

of a texel can vary signi�cantly, but its chromaticity

remains reasonably stable.

We compute the median4 x and y value for each

texel, as it is less sensitive to outliers than is simple

averaging [10]. This is important in our application

as outliers are common, typically arising from occlu-

sion by foliage or other structures. Fortunately, such

outliers do not appear at the same texel on di�er-

ent recti�ed nodes, due to parallax (e.g., [13]). We

also compute a median luminance value for each texel.

Even though luminance values vary signi�cantly, we

4
With values weighted by N � V, where N is the facade's

normal, and V is the vector direction from the texel center

to the node. This down-weights nodes that view the facade

obliquely.

have observed that the median luminance reasonably

re
ects the luminance of the texel under \average"

lighting conditions. In any event, the di�erences in

illumination are normalized away, so that the gener-

ated texture can be subjected to di�erent simulated

lighting conditions.

Figure 10-(a) shows the results of weighted median

texture estimation. Note the automatic removal of

most occlusion from the texture; the luminance pat-

tern on the texture is also reasonably approximated.

Compared to Figure 9, the median texture has less

occlusion, fewer changes in luminance across the tex-

ture (e.g., due to shadows), and fewer view-dependent

e�ects (e.g., re
ection). The texture has inaccuracies

arising from small errors in camera pose, unmodeled

facade relief, and unmodeled unocclusion. We reduce

the �rst of these e�ects by \sharpening" the texture

by estimating an 8-parameter warp (as in [18]) that

achieves a higher correlation between each source im-

age and the median texture.

(a) (b)

Figure 10: (a) Median texture. (b) After sharpening.

Figure 10-(b) shows the result of sharpening. Note

the signi�cant improvement in the quality of the tex-

ture. Even though the color of each texel is computed

independently, straight lines on the facade are clearly

demarcated. It is possible for some blurring to persist

in the texture, due to the non-planarity of the under-

lying building surface. One possible solution would

be to construct disparity maps to capture such extru-

sions, as in [7].

6 Results
We have implemented the algorithm (and associ-

ated visualization) described in this paper in about

5000 lines of C++ code. The algorithm extracted all

signi�cant vertical facades in the o�ce complex, as

well as several neighboring facades. Details on the

extraction process and algorithm execution times are

provided below.

The facade extraction algorithm considered edges

detected on six faces of a cubical environment map

representing a node. Each face of the environment

map was generated at 1024 � 1024 resolution by re-

sampling the input images. Edge pixels were detected

using the Canny edge detector [3] and converted to line

segments by linking pixels with similar gradient orien-

tation. Approximately 1000 edges were computed for

each cube face (ignoring edges less than 10 pixels in

length).

Area of 3-D region of interest � 500m� 500m

Grid Size G � 10m

Far Distance D � 100m

Step Size S � 0:1m

Minimum Weighted Incidence K 3:0

Table 1: Parameters supplied to the extraction algo-

rithm. All lengths are given in meters.

Some of the important parameters supplied to the

algorithm are listed in Table 1. The grid size G should

be approximately equal to the size of the smallest fa-

cade, to avoid interaction between di�erent facades

during tile reconstruction. We use a grid size of 10

meters for this dataset. The minimum weighted inci-

dence value of 3:0 usually implies that a facade must

be observed by at least �ve or six nodes to be success-

fully extracted.

The facade extraction algorithm took about seven

hours on an SGI O2 workstation with one R10000 pro-

cessor, most of which was spent in the space-sweep

algorithm. The space-sweep algorithm recovered ap-

proximately 2000 tiles. The model consists of about

140 facades after tile linking and facade commitment

(Figure 11-(a)). After removing facades with area less

than 100m2, the model consists of about 40 facades

(Figure 11-(b)). The horizontal lines used to gener-

ate this model are shown in Figure 11-(c). Figure 13

shows the extracted facade geometry in wireframe, co-

located with the input data (shown as texture-mapped

spheres).

The recovered scene geometry was further pro-

cessed using the following steps:

� A 2-D Delaunay triangulation of the camera XY

positions was computed, and an approximation to

the ground terrain was constructed using ground

heights obtained from camera poses.

� Facades with end-points in the same grid cell were

linked, modifying facade boundaries to the edge

formed by intersecting adjacent facades. Also, a

\roof" was added to each connected set of facades

after extruding facade heights to the maximum

height in the set.

Textures were computed to 0:1m resolution, with the

largest texture containing 1024 � 512 pixels. Tex-

ture computation took about ten hours. Textures for

non-vertical geometry (i.e., roof and ground polygons)

were extracted from a single aerial image of the com-

plex, for which the exterior orientation was manually

deduced.

(a) (b) (c)

Figure 11: (a) Recovered vertical facades. (b) After

removal of small facades. (c) Horizontal edges that

generated this model.

Figure 12: An aerial view of the �nal model.

Figure 13: Pose imagery; extracted vertical facades.

7 Conclusion
This paper described an algorithm that extracts ur-

ban vertical by detecting likely vertical facade orienta-

tions from horizontal edges, and locating these using

space-sweep. In addition, we described a simple and

robust technique for computing a texture-map for each

recovered facade. We presented results on a large pose

image dataset consisting of over four thousand images.

To our knowledge, ours is the �rst system to automat-

ically analyze such a large set of images, and produce

a realistic 3-D model suitable for computer graphics

rendering.

Our algorithm has other desirable properties for

automatic model extraction. It uses all information

from relevant images, yet scales to an arbitrary num-

ber of images and model size. It exploits geometric

constraints inherent in the 3-D environment. Finally,

it is robust with respect to occlusion and changes in

illumination. We believe that these properties will

be crucial for future systems that perform practical,

large-scale reconstruction.

Clearly our algorithm has many signi�cant limi-

tations, for example its unsophisticated handling of

lighting and facade relief. However, we have chosen to

emphasize end-to-end system architecture and scaling

properties for the time being. Later each of the spe-

ci�c techniques for geometry and texture estimation

will be elaborated.

References

[1] C. Baillard and A. Zisserman. Automatic reconstruction of piecewise pla-

nar models from multiple views. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, June 1999. to appear.

[2] S. Becker and V. M. Bove. Semiautomatic 3-D model extraction from

uncalibrated 2-D camera views. In Proceedings of Visual Data Exploration and

Analysis II, SPIE Vol. 2410, pages 447{461, 1995.

[3] F. J. Canny. A computational approach to edge detection. IEEE Trans

PAMI, 8(6):679{698, 1986.

[4] S. E. Chen. Quicktime VR { an image-based approach to virtual envi-

ronment navigation. In SIGGRAPH '95 Conference Proceedings, pages 29{38,

Aug. 1995.

[5] R. Collins. A space-sweep approach to true multi-image matching. In

CVPR96, pages 358{363, 1996.

[6] S. Coorg, N. Master, and S. Teller. Acquisition of a large pose-mosaic

dataset. In CVPR '98, pages 872{878, 1998.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering ar-

chitecture from photographs: A hybrid geometry- and image-based ap-

proach. In SIGGRAPH '96 Conference Proceedings, pages 11{20, Aug. 1996.

[8] U. R. Dhond and J. K. Aggarwal. Structure from stereo { A review. IEEE

Transactions on Systems, Man, and Cybernetics, 19(6):1489{1510, Nov.-Dec.

1989.

[9] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graph-

ics, Principles and Practice, Second Edition. Addison-Wesley, Reading, Mas-

sachusetts, 1990.

[10] P. J. Huber. Robust Statistics. Wiley, 1981.

[11] W. Jepson, R. Liggett, and S. Friedman. Virtual modeling of urban en-

vironments. PRESENCE, 5.1, March 1996.

[12] S. B. Kang and R. Szeliski. 3-D scene recovery using omnidirectional

multibaseline stereo. In International Conference on Computer Vision and Pat-

tern Recognition, pages 364{370, San Francisco, CA, June 1996.

[13] R. Kumar, P. Anandan, and K. Hanna. Shape recovery from multiple

views: a parallax based approach. In ARPA Image Understanding Workshop,

Monterey, CA, Nov. 1994.

[14] D. M. McKeown, C. McGlone, S. D. Cochran, Y. C. Hsieh, M. Roux, and

J. Shufelt. Automatic cartographic feature extraction using photogram-

metric principles. In Digital Photogrammetry, pages 195{212. ASPRS, 1997.

[15] H. P. Moravec. Robot spatial perception by stereoscopic vision and 3d

evidence grids. Technical Report CMU-RI-TR-96-34, Robotics Institute,

CMU, 1996.

[16] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction.

Springer-Verlag, 1985.

[17] S. Seitz and C. Dyer. Photorealistic scene reconstruction by voxel color-

ing. In CVPR97, pages 1067{1073, 1997.

[18] R. Szeliski. Video mosaics for virtual environments. IEEE Computer Graph-

ics and Applications, 16(2):22{30, Mar. 1996.

[19] R. Szeliski and S. B. Kang. Recovering 3D shape and motion from image

streams using non-linear least squares. Journal of Visual Communication and

Image Representation, 5(1):10{28, 1994.

[20] R. Szeliski and H. Shum. Creating full-view panoramic mosaics and

texture-mapped 3D models. In SIGGRAPH '97 Conference Proceedings, pages

251{258, Aug. 1997.

[21] C. J. Taylor and D. J. Kriegman. Structure and motion from line segments

in multiple images. PAMI, 17(11):1021{1032, November 1995.

[22] C. Tomasi and T. Kanade. Shape and motion from image streams un-

der orthography: a factorization method. International Journal of Computer

Vision, 9:137{154, 1992.

