The Raw Processor: A Scalable 32 bit Fabric forGeneral Purpose and Embedded Computing

Presented at Hotchips 13 On August 21, 2001 by Michael Bedford Taylor

(http://cag.lcs.mit.edu/~ mtaylor)

The Raw Processor

A Scalable 32 bit Fabric for General Purpose and Embedded Computing

Michael Taylor , Jason Kim, Jason Miller, Fae Ghodrat, Ben Greenwald, Paul Johnson,Walter Lee, Albert Ma, Nathan Shnidman, Volker Strumpen, David Wentzlaff, Matt Frank, Saman Amarasinghe, and Anant Agarwal

> MIT Laboratory for Computer Science http://cag.lcs.mit.edu/raw

Computer Architecture from 10,000 feet

class of computation

convenient physical phenomenon

... we use abstractions to make this easier

The Abstraction Layers That Make This Easier

Abstractions protect us from change -- but must also change as the world changes

Wire delay is crashing through the abstraction layers

Language / API Compiler / OS ISA	
Micro Architecture	Partitioning (21264) Pipelining (P4)
Layout	Timing Driven Placement
Design Rules	Fatter wires
Process	Deeper wires
Materials Science	Cu wires

The bottom line

How does Raw expose the resources?

We started with a blank sheet of silicon.

Expose the gates

N.	

Cut the silicon up into an array of 16 identical, programmable tiles.

What's inside a tile?

How do we expose the pins?

The Raw ISA scales

Raw is also backwards-compatible.

How well does Raw expose the resources?

Raw Chip (ASIC @225 MHz) 16 OPS/FLOPS per cycle 462 Gb/s of on-chip "bisection bandwidth " 201 Gb/s I/O bandwidth 57 GB/s of on-chip memory bandwidth

... but how are the resources going to be coordinated?

Raw: How we want to use the tiles

The Raw Tile network support

How does the main pipeline interface to the networks?

_	Tile pr	oc	essor	
	Computation	R	esources	
				in-
	4 32-bit me 2 static, 2	sh d	networks ynamic	
	5 stage static		2 stage dvnamic	
	router		router	
	Pipeline		pipeline	
	64 KB SMem			D-

Memory mapped networks are not first class citizens.

Instead, Raw's networks are tightly coupled into the bypass paths

How the static router works.

Raw Stats

IBM SA-27E .15u 6L Cu	
18.2mm x 18.2mm die.	
.122 Billion Transistors	
16 Tiles	
2048 KB SRAM Onchip	
1657 Pin CCGA Package	in the second
(1080 HSTL signal IO)	
~225 MHz	
~25 Watts	

For architectural details, see: http://cag.lcs.mit.edu/pub/raw/documents/RawSpec99.pdf

Enabler: The Raw Networks

The Raw ISA treats the networks as first class citizens, just like registers:

software managed, bypassed, encoding space in every instruction

Static Network :

routes compiled into static router SMEM
Messages arrive in known order

Latency: 2 + # hops Throughput: 1 word/cycle per dir. per network

Summary

Raw exposes wire delay at the ISA level. This allows the compiler to explicitly manage gates in a scalable fashion.

Raw provides a direct, parallel interface to all of the chip resources: gates, wires, and pins.

	en re En res				29,29 16,16
			adigat adi ga		
	100				
				の「日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	の言語
 Aller M M	AL SA		Aliga Aliga		
	and a second				

Raw enables the use of these gates by providing tightly coupled network communication mechanisms in the ISA.