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Abstract

This paper presents part of an on-going project
to integrate perception, attention, drives, emo-
tions, behavior arbitration, and expressive acts
for a robot designed to interact socially with
humans. We present the design of a visual at-
tention system based on a model of human vi-
sual search behavior from Wolfe (1994). The
attention system integrates perceptions (mo-
tion detection, color saliency, and face pop-
outs) with habituation effects and influences
from the robot’s motivational and behavioral
state to create a context-dependent attention
activation map. This activation map is used to
direct eye movements and to satiate the drives
of the motivational system.

1 Introduction

Socially intelligent robots provide both a natural human-
machine interface and a mechanism for bootstrapping
more complex behavior. However, social skills often re-
quire complex perceptual, motor, and cognitive abilities
[Brooks et al., 1998]. Our research has focused on a
developmental approach to building socially intelligent
robots that utilize natural human social cues to interact
with and learn from human caretakers.
This paper discusses the construction of one necessary

component of social intelligence: an attention system.
To provide a basis for more complex social behaviors,
an attention system must direct limited computational
resources and select among potential behaviors by com-
bining perceptions from a variety of modalities with the
existing motivational and behavioral state of the robot.
We present a robotic implementation of an attention sys-
tem based upon models of human attention and visual
search. We further outline the ways in which this model
interacts with existing perceptual, motor, motivational,
and behavioral systems.
Our implementation is based upon Wolfe’s model of

human visual attention and visual search [Wolfe, 1994].
This model integrates evidence from Treisman [1985],
Julesz [1988], and others to construct a flexible model

of human visual search behavior. In Wolfe’s model, vi-
sual stimuli are filtered by broadly-tuned “categorical”
channels (such as color and orientation) to produce fea-
ture maps with activation based upon both local regions
(bottom-up) and task demands (top-down). The feature
maps are combined by a weighted sum to produce an
activation map. Limited cognitive and motor resources
are distributed in order of decreasing activation. This
model has been tested in simulation, and yields results
that are similar to those observed in human subjects
[Wolfe, 1994]. In this paper we do not attempt to match
human performance (a task that is difficult with cur-
rent component technology), but rather require only that
the robotic system perform enough like a human that it
is capable of maintaining a normal social interaction.
Our implementation is similar to other models based in
part on Wolfe’s work [Itti et al., 1998; Hashimoto, 1998;
Driscoll et al., 1998], but additionally operates in con-
junction with motivational and behavioral models, with
moving cameras, and it differs in dealing with habitua-
tion issues.

2 Robot Hardware
Our robotic platform consists of a stereo active vision
system augmented with facial features for emotive ex-
pression. The robot, called Kismet and shown in Figure
1, is able to show expressions (analogous to anger, fa-
tigue, fear, disgust, excitement, happiness, interest, sad-
ness, and surprise) which are easily interpreted by an un-
trained human observer. The platform has four degrees
of freedom in the vision system; each eye has an inde-
pendent vertical axis of rotation (pan), the eyes share
a joint horizontal axis of rotation (tilt), and the entire
head has a single vertical axis of rotation (pan) at the
neck. Kismet also has fifteen degrees of freedom in fa-
cial features, including eyebrows, ears, eyelids, lips, and
a mouth. Each eyeball has an embedded color CCD
camera with a 5.6 mm focal length.
The active vision platform is attached to a parallel net-

work of eight 50MHz digital signal processors (Texas In-
struments TMS320C40). The DSP network serves as the
sensory processing engine and implements the bulk of the
robot’s perception and attention systems. A pair of Mo-
torola 68332-based microcontrollers are also connected



Figure 1: Kismet, a robot designed to interact socially
with humans. Kismet has an active vision system and
can display a variety of facial expressions.

to the robot. One controller implements the motor sys-
tem for driving the robot’s facial motors. The other
controller implements the motivational system (emotions
and drives) and the behavior system. The microcon-
trollers communicate with the DSP network through a
dual-ported RAM.

3 Perceptual Systems
Our current perceptual systems focus on the pre-
attentive, massively parallel stage of human vision that
processes information about basic visual features (color,
motion, various depth cues, etc.). The implementation
described here focuses on three such pre-attentive pro-
cesses: color, motion, and face pop-outs. In terms of the
model from Wolfe [1994], our implementation contains
the bottom-up feature maps, which represent the inher-
ent saliency of a specific image property for each point
in the visual scene, and incorporates top-down influences
from motivational and behavioral sources.
The video signal from each of Kismet’s cameras is dig-

itized by one of the DSP nodes with specialized frame
grabbing hardware. The image is then subsampled and
averaged to an appropriate size. For these initial tests,
we have used an image size of 64 × 64, which allows us
to complete all of the processing in near real-time. To
minimize latency, each feature map is computed by a sep-
arate DSP processor (each of which also has additional
computational task load). All of the feature detectors
discussed here can operate at multiple scales.

3.1 Color Saliency Feature Maps
One of the most basic and widely recognized visual fea-
ture is color. Our models of color saliency are drawn
from the complementary work on visual search and at-
tention from Itti, Koch, and Niebur [1998]. The incom-
ing video stream contains three 8-bit color channels (r, g,
and b) which are transformed into four color-opponency

channels (r′, g′, b′, and y′). Each input color channel is
first normalized by the luminance l (a weighted average
of the three input color channels):

rn =
255
3

· r

l
gn =

255
3

· g

l
bn =

255
3

· b

l
(1)

These normalized color channels are then used to pro-
duce four opponent-color channels:

r′ = rn − (gn + bn)/2 (2)
g′ = gn − (rn + bn)/2 (3)
b′ = bn − (rn + gn)/2 (4)

y′ =
rn + gn

2
− bn − ‖rn − gn‖ (5)

The four opponent-color channels are clamped to 8-bit
values by thresholding. While some research seems to
indicate that each color channel should be considered in-
dividually [Nothdurft, 1993], we choose to maintain all
of the color information in a single feature map to sim-
plify the processing requirements (as does Wolfe [1994]
for more theoretical reasons). The maximum of the four
opponent-color values is computed and then smoothed
with a uniform 5 × 5 field to produce the output color
saliency feature map. This smoothing serves both to
eliminate pixel-level noise and to provide a neighbor-
hood of influence to the output map, as proposed by
Wolfe [1994]. A single DSP node computes these com-
putations and forwards the resulting feature map both
to the attention process and a VGA display processor at
a rate of 25 Hz. The processor produces a pseudo-color
image by scaling the luminance of the original image
by the output saliency while retaining the same relative
chrominance (as shown in Figure 2).

3.2 Motion Saliency Feature Maps
In parallel with the color saliency computations, a sec-
ond processor receives input images from the frame grab-
ber and computes temporal differences to detect motion.
The incoming image is converted to grayscale and placed
into a ring of frame buffers. A raw motion map is com-
puted by passing the absolute difference between consec-
utive images through a threshold function T :

Mraw = T (‖It − It−1‖) (6)

This raw motion map is then smoothed with a uniform
7 × 8 field. While using a 5 × 5 field would have main-
tained consistency with both Wolfe’s model and the color
saliency feature map, using a slightly larger field size al-
lows us to use the output of the motion saliency map as
a pre-filter to the face detection routine, which has opti-
mized performance in prior tests by a factor of 3 [Scas-
sellati, 1998]. The motion saliency feature map is com-
puted at 25-30 Hz by a single DSP processor node and
forwarded both to the attention process and the VGA
display.

3.3 Face Pop-Out Feature Maps
While form and size are part of Wolfe’s original model,
we have extended the concept to include other known
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Figure 2: Overview of the attention system. A variety of visual feature detectors (color, motion, and face detectors)
combine with a habituation function to produce an attention activation map. The attention process influences eye
control and the robot’s internal motivational and behavioral state, which in turn influence the weighted combination
of the feature maps. Displayed images were captured during a behavioral trial session.

pop-out features that have social relevance, such as faces.
Our face detection techniques are designed to identify
locations that are likely to contain a face, not to verify
with certainty that a face is present in the image. The
face detector is based on the ratio-template technique
developed by Sinha [1996], and has been previously re-
ported [Scassellati, 1998]. The ratio template algorithm
was designed to detect frontal views of faces under vary-
ing lighting conditions, and is an extension of classical
template approaches [Sinha, 1996]. Ratio templates also
offer multiple levels of biological plausibility; templates
can be either hand-coded or learned adaptively from
qualitative image invariants [Sinha, 1996].

A ratio template is composed of regions and relations,
as shown to the left of the face detector in Figure 2. For
each target location in the grayscale peripheral image, a
template comparison is performed using a special set of
comparison rules. The set of regions is convolved with
a 14 × 16 image patch around a pixel location to give
the average grayscale value for that region. Relations
are comparisons between region values, for example, be-
tween the “left forehead” region and the “left temple”
region. The relation is satisfied if the ratio of the first
region to the second region exceeds a constant value (in
our case, 1.1). The number of satisfied relations serves
as the match score for a particular location; the more
relations that are satisfied the more likely that a face is
located there. In Figure 2, each arrow indicates a re-
lation, with the head of the arrow denoting the second

region (the denominator of the ratio).
The ratio template algorithm has been shown to

be reasonably invariant to changes in illumination and
slight rotational changes [Scassellati, 1998]. The ratio
template algorithm processes video streams in real time
using optimization and pre-filtering techniques, and the
system has been tested on a variety of lighting condi-
tions and subjects. The algorithm can operate on each
level of an image pyramid in order to detect faces at
multiple scales. In the current implementation, due to
limited processing capability, we elected to process only
a single scale for faces. Applied to a 64× 64 image from
Kismet’s cameras, the 14× 16 ratio template finds faces
in a range of approximately 3-6 feet from the robot. This
range was suitable for our current investigations of face-
to-face social interactions, and could easily be expanded
with additional processors. The implemented face detec-
tor operates at approximately 15-20 Hz.

4 Behaviors and Motivations
In previous work, Breazeal and Scassellati [2000] pre-
sented how the design of Kismet’s motivation and be-
havior systems (modeled after theories of Lorenz [1973])
enable it to socially interact with a human while regu-
lating the intensity of the interaction via expressive dis-
plays. For the purposes of this paper, we present only
those aspects of these systems which bias the robot’s
attention (see Figure 3).
Perceptual stimuli are classified into social stimuli (i.e.
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Figure 3: Schematic of motivations and behaviors rele-
vant to attention. See text for details.

people, which move and have faces) which satisfy a drive
to be social and non-social stimuli (i.e. toys, which move
and are colorful) which satisfy a drive to be stimulated
by other things in the environment.
For each drive, there is a desired operation point, and

an acceptable bounds of operation around that point
(the homeostatic regime). As long as a drive is within
the homeostatic regime, that corresponding need is be-
ing adequately met. Unattended, drives drift toward
an under-stimulated regime. Excessive stimulation (too
many stimuli or stimuli moving too quickly) push a drive
toward an over-stimulated regime.
The robot’s drives influence behavior selection by pref-

erentially passing activation to select behaviors. By
doing so, the robot is more likely to activate behav-
iors that serve to restore its drives to their homeo-
static regimes. The top level (level 0) of the behav-
ior system consists of a single cross-exclusion group
(CEG) containing two behaviors: satiate social and
satiate stimulation. Each behavior is viewed as a
self-interested, goal-directed process. Within a CEG,
behaviors compete for activation in a winner-take-all
scheme based upon perceptual factors, motivational fac-
tors, and its own behavioral persistence. Competition
between behaviors at the top level represents selection
at the task level. By organizing the top level behaviors
in this fashion, the robot can only act to restore one
drive at a time. This is reasonable since the satiating
stimuli for each drive are mutually exclusive and require
different behaviors. Specifically, whenever the satiate
social behavior wins, the robot’s task is to do what it
must to restore the social drive, and when the satiate
stimulation behavior wins, the robot’s task is to do
what it must to restore the stimulation drive.
Each behavior node of the top level CEG has a child

CEG (level 1) associated with it. Once a level 0 behavior
wins the competition, it activates its child CEG at level

1. Subsequently, the behaviors within the active level
1 CEG compete for activation. Competition between
behaviors within the active level 1 CEG represents com-
petition at the strategy level. Each behavior has its own
distinct conditions for becoming relevant and winning
the competition. For instance, the avoid person be-
havior is the most relevant when the robot’s social drive
is in the overwhelmed regime and a person is stimulat-
ing the robot too vigorously. The goal of this behavior is
to reduce the intensity of stimulation. If successful, the
social drive will be restored to the homeostatic regime.
Similarly, the goal of the seek person behavior is to ac-
quire a social stimulus of reasonable intensity. If success-
ful, this will serve to restore the social drive from the
under-stimulated regime. The engage person behavior
is active by default (i.e. the social drive is already in
the homeostatic regime and the robot is receiving a good
quality stimulus).

5 Attention System

The attention system must combine the various effects
of the perceptual input with the existing motivational
and behavioral state of the robot both to direct limited
computational resources and to select among potential
behaviors. Figure 2 shows an overview of the attention
system.

5.1 Combining Perceptual Inputs

Each of the feature maps contains an 8-bit value for each
pixel location which represents the relative presence of
that visual scene feature at that pixel. The attention
process combines each of these feature maps using a
weighted sum to produce an attention activation map
(using the terminology of Wolfe [1994]). The gains for
each feature map default to values of 200 for color, 40
for motion, and 50 for face detection. The attention
activation map is thresholded to remove noise values,
and normalized by the sum of the gains. Connected ob-
ject regions are extracted using a grow-and-merge pro-
cedure with 8-connectivity. To further combine related
regions, any regions whose bounding boxes have a sig-
nificant overlap are also merged.
Statistics on each region are collected, including the

centroid, bounding box, area, average attention activa-
tion score, and average score for each of the feature maps
in that region. The tagged regions that have an area
in excess of 30 pixels are sorted based upon their av-
erage attention activation score. The attention process
provides the top three regions to both the eye motor
control system and the behavior and motivational sys-
tems. The eye motor control system uses the centroid
of the most salient regions to determine where to look
next. The top-down processes use the attention activa-
tion score and the individual feature map scores of the
most salient region to determine which of the drives and
behaviors will become activated.



5.2 Attention Drives Eye Movement

The eye motor control process acts on the data from
the attention process to center the eyes on an object
within the visual field. Our current implementation uses
a static linear mapping between image position and eye
position, which has been sufficient for our initial inves-
tigations. We are currently in the process of converting
to a self-calibrated system that learns the sensori-motor
mapping for foveation similar to that described by Scas-
sellati [1998].

Each time that the eyes move, the eye motor process
sends two signals. The first signal inhibits the motion
detection system for approximately 600 msec, which pre-
vents self-motion from appearing in the motion feature
map. The second signal resets the habituation state,
which is described below.
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Figure 4: Changes of the face, motion, and color gains
from top-down motivational and behavioral influences
(top). When the social drive is activated by face stimuli
(middle), the face gain is influenced by the seek people
and avoid people behaviors. When the stimulation
drive is activated by color stimuli (bottom), the color
gain is influenced by the seek toys and avoid toys
behaviors. All plots show the same 4 minute period.

5.3 Habituation
For our robot, the current object under consideration is
always the object that is in the center of the visual field.1
The habituation function can be viewed as a feature map
that initially maintains eye fixation by increasing the
saliency of the center of the field of view and slowly de-
cays the saliency values of central objects until a salient
off-center object causes the eyes to move. The habitua-
tion function is a Gaussian field G(x, y) centered in the
field of view with peak amplitude of 255 (to remain con-
sistent with the other 8-bit values) and θ = 50 pixels. It
is combined linearly with the other feature maps using
the weight

w = W · max(−1, 1−∆t/τ) (7)
where w is the weight, ∆t is the time since the last habit-
uation reset, τ is a time constant, and W is the maximum
habituation gain. Whenever the eyes move, the habitu-
ation function is reset, forcing w to W and amplifying
the saliency of central objects until a time τ when w = 0
and there is no influence from the habituation map. As
time progresses, w decays to a minimum value of −W
which suppresses the saliency of central objects. In the
current implementation, we use a value of W = 10 and
a time constant τ = 5 seconds.
The entire attention process (with habituation) oper-

ates at 10-25 Hz on a single DSP processor node. The
speed varies with the number of attention activation pix-
els that pass threshold for region growing. While this
code could be optimized further, rates above 10 Hz are
not necessary for our current purposes.

5.4 Motivations and Behaviors Influence
Feature Map Gains

Kismet’s drives and behaviors bias the attentional gains
based on the current internal context to preferentially at-
tend to behaviorally relevant stimuli. Behaviors that sa-
tiate the stimulation drive influence the color saliency
gain because color is characteristic of toys. Similarly, the
face saliency gain is adjusted when the robot is tending
to its social drive. Active level 1 behaviors influence
attentional gains in proportion to the intensity of the
associated drive.
As shown in Figure 3, the face gain is enhanced when

the seek people behavior is active and is suppressed
when the avoid people behavior is active. Similarly,
the color gain is enhanced when the seek toys behavior
is active, and suppressed when the avoid toys behavior
is active. Whenever the engage people or engage toys
behaviors are active, the face and color gains are restored
to their default values, respectively. Weight adjustments
are constrained such that the total sum of the weights
remains constant at all times. Figure 4 illustrates how
the face, motion, and color gains are adjusted as a func-
tion of drive intensity, the active level 1 behavior, and
the nature and quality of the perceptual stimulus.

1This is extremely relevant on our other robotic platforms
which have a second camera that captures a high resolution
foveal image.
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Figure 5: Preferential looking based on habituation and top-down influences. When presented with two salient
stimuli (a face and a brightly colored toy), the robot prefers to look at the stimulus that has behavioral relevance.
Habituation causes the robot to also spend time looking at the non-preferred stimulus.

6 Results and Evaluation
Top-down gain adjustments combine with bottom-up ha-
bituation effects to bias the robot’s gaze preference (see
Figure 5). When the seek people behavior is active,
the face gain is enhanced and the robot prefers to look
at a face over a colorful toy. The robot eventually ha-
bituates to the face stimulus and switches gaze briefly
to the toy stimulus. Once the robot has moved its gaze
away from the face stimulus, the habituation is reset and
the robot rapidly re-acquires the face. In one set of be-
havioral trials when seek people was active, the robot
spent 80% of the time looking at the face. A similar af-
fect can be seen when the seek toy behavior is active
— the robot prefers to look at a toy over a face 83% of
the time.
The opposite effect is apparent when the avoid

people behavior is active. In this case, the face gain
is suppressed so that faces become less salient and are
more rapidly affected by habituation. Because the toy is
relatively more salient than the face, it takes longer for
the robot to habituate. Overall, the robot looks at faces
only 5% of the time when in this behavioral context. A
similar scenario holds when the robot’s avoid toy be-
havior is active — the robot looks at toys only 24% of
the time.

7 Future Work
In this paper we have demonstrated an attentional sys-
tem that combines bottom-up perceptions and habitua-
tion effects with top-down behavioral and motivational
influences. This results in a system that directs eye gaze
based on current task demands. In the future, we intend
to construct a richer set of perceptual inputs (depth,
orientation, and texture) and motor responses (smooth
pursuit tracking, vergence, and vestibulo-ocular reflex).
We are also currently combining this system with ex-
pressive behaviors to facilitate social interaction with a
human.
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