
Proceedings of Hotchips 13, August
2001.

The Raw Processor: A Composeable 32-Bit
Fabric for Embedded and General Purpose

Computing

Michael Taylor, Jason Kim, Jason Miller, Fae Ghodrat,
Ben Greenwald, Paul Johnson, Walter Lee, Albert Ma,

Nathan Shnidman, David Wentzlaff, Matt Frank,
Saman Amarasinghe and Anant Agarwal

MIT Laboratory for Computer Science
{mtaylor, jkim, jasonm, fghodrat, beng, prj, walt, ama, naters,

wentzlaff, mfrank, saman, agarwal}@lcs.mit.edu

The Raw project is attempting to create a scalable processor archi-
tecture that is suitable for both general purpose and embedded com-
putations. Current general purpose processors differ from embedded
devices in that they provide large amounts of hardware support to
discover and manipulate instruction-level parallelism and unstructured
memory accesses. Because the parallelism in embedded computations
is much more predictable, embedded devices such as DSPs do not of-
fer a rich set of mechanisms, rather they devote their area to compu-
tational resources such as pipelined floating point, thereby achieving
significantly better area and energy efficiency. However, their best per-
formance is achieved for regular data access patterns such as streams,
and they often require assembly code manipulation. Embedded FP-
GAs and ASICs go one step further, and can offer even better results
for many classes of computations, but require a hardware design step
in mapping their applications into silicon.

Raw will support many classes of computations that traditionally
have run on microprocessors, DSPs, FPGAs and ASICs. Raw imple-
ments a simple, highly parallel, tiled architecture, and exposes its inter-
connect, I/O, memory and computational elements to the compiler [5].
This exposure allows the software system to allocate resources and co-
ordinate data flow within the chip in an application-specific manner.
Furthermore, the tiled, replicated architecture of Raw allows it to scale
with increasing silicon densities.

As depicted in Figure 1, the Raw processor is a single chip contain-
ing 16 identical processor-sized tiles connected in a 4-by-4 mesh con-
figuration by four nearest neighbor point-to-point pipelined high-speed



4 Michael Taylor, Jason Kim, et al.

networks (two static, two dynamic). Implemented in the .15 micron
IBM SA-27E ASIC process, the design occupies an 18.2x18.2mm die,
has 1080 HSTL signal I/Os, consumes 45W1, and runs at a target fre-
quency of 250 MHz. Because tiles are only connected to their nearest
neighbors, the longest wire on the chip runs only the length of a single
tile.

Raw Processor

Stream I/O devices

Fig. 1. Raw processor composition. A typical Raw system might include a
Raw processor coupled with off-chip RDRAM and stream-IO devices.

Each tile contains a general-purpose processor, which is connected
to its neighbors by a static router and a dynamic router. The processor
is an eight stage single-issue MIPS-style pipeline. It has a four stage
pipelined FPU, a 32 KByte two-way associative SRAM data cache and
32 KBytes of instruction SRAM that is virtualized via a binary rewrit-
ing system. When the data access patterns are known at compile time,
the software implements software data caching for predictable memory
access by using a portion of the instruction SRAM memory.

The static router controls two independent 32-bit pipelined chan-
nels in each direction (North, East, South, West, and Processor). It

1 To reduce project risk, we have not focussed on low-power design in our
first experimental Raw prototype. However, its tiled, pipelined nature al-
lows application-specific orchestration of power, and we plan to undertake
a low-power design in a follow-on project.



The Raw Processor 5

sequences a 64-bit instruction that simultaneously specifies an opera-
tion (branch, no-op, or move) and 12 routes between these channels.
The static router’s local SRAM contains 8K of these instructions, and
is also virtualized in software. Like the instruction SRAM, the software
can also use a portion of the static router SRAM to store data with
predictable access patterns.

In order to route a value between two tiles on this network, one
inserts instructions on each intermediate node specifying the appro-
priate route. The static router allows single word messages to be sent
between tiles with a guaranteed relative ordering. The purpose of this
network is to connect the Raw tiles in a manner that can exploit both
ILP (instruction level parallelism) and streaming data parallelism. The
parallelizing Raw compiler, RAWCC [4, 3, 2, 1], uses these routers as
an operand network between the ALUs of the processors to parallelize
SpecFP 95 and multimedia applications.

The dynamic router uses a dimensioned-ordered wormhole routing
protocol to control two independent 32-bit pipelined channels in each
direction (North, East, South, West, and Processor). These channels
allow messages of up to 31 words (plus a header specifying the desti-
nation tile number, source tile number, message length, and type) to
be sent between tiles and outside of the chip. These messages take one
cycle per hop when going straight, and two cycles on turns. The proces-
sor dedicates one of these two dynamic channels to external communi-
cation: memory (i.e., cache misses), interrupts, and PCI transactions.
The other channel is utilized for user-level messaging between tiles. The
processor supports OS-level transparent deadlock recovery in the event
that the user over-commits the buffer resources of the network.

The pins of the chip are connected directly to the edges of the mesh
networks, and run at the speed of the chip. When a message is routed
off the side of the chip, it appears on the pins. Because the number of
network signals (38 signals x 4 networks x 16 tile-sides x 2 directions =
4864) exceeds the number of pins available, we transparently multiplex
the 2 static and 2 dynamic networks on each port down to one physical
channel. We also multiplex the middle two channels in the vertical
direction, which results in 14 channels, or 112 Gbits of bandwidth in
each of the output and input directions.

The Raw chip can be composed into power-of-two dimensioned
meshes, for systems of up to 64 chips. The system is virtualized in
such a way that this system will appear to the programmer to be ex-
actly like a single Raw chip of 64 times the size, except that certain
hops on the networks have an extra cycle (or two, for the shared middle
channel) of latency. This allows us a glimpse into the future: we can



6 Michael Taylor, Jason Kim, et al.

ascertain the scalability of our architecture as well as run applications
that are beyond the capabilities of modern day microprocessors.

Acknowledgments: The Raw project is funded by Darpa, NSF, and
the Oxygen Alliance. IBM is supporting the ASIC fabrication of Raw.

References

1. Anant Agarwal, Saman Amarasinghe, Rajeev Barua, Matt Frank, Walter
Lee, Vivek Sarkar, and Michael Taylor. The raw compiler project. In
Proceedings of the Second SUIF Compiler Workshop, Stanford CA, 1997.

2. Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agar-
wal. Memory Bank Disambiguation using Modulo Unrolling for
Raw Machines. In Proceedings of the ACM/IEEE Fifth Int’l Con-
ference on High Performance Computing(HIPC), Dec 1998. Also
http://www.cag.lcs.mit.edu/raw/.

3. Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal.
Maps: A Compiler-Managed Memory System for Raw Machines. In Pro-
ceedings of the 26th International Symposium on Computer Architecture,
Atlanta, GA, May 1999.

4. Walter Lee, Rajeev Barua, Matthew Frank, Devabhatuni Srikrishna,
Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe. Space-Time
Scheduling of Instruction-Level Parallelism on a Raw Machine. In Pro-
ceedings of the Eighth ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 46–57, San Jose, CA,
October 1998.

5. Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar,
Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev
Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring
It All to Software: Raw Machines. IEEE Computer, 30(9):86–93, Septem-
ber 1997. Also available as MIT-LCS-TR-709.


