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Abstract
A simple method to �nd a dense match of a planar

object is presented. The basic idea is structured recur-

sive search of transformation space using a conserva-

tive predicate. The predicate excludes regions known

not to contain a matching transformation; the remain-

ing set of candidate transformations are examined

for matches by traditional methods. Our technique

is demonstrated to match planar regions even under

changes in lighting, and extreme geometric transfor-

mations.

1 Introduction
Matching images is a long-standing problem in

computer vision, used in stereo, motion, object recog-

nition, compression (e.g., MPEG, fractal [ABT97]),

and other contexts. Here we consider the case in which

the search region is known (or hypothesized) to form

the image of some planar surface in the world.

Matching algorithms have often been classi�ed

as either area-based or feature-based. Feature-based

methods require robust operators to �nd the features

and give rise to sparse correspondences. Area-based

methods produce dense depth maps without requir-

ing special features to be present, but usually assume

local planarity of the 3D object.

Area-based methods, though they yield a dense cor-

respondence, can fail in the presence of depth dis-

continuities, occlusion, specularities and noise. The

main ideas proposed in area-based matching algo-

rithms have to do with designing distance measures

between image patches, so that patches separated by

a small distance are considered a match. The patches

to compare are either searched for exhaustively (e.g.

with a multi-resolution representation) or through an-

choring to some set of features. This limits the search

to a small class of transformations, or ends up being

essentially feature-based.

This paper proposes a new way to identify patches

to test for matching. Our method excludes large por-

tions of the transformation space; remaining candidate

transformations are checked for a match using tradi-

tional methods.

1.1 Related work and existing methods

We can divide existing methods into two cate-

gories: feature-based and featureless methods (min-

imizing mean squared error, or based on spatiotempo-

ral derivatives and optical 
ow).

Representatives of feature-based methods are for

example [Wol90, DHU90, AKM+92].

There are two kinds of featureless methods, those

based on optical 
ow for example [Sze94, SK95,

KAI+95, IAH95, MP94, MP95]) or those based on pa-

rameter estimation such as [McM95, Sze94, MP95].

The closest methods to ours in that they try to per-

form hierarchichal search of transformation space are

[HKR93, CGH+93, Ruc97, HV97, DMML97]. These

methods recursively divide transformation space in or-

der to �nd candidate transformations. However they

all try to do point matching up to a transformation;

that is, they are feature-based and work on a set of

points. Points act specially under these transforma-

tions as they remain the same shape. They also use

variations on beam search, by computing estimates of

the error function of all possible matches, and delet-

ing nodes all of whose children have an error func-

tion provably larger than the minimum value already

found. Our algorithm, in contrast, is much faster; it

excludes regions of transformation space known not to

contain the sought transformation, producing a set of

candidate regions which are then inspected by tradi-

tional means.

2 The Matching Algorithm

Given: a region p of some image, and an image P .

The Problem: Find a transformed instance of p in

P . That is, �nd the transformation t 2 T which maps

p to its match in P , where T is a set of transformations

(Figure 1).

In order to �nd the transformed p in P we make

use of Q(p; P; T ), a predicate which returns FALSE

only when there is no transformation t 2 T such that

t applied to p is in P . (Note that this predicate is

\conservative;" it may return TRUE even when there

is no matching transformation in T .)
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Figure 1: Matching a quadrilateral subregion between two images.

Given an image region p, an image P , and a set

T of transformation space, the predicate Q(p; P; T ) is

false only when T does not contain a transformation

mapping p to a matching region of P . The predicate

Q must be a monotone Boolean function, in the sense

that :Q(p; P; T2) ) :Q(p; P; T1) whenever T1 � T2.

That is, exclusion of a matching transformation from

a set implies exclusion from all its subsets.

Given a set T of possible transformations, the algo-

rithm applies Q to determine whether T might contain

a match. If not, the algorithm terminates. Otherwise,

if T is su�ciently small, it is returned as a \candidate

match", to be examined for a match through tradi-

tional means (e.g., sampling and correlation). Oth-

erwise, T is divided into subsets, and each is ex-

amined recursively. This can be done either using

a \quadtree" strategy (divide a d-dimensional region

into 2d subregions by bisecting along each dimension)

or a \k � d" tree strategy (loop through the dimen-

sions, bisecting each in turn [Ben75]).

Here is pseudocode for the algorithm:

Find (p; P; T )

if jT j < �

output T

else if Q(p; P; T ) then

8Ti 2 T // (
S

i
Ti = T )

Find(p; P; Ti)

2.1 Families of Transformations

We have studied the following types of transfor-

mations: Translations (2 scalar degrees of freedom);

Stereo Group (4 DOF); A�ne (6 DOF), and Projec-

tive (8 DOF).

2.1.1 Translation

The simplest interesting transformation is translation;

that is, x0; y0 = x + A; y + B. Clearly the space of

translations is two-dimensional. Suppose the images

are each coordinatized as [0; 1]2; then the region of

\translation space" to search is [�1; 1]2. Our imple-

mentation represents this region as a square.

2.1.2 Stereo Group

When the epipolar constraint relating the image pair

is known, searching for a polygon region match in-

volves one scalar parameter per region vertex. The

simplest instance of this is to match a quadrilat-

eral, thus searching a four-dimensional transformation

space. Equivalently, one might imagine each vertex of

the source quadrilateral projecting to an epipolar line

in the destination image; our problem is to deduce

the correct (1-D) position of each matched vertex on

its respective epipole. Our implementation represents

this region as a 4D hypercube. (Note that matching

the vertices of a triangular region would not be suf-

�cient, as four points are needed to �x a projective

transformation.)

2.1.3 A�ne

A�ne transformations are often used as approxima-

tions to the full projective group, when the imaged

objects are not close to the camera. In this case, our

implementation represents the search region as a six-

dimensional hypercube.

2.1.4 Projective

The complete projective group. The simplest

parametrization of this group, especially when p is a

quadrilateral, are the coordinates of the image of p in

P , Initially, they can be anywhere in P ; their ranges

are reduced at each step of the algorithm by subdivi-

sion of an eight-dimensional hypercube.

3 The Conservative Predicate Q
The above description of the algorithm describes

the matching predicate generically: it need only be
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Figure 2: Each point in transformation space (at left) de�nes a quadrilateral in the target image (at right).

monotonic and conservative, as described. However,

implementing the algorithm requires a speci�c choice

of predicate. We de�ne two pictures as possible

matches if they contain roughly the same set of colors

(or greyscale levels for unsaturated colors).

When searching for matches in some set T of trans-

formation space, we examine the mapping of p under

all t 2 T : we denote as P 0 this subregion of image P .

Now, in order for T to contain a matching transfor-

mation, it must be true that the colors (grey scales)

in P 0 include those in t(p), for some t 2 T . To deter-

mine inclusion, we use a histogram of colors and grey

scales. The following subsections describe our method

for computing histograms.

3.1 Histogram Computation

The fact that the world-space surface is geometri-

cally transformed between the two images implies that

it or the camera has moved; therefore, in general we

can expect some degree of view-dependent lighting ef-

fects to alter the appearance of the surface. We found

that RGB histograms were not stable under changes in

illumination. In order to achieve some degree of color

constancy, we adopted the following scheme. Each

image is converted to HSV (hue, saturation, value).

Each pixel is then classi�ed as saturated (S > s0) or

unsaturated (S � s0), for some threshold value s0.

Saturated pixels are histogrammed according to their

hue (H), while unsaturated pixels are histogrammed

according to their value (V ).

To allow a color that is near a border to vary, we use

overlapping intervals: a color belongs to two intervals

if it is close enough to another cluster.

For each region of T to be examined, two his-

tograms must be compared: a histogram of the pixels

in the image region p, under all transformations t 2 T ;

and a histogram of the pixels in the subregion P 0. For

e�ciency, we compute a \quadtree" of histograms in

P ; that is, the image is decomposed as a quadtree,

and the histogram of all pixels contained in a quadtree

node is stored with that region. Thus, to �nd the his-

togram of an arbitrary polygonal region P 0, we simply

sum the histograms of all nodes contained in P 0 whose

parents are not contained in P 0.

The histogram of t(p) (that is, of p under the ac-

tion of all transformations in set t) contains, in each

bin, the minimum of all histogram values for that bin.

We compute this minimum di�erently for each of the

four cases of transformation. Under translation, the

histogram in invariant. Under a�ne transformation,

the histogram simply scales by the determinant of the

transformation. Under the stereo and full projective

groups, we sample over the space of transformations,

and take a minimum of the histograms generated from

each individual transformation of p.

4 Implementation and Results

We implemented the search method, using the con-

servative predicates described above, on an SGI work-

station. We parallelized the algorithm implementation

straightforwardly using a producer-consumer model of

work generation and execution.

4.1 Book Cover Matching

Figure 4 shows the algorithm run on a pair of im-

ages of a course bulletin with a colored cover. A sub-

region of the image at left is manually selected. The

algorithm �nds the best instance of the selected region

in the target image.

4.2 Building Facade Matching

Figure 5 shows the algorithm run on a pair of im-

ages of an architectural scene. The images were ac-

quired from two cameras tens of meters apart. Part of

one building facade is manually selected in the image

at left. The algorithm identi�es the matching section

of the facade, in the image at right.



Figure 3: Histograms of images are very often di�erent (red bars represent the histogram of the image at left;

blue bars of the image at right.

Figure 4: A match between a book cover in two images.

Figure 5: Part of a building facade, matched across two images.



5 Conclusion
We have described a recursive, exclusive search

method which operates by excluding large regions of

transformation space. Our method can identify ex-

treme transformations between image regions. The

algorithm has been implemented and used to match

regions of actual images.
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