
34th International Symposium on
Microarchitecture (MICRO-34), Austin,
TX, December 2001.

Direct Addressed Caches for Reduced
Power Consumption

Emmett Witchel, Sam Larsen, C. Scott Ananian and Krste Asanović

MIT Laboratory for Computer Science
{witchel, slarsen, cananian, krste}@lcs.mit.edu

Abstract. A direct addressed cache is a hardware-software de-
sign for an energy-efficient microprocessor data cache. Direct
addressing allows software to access cache data without a hard-
ware cache tag check. These tag-unchecked loads and stores
save the energy of a tag check when the compiler can guar-
antee an access will be to the same line as an earlier access.
We have added support for tag-unchecked loads and stores to
C and Java compilers. For Mediabench C programs, the com-
piler eliminates 16–76% of data cache tag accesses, with half of
the benchmarks avoiding over 40% of the data tag checks. For
SPECjvm98 Java programs, the compiler eliminates 18–63%
of data cache tag checks. These tag check reductions translate
into data cache energy savings of 9–40%, and overall processor
and cache energy savings of 2–8%.

1 Introduction

Reducing energy consumption is an important goal for processors that
will be used in battery-powered devices. Caches consume a large portion
of total energy in processors targeted at low-power applications. For ex-
ample, 16% of the total processor and cache power for the StrongARM
microprocessor is dissipated in the data cache [6].

Commercial low-power processors usually employ associative caches
[2, 6, 10, 13, 18]. For associative caches, a significant portion of the total
access energy is spent checking multiple tags to find where data resides
in the cache. For example, the highly-associative low-power cache de-
signs used by the StrongARM and Xscale processors expend over 50%
of the total cache access energy in the tag check [20].

In this paper, we propose a new hardware-software interface to re-
duce the energy cost of accessing cache data. Direct addressing allows

22 Emmett Witchel, Sam Larsen, et al.

software to access cache data without the hardware performing a cache
tag check. These tag-unchecked loads and stores save the energy of per-
forming a tag check when the compiler can guarantee an access will
be to the same line as an earlier access. If the compiler cannot deter-
mine this information, or if cache lines are evicted due to interrupts
or cache invalidations, direct addressing gracefully degrades back to
conventional tag-checked accesses.

We have implemented compiler support for direct addressing in the
SUIF C compiler [8], and in FLEX, a Java bytecode-to-native com-
piler [7]. We evaluate our compiler algorithms using C programs from
Mediabench, and Java programs from SPECjvm98. Our results show we
can eliminate 16–76% of all data cache tag accesses in C, and 18–63%
of data cache tags checks in Java. We have developed a detailed energy
model of a power-optimized microprocessor and caches. The reduction
in cache tag checks results in data cache energy savings of 9–40% in
C and 9–31% in Java. The total processor plus cache energy savings is
2–8%.

The paper is structured as follows. First we review current cache
design in Section 2. Section 3 describes the changes needed to imple-
ment direct addressing. General compiler algorithms to support direct
addressing are discussed in Section 4. The algorithms and results spe-
cific to C are described in Section 5, and the algorithms and results for
Java in Section 6. Section 7 compares direct addressing to hardware
schemes that remove tag checks. Finally, we discuss related work and
conclude.

2 Low-power cache designs

Figure 1 shows the structure of a conventional virtually-indexed, virtually-
tagged set-associative RAM-tagged cache (for brevity, only virtual caches
are considered here, but direct addressing can be applied to other types
of caches). An index taken from the virtual address is used to select a
set consisting of several ways, and the tag field of the virtual address
is compared against the tags in all ways to determine the location of
the data. An n-way associative cache performs n tag checks and n data
reads in parallel, discarding all but one of the data values depending
on the tag compares.

An alternative approach, used in many low-power microprocessors
[2, 6, 10, 13, 18], is to store the tags in content-addressable memory
(CAM). The tag is broadcast across the cache lines and only the line
whose tag matches has its data read out. The energy consumption of
a 32-way CAM-tag search is approximately the same as a 2-way set

Direct Addressed Caches for Reduced Power Consumption 23

= =

Tag Index Offset HIT? Word

tag status data tag status data

Fig. 1. A set-associative RAM-tag cache.

tag status data

Tag Offset

HIT?

Word

Fig. 2. A highly-associative CAM-tag cache subbank.

associative RAM-tag search [20, 2] but has lower miss rates. Caches
are often subbanked to save energy and reduce delay, and a CAM-tag
cache subbank is shown in Figure 2. Although CAM-tag caches reduce
miss rates and hence total absolute memory access energy, they expend
relatively greater energy in tag checks. Detailed HSpice simulations of
a 16KB CAM-tagged data cache divided into 1KB subbanks, shows
that the tag check consumes 54% of cache energy for loads and 43% for
stores.

For both RAM and CAM tag caches, searching tags is expensive.
If we could shortcut the process, by letting software tell the hardware
in which way the line is located, we could save significant energy. The
problem is how to let software directly access cache lines without com-

24 Emmett Witchel, Sam Larsen, et al.

promising inter-process protection and while preserving correct opera-
tion in the face of cache replacements or other cache coherence actions.

3 Direct addressing

16 (Sign extended)

Instruction lwlda offset

32

r1

Register
File

r2

Data

32

Offset
Calculation

3 bank 18 tag

Hit?

CAM
Tag Stat

5 o

Data cache RAM

Direct Address
Registers (DARs)

ffset

da2

Fig. 3. A CAM-tagged data cache with direct addressing. The lwlda instruc-
tion causes da2 to memoize the location of the data. A subsequent lwda that
used da2 would not power up the CAM bank on the left, but use the shaded
DAR to pick this line.

Our approach to eliminating tag checks is to let software tell the
hardware to remember the location of a cache line, so when software
accesses the line again, hardware can access the data directly without
searching tags. We augment the processor state with some number of
direct address registers (DARs). These registers are set and used by
software, and contain enough information to specify the exact location
of a cache line in the cache data RAM as well as a valid bit. The
exact width and data layout of the DARs is hidden from software to
avoid exposing the implementation-dependent structure of the cache.
In particular, software is only made aware of the length of a cache line,
but not the total cache capacity or associativity.

Table 1 shows the instruction extensions for using DARs. Software
places values in the DARs as an optional side-effect of performing a
load or store. A tag-unchecked load or store specifies a full effective
virtual address in addition to a DAR number. If the DAR is valid,
its contents are used to avoid a tag search; if it is invalid, hardware

Direct Addressed Caches for Reduced Power Consumption 25

Instruction Explanation

(l|s)wlda rt, off(rs), da

Load or store word, load direct ad-
dress. Perform regular load or store,
and also set the direct address reg-
ister da to the location of the refer-
enced line.

(l|s)wda rt, off(rs), da

Load or store word, using direct
address. Data from the cache line
pointed to by da is transferred to
register rt (or the contents of rt is
stored into the line specified by da).
The line offset bits of rs + off are
used to pick the proper word in the
line. If da is invalid, the instruction
acts like (l|s)wlda, accessing mem-
ory and setting the da register.

jr.dainv rs, da mask

Jump register and invalidate direct
address registers. It acts like a jump
register instruction, and also clears
the valid bit on the DARs specified
in the bitmask. It is used on function
return to invalidate the DARs used
by the function.

Table 1. A table of instruction set extensions for manipulating direct address
registers. MIPS is the base ISA and a machine with 8 DARs is described.
Only word accesses are shown, but half-word and byte accesses are handled
analogously.

falls back to a full tag search using the entire virtual address. The
implementation described here uses a separate DAR specifier in each
instruction, which takes 3 bits from the 16-bit immediate offset. An
alternative encoding is to implicitly associate a DAR with some set of
base registers, which reduces ISA changes at the cost of complicating
compiler register allocation. We do not consider this option further in
this paper.

Direct addressing is only used for data caches. Instruction caches
have very regular access patterns and are only accessed via the pro-
gram counter, and hence are amenable to software-invisible micro-
architectural techniques to remove tag checks [16, 18, 19].

As an example, consider the function entry code in Figure 4, and a
transformation of that code using direct addressing. The swlda instruc-
tion sets up the da0 DAR, which is then used by the following swda

26 Emmett Witchel, Sam Larsen, et al.

instructions to eliminate cache tag checks. Note that no additional in-
structions were added and that performance is identical.

Old Code New Code

sub $sp,64 sub $sp,64

sw $ra,60($sp) swlda $ra,60($sp),$da0

sw $fp,56($sp) swda $fp,56($sp),$da0

sw $s0,52($sp) swda $s0,52($sp),$da0

Fig. 4. Example function entry code transformed to use DARs.

3.1 DAR implementation

At minimum, a DAR need only record the matching way within the
cache set. In this case, the effective address is used to obtain the sub-
bank number, the set index, and the offset within the cache line. In
some implementations, however, it will be advantageous to also record
subbank and set index information in the DARs and to physically dis-
tribute the DARs among the cache subbanks. This avoids recalculat-
ing and retransmitting these portions of the virtual address for tag-
unchecked accesses.

The DARs incur additional area, energy, and delay overheads. The
primary energy penalty is the parasitic load of the DARs on the signal
lines driving the cache, but this should be a negligible fraction of overall
cache access energy. The delay penalty is a single mux to select either
one of the DARs or the normal cache access signal.

For a RAM-tag cache, the DARs can record way hit/miss informa-
tion locally in each way (each way is a subbank). For a tag-unchecked
access, the DAR specifier is broadcast to the ways, which replay the
hit/miss information recorded in the local DAR latches without per-
forming a tag check. The area and energy overhead of the DAR bits
is small compared to the cache itself. The delay penalty is only a frac-
tion of a gate delay as the DAR hit/miss signal can be folded into the
existing precharged tag comparator.

For a CAM-tag cache, a DAR would be implemented as a unary
bit vector with a single bit set on the matching row. Each cache row
would locally store one bit per DAR. The DARs would be written
with the local hit/miss signals generated by the CAM tag in each row.

Direct Addressed Caches for Reduced Power Consumption 27

For regular accesses, the parasitic energy overhead of the DARs is small
because at most only one row’s hit signal transitions high and one row’s
hit signal transitions low on any search. There is an additional energy
cost to writing a DAR, where the DAR clock line has to transition high
and low, but this overhead is small compared to the saving from not
driving multiple bits of address across the tag array when the DAR is
next used. As with the RAM-tag cache, the delay penalty is small if the
DAR hit/miss signal is folded into the precharged match comparator.

3.2 DAR coherence

The DARs must be kept coherent with the state of the cache. If a line
pointed to by a DAR is evicted, the DAR contents are no longer valid
and cannot be used in a tag-unchecked access. Lines may be evicted
either as a result of cache line replacement, or by external invalidate
requests to maintain cache coherence with other processors or DMA
I/O traffic.

To maintain coherence, each DAR can be tagged with the address
of the cache line to which it points. On any eviction, the DAR tags are
searched associatively and matching DARs are invalidated. The next
use of an invalid DAR will cause a regular tag-checked access (which
will usually miss). The DAR address tags need hold only a portion of
the entire address allowing only a partial compare against the victim
address, trading off some additional spurious invalidations for reduced
complexity. In the extreme case, the DAR tags can be omitted with all
DARs invalidated on any eviction.

The validity of the DARs can be checked right after the instruction
decode of a tag-unchecked access. If the register is not valid, the access
is converted into a regular tag-checked access early in the instruction
pipeline, well before reaching the memory access stage. This avoids any
additional memory access latency for checking valid bits.

4 Compiler algorithms for using DARs

Direct addressing has been implemented in two compiler systems, a
SUIF-based C compiler and the FLEX Java native compiler. This sec-
tion describes compiler algorithms common to both systems.

Both compilers use the same two step approach to eliminate tag
checks with direct addressing. First, find two references, one of which
dominates the other, so all paths that cause the subordinate access to
be executed cause the dominant reference to be executed first. Second,

28 Emmett Witchel, Sam Larsen, et al.

prove that the two references always point to the same cache line. The
second reference can then skip the tag check, by having the dominant
reference write a DAR that the subordinate reference reads. Any other
code between the two references, including assignments, control flow,
or even function calls, can not affect correctness because hardware will
invalidate DARs that point to lines that get evicted between the defi-
nition and the use of a DAR (as discussed in Section 3.2 above).

Both compilers control the stack pointer, ensuring it remains aligned
to a cache boundary to simplify the determination of when two stack
variables are on the same cache line. This allows easy transformation of
function entry/exit code (as in Figure 4), spill code, parameter passing
code, and access to automatic variables. The C and Java compilers
use different methods to determine if two references to non-stack data
(heap and static data) are to the same cache line. These are discussed
in Sections 5.1 and 6.1 respectively.

4.1 DAR allocation

Each dominant reference with at least one subordinate reference to
the same cache line is marked as a candidate for a DAR. The DAR
allocation problem is an instance of the standard register allocation
problem — DAR candidates that are live at the the same program
point interfere and need to be allocated to different hardware DARs.
DAR allocation is simpler than processor register allocation because
DARs can not be spilled. Instead of spilling, a DAR is simply not
allocated to a problematic DAR candidate.

The metric of utility we use for allocation is the number of tag
checks eliminated by a certain DAR candidate minus the number of
tag checks eliminated by the DAR candidates with which it interferes.
This causes small, non-interfering ranges to get good coverage, and the
most important variables in regions of heavy DAR use are prioritized.

4.2 DARs and calling conventions

The compilers analyze one function at a time, and the DARs are caller
invalidated—at function exit, the compiler invalidates the DARs used in
the function. If a function has a DAR live (say da3), and it makes a func-
tion call, the called function might invalidate da3, forcing a tag check on
the use of that register. To reduce the impact of inter-procedural DAR
invalidates, we randomly permute the DAR numbers used by the allo-
cator. So one function might use registers in the order 7,2,3,6,0,5,1,4,
another in the order 5,1,0,7,2,6,4,3.

Direct Addressed Caches for Reduced Power Consumption 29

Random permutation is much simpler than inter-procedural analy-
sis, and makes collisions between register numbers much less likely than
if every function used the same order. Interference is very low, and is
quantified for C programs in Table 2 and for Java programs in Table 3.

5 C compiler implementation

We employ alignment and distance analysis for C to determine if two
references are to the same cache line. This section first describes align-
ment and distance analysis in our C compiler, and then discusses the
results of our experiments.

5.1 Alignment analysis in C programs

Alignment analysis attempts to determine the address alignment of
each static memory reference relative to a cache line boundary. A value
of 24 would indicate that the associated memory reference always ac-
cesses an address that is 24 bytes offset from the start of the cache line.
A load or store instruction is considered aligned when its cache align-
ment is the same for each dynamic execution of the instruction. For
instance, a global scalar resides in a static memory location and there-
fore always occupies a set alignment within the cache. For the majority
of memory operations however, this will not be the case. Consider the
loop in Figure 5(a). Here, the store instruction will access sequential
cache locations in each loop iteration and is therefore unaligned.

In order to increase the percentage of aligned memory operations,
our compiler performs a series of alignment-increasing transformations.
One of the most important is loop unrolling. The code in Figure 5(b)
shows the original loop with unrolling. After unrolling the loop by a
factor consistent with the size of the cache line, we can guarantee that
each memory operation in the loop only accesses the cache with a cer-
tain alignment. This is the case in our example assuming that A is an
array of 64-bit data, and the cache line size is 32 bytes.

Since inner loops comprise the majority of dynamically executed
instructions, it is very important that we uncover as much alignment
information as possible from the body of an inner loop. Loop unrolling is
effective for array references when the array is a local or global variable.
However, if the array in Figure 5 is passed as an argument to the
enclosing function, then loop unrolling does not enable the analysis to
guarantee alignment for the memory references within the loop since
the base of the array is unknown. Even worse is the case when the base

30 Emmett Witchel, Sam Larsen, et al.

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
A[i] = 0; if (&A[i]

} % line_size == 0)

break;

(a) A[i] = 0;

}
for(i=0; i<N; for (; i<N; i += 4) {

i += 4) { A[i + 0] = 0;

A[i + 0] = 0; A[i + 1] = 0;

A[i + 1] = 0; A[i + 2] = 0;

A[i + 2] = 0; A[i + 3] = 0;

A[i + 3] = 0; }
}
(b) (c)

Fig. 5. (a) A simple loop with a single memory reference. (b) After loop
unrolling. (c) A pre-loop inserted to guarantee alignment in the unrolled
loop body.

of the array is actually aligned differently for different invocations of
the function.

To overcome this limitation, our compiler inserts a pre-loop that
runs for a small number of iterations until the references within the loop
reach a known alignment. The code then jumps to an unrolled version of
the loop where the alignment of references within the unrolled body are
guaranteed (Figure 5(c)). Using this technique, the alignment analysis
can determine the alignment for the majority of dynamically executed
memory accesses. In order to limit the number of pre-loop iterations
that are executed, our compiler also uses profile-driven feedback to
determine the best conditions to begin execution of the unrolled loop.

One disadvantage of using loop unrolling to obtain alignment infor-
mation is that too much unrolling can increase I-cache pressure [11].
We did not measure the impact of this effect.

5.2 Distance analysis

Distance analysis attempts to determine the byte distance between the
addresses of two static memory references. The algorithm is imple-
mented as a dataflow analysis that operates on low-level address cal-
culations. If the difference between address calculations is a constant,
then we know the distance between the references.

Direct Addressed Caches for Reduced Power Consumption 31

In the initial compiler passes, when array accesses are represented
at a high level, we tag them with their source array to aid in distance
analysis. We use this tag once the array access has been decomposed
into pointer manipulation. For accesses of the form A[i] and A[i + c],
our tagging allows us to compute the distance as c. This pattern occurs
very frequently in unrolled loops.

We deal with aliasing using local information. To be conservative,
we assume a pointer variable can point to any globally visible address.
So a DAR definition and use will not span a pointer store to a base
with a globally visible address.

Once we know the distance, we can use the alignment to determine
if two references are to the same cache line. We find the alignment of the
dominant reference relative to the cache line boundary and then find
the distance between the subordinate access and the dominant access.
Simple arithmetic indicates if the references are on the same cache line.
An important special case is when the distance is 0, in which case we
do not need to consult the alignment information.

5.3 C evaluation

We used the SUIF compiler [8] to output instrumented C code. It acts
like a C compiler with C as its target architecture. A disadvantage of
this approach is that the instrumented C code does not capture stack
references for function entry/exit, spill code and parameter passing.
This will tend to underestimate the benefit of direct addressing as stack
references provide many direct addressing opportunities, as quantified
below in the Java evaluation.

The instrumented code has loops unrolled and is augmented with
statistics gathering code. Every load and store in the program is an-
alyzed and converted into a function call to our model. We verify at
runtime that our static analysis was accurate.

5.4 C results

Figure 6 shows how many tag checks were eliminated for loads and
stores for the Mediabench programs. From the number of tag checks
eliminated, we computed the D-cache energy savings based on our ex-
tracted layout for the cache [15]. This model has tag search consuming
54% of a load and 43% of a store, broken down further into 10%/8%
(load/store) for address bus, 25%/40% for data access, and 11%/9%
for data bus.

32 Emmett Witchel, Sam Larsen, et al.

g721_de
g721_en

untoast
osdemo

mipmap
toast unepic

peg_en
cjpeg

texgen
peg_de

mpeg2_de
rasta pgp_de

c_audio
d_audio

djpeg
pgp_en

mpeg2_en
epic

D$e sav
unchk

0

50

100
M

em
or

y
re

fe
re

nc
es

 (
no

rm
al

iz
ed

)

unchk ld unchk st chk ld chk st
 76.5%
 39.7%

 76.2%
 39.6%

 75.0%
 37.1%

 65.7%
 33.1%

 57.2%
 28.5%

 52.8%
 27.6%

 46.2%
 22.3%

 43.2%
 22.2%

 41.5%
 21.2%

 39.3%
 19.7%

 37.5%
 19.2%

 37.0%
 19.2%

 33.7%
 17.2%

 29.1%
 14.8%

 25.1%
 13.0%

 25.0%
 12.5%

 24.0%
 12.0%

 23.6%
 12.0%

 16.8%
 9.0%

 16.5%
 8.7%

Fig. 6. Tag check elimination for Mediabench programs compiled by SUIF,
using 8 DARs. The lowest part of the bar is tag unchecked loads, then
unchecked stores. Over that are tag checked loads and stores. The num-
ber on top of each bar (unchk) is the percentage of tag checks eliminated.
The number under that (D$e sav) is the percentage of dcache energy saved
by eliminating the checks.

The results vary widely, with over 76% of checks eliminated for
g721 decode (39.7% savings in data cache energy), down to 16.5% for
epic. Direct addressing saves some energy on every application and even
the small 8.7% energy savings on epic is likely to be larger than any
overhead direct addressing introduces.

One reason for the spread is that some codes are more difficult to
analyze, mostly due to pointer manipulation. One example is mpeg2 de-
code, for which the compiler was unsuccessful on the code as distributed
with Mediabench. The code had one key loop which was manually un-
rolled, with a key matrix traversed in column-major order. By making
four small edits to the source code to express the loop in a natural way,
and to traverse the matrix in row-major order (which is also better for
cache performance), the percentage of tag checks eliminated went from
6.2% to 37%.

Table 2 shows the data cache energy saved, and also the energy sav-
ing for the whole processor core including instruction and data caches.
The energy consumption of the data cache relative to the entire core is
highly dependent on the implementation. Our core design is highly opti-
mized for low-power, consuming 100–250pJ per instruction at 300MHz
in a 0.25µm technology (<100mW). For our design, we measured av-
erage data cache tag energy at 10% of the total core energy for Medi-
abench [15].

Direct Addressed Caches for Reduced Power Consumption 33

Benchmark D$e− P+I 0off 8DAR f() r/w # inst # ld # st input
+De− lim

g721 de 39.7% 7.9% 11.6% 0.0% 0.0% 5.0 568719607 27155521 4567915 clinton.pcm
g721 en 39.6% 7.9% 12.0% 0.0% 0.0% 4.8 602714433 28470293 4557182 clinton.g721
untoast 37.1% 7.4% 2.7% 0.0% 0.0% 7.1 164673415 5211304 2741109 clinton.pcm
osdemo 33.1% 6.6% 6.0% 0.1% 0.2% 6.0 17768196 1005300 375520 out.ppm
mipmap 28.5% 5.7% 4.1% 0.0% 1.1% 5.6 50705063 3728696 1677708 out.ppm
toast 27.6% 5.5% 21.2% 28.0% 0.0% 11.6 325450576 33490458 4344146 clinton.gsm
unepic 22.3% 4.5% 40.8% 0.0% 0.0% 2.1 16471762 816031 676550 test image.E
peg en 22.2% 4.4% 61.4% 5.9% 0.0% 3.3 84217188 6191963 1415461 pgptest.plain
cjpeg 21.2% 4.2% 10.0% 1.9% 0.9% 5.9 35620933 2949426 758928 testimg.ppm
texgen 19.7% 3.9% 19.9% 2.1% 0.4% 2.2 146657184 9933559 3960265 out.ppm
peg de 19.2% 3.8% 72.3% 0.2% 0.4% 2.9 46589722 3508783 818128 pegwit.enc
mpeg2 de 19.2% 3.8% 3.5% 0.0% 0.0% 2.7 270350477 19967230 3440148 mei16v2.m2v
rasta 17.2% 3.4% 35.5% 2.7% 0.0% 2.6 30132991 2866589 802709 map weights.dat
pgp de 14.8% 3.0% 70.6% 2.9% 0.1% 1.8 16299047 905321 287437 pgptext.pgp
c audio 13.0% 2.6% 0.1% 0.0% 0.0% 13.7 18686936 443006 74056 clinton.pcm
d audio 12.5% 2.5% 0.1% 0.0% 0.0% 13.7 17259137 369246 147816 clinton.adpcm
djpeg 12.0% 2.4% 14.4% 0.6% 0.3% 3.0 8882489 755752 305428 testimage.jpg
pgp en 12.0% 2.4% 68.2% 2.0% 0.1% 1.8 28908438 1423749 428303 pgptest.plain
mpeg2 en 9.0% 1.8% 2.7% 0.0% 0.0% 5.6 3587002898 235379785 5349441 options.par
epic 8.7% 1.7% 24.7% 0.0% 0.0% 3.3 118204938 5971476 542458 test image.pgm
average 21.4% 4.3% 24.1%

Table 2. D$e− is the data cache energy saved from eliminating tag checks.
P+I+De− is the energy saved for the processor plus instruction and data
caches. 0off shows the percentage of tag unchecked accesses where the domi-
nant and subordinate accesses were to the same address. f() shows how many
tag checks happened as a result of function calls invalidating DARs. r/w gives
the ratio of DAR reads to DAR writes. # inst gives the number of SUIF in-
structions executed by the benchmarks, and ld/st give the number of loads
and stores.

The Table clearly shows the importance of offset information. While
the results vary across benchmarks, most of the benefit of the DARs is
not just from the program reusing the same location (0off column).

Our initial experiments indicated that 8 DARs captured most direct
addressing opportunities across a range of benchmarks. The 8DARlim
column shows how many more tag checks could be eliminated with an
unlimited number of DARs versus the 8 used for the rest of the results.
We compute this number by emitting liveness information for DAR
candidates and doing post-hoc optimal register allocation. Only toast
is able to soak up many more tag checks with more registers (it can
profitably use 44). Every benchmark could make use of at least two
DARs. Random permutation of register numbers makes the interfer-
ence of function calls very small, as seen in the f() column. Finally, we
see that each DAR value written is usually reused several times (r/w
column), sometimes over 13 times, but averaging around 2–3 times.

34 Emmett Witchel, Sam Larsen, et al.

6 Java implementation

Java bytecodes are normally interpreted directly or fed to a just-in-
time compiler, but instead we used the FLEX compiler to compile Java
bytecodes to MIPS assembly code. Java-to-native compilation is a good
alternative for low-power environments if Java’s dynamic loading ca-
pabilities are not usually needed, as the code can be highly optimized
for low energy consumption.

The FLEX implementation used the same dominance analysis and
DAR allocation algorithms as the SUIF implementation. The following
sections first describe how heap memory references are mapped onto
cache lines for Java programs, and then discuss the results of our ex-
periments.

6.1 Object identity in Java programs

Our approach to finding references to the same cache line is different in
Java than it was in C. Java’s type-safety and object-orientation means
there is additional pointer information available to the compiler.

All memory for Java objects comes from the system allocator. We
modify the memory allocator to ensure that small objects are never
split across cache lines and that larger objects are always aligned to the
start of a cache line. The compiler can then simply determine cache-line
equivalence based on object type and member field offset. This deter-
mination is performed on a very low-level representation just prior to
instruction selection, so even access to object header words (like the
class descriptor and hashcode) are visible to this “cache-line equiva-
lence” analysis. This modified allocation policy potentially introduces
fragmentation, which the allocator could deal with, e.g., by tracking
“holes” and filling them in with small objects.

This type-based analysis is very simple, but accounts for a large
number of eliminated tag checks in strongly object-oriented bench-
marks like jess or jack. For more traditionally coded benchmarks, such
as compress, there is need for further cache-line equivalence analysis of
indexed array operations.

As with the C implementation, loops are unrolled in Java to ex-
pose more direct addressing opportunities. The unrolling strategy in
Java is simpler: each loop which mentions an array is unrolled C/E
times, where C is the cache line length, and E is the element size of
the array with the smallest elements in the loop. This may over-unroll
some loops, but guarantees that almost all the direct addressing op-
portunities are exposed. If the first element accessed in the loop is not

Direct Addressed Caches for Reduced Power Consumption 35

cache-line aligned, extra checks are placed within the unrolled loop to
catch cache-line boundary crossings.

To further expose direct addressing opportunities and improve per-
formance, the FLEX compiler inlines small final methods.

6.2 Java evaluation

FLEX outputs the MIPS instruction extensions for direct addressing
(Table 1). Due to the limited number of offset bits in the instruction
encoding, some loads (that use the global pointer) take one instruction
while some loads (to data that is further than 32KB from any register)
take two instructions. The GNU assembler was modified to accept these
instructions, and our extended MIPS ISA simulator models the state
of the DARs (with dynamic correctness checks of DAR use). The Java
runtime is written in C, and was compiled with gcc 2.7.2 with a MIPS
target. The runtime is linked with the assembled Java code to give a
MIPS binary that is run on the simulator.

The Java garbage collector was disabled for all runs. The collector,
like the runtime, is written in C. The collector moves large amounts
of data in memory with exact knowledge of object size and alignment,
and so we expect that it could make heavy use of direct addressing.
Modifying the collector was beyond the scope of these experiments,
but including the modified collector should only improve the relative
benefits of direct addressing.

Instead of modifying the system memory allocator to ensure cache
alignment of heap data, we instead used conventional malloc and mod-
ified our checking code to ensure that all references are to the same
32-byte block of memory regardless of alignment.

6.3 Java results

Table 3 shows the percentage of tag checks eliminated for Java
SPECjvm98 programs. Unlike our C evaluation, we ran each Java bi-
nary on the detailed energy simulator [15] to get exact energy dissipa-
tion numbers (except for mpegaudio which ran for too long and was
estimated at 10%, as with the C benchmarks). Data cache tag check
energy consumption was computed to be almost exactly 10% for ev-
ery benchmark except raytrace, which has many memory accesses, and
dissipates 13% of its energy in data cache tag checks.

The nSP column shows how many of our eliminated tag checks are
to non-stack memory accesses. Most of the stack accesses are function
entry/exit, and these are easy for the compiler to transform. The data

36 Emmett Witchel, Sam Larsen, et al.

Benchmark ntag D$e− Te− nSP 0off f()

jess 62.8% 31.0% 6.2% 12.6% 2.0% 1.3%

jack 58.2% 28.0% 6.1% 43.3% 15.9% 0.4%

raytrace 56.7% 27.6% 7.6% 4.7% 0.6% 0.1%

compress 53.4% 26.3% 5.5% 26.4% 4.8% 1.2%

db 51.8% 25.7% 5.5% 5.2% 2.1% 1.6%

mpegaudio 18.0% 9.3% 1.8% 50.3% 25.2% 1.2%
Table 3. All benchmarks were run with -s10, which is the middle sized spec
input. ntag is the number of data cache tag accesses eliminated. D$e− is the
data cache energy saved from these eliminated tag checks. Te− is the energy
saved for the processor plus instruction and data cache. nSP is the percentage
of memory references that were tag unchecked, but did not reference the
stack. 0off is the percentage of tag checks eliminated whose dominant and
subordinate reference were to the exact same address. f() is the percentage
of tag checks caused by having a function call invalidate a live DAR.

jess jack
raytrace

compress db
mpegaudio

d$e sav
unchk

0

50

100

M
em

or
y

re
fe

re
nc

es
 (

no
rm

al
iz

ed
)

unchk ld unchk st chk ld chk st

 62.8%
 31.1%

 58.2%
 28.0%

 56.7%
 27.6%

 53.4%
 26.3%

 51.8%
 25.7%

 17.9%
 9.3%

Fig. 7. Tag check elimination for SPECjvm98 programs compiled by FLEX
using eight DARs.

for Java shows that stack references are about half (46–79%) of all
memory references for SPECjvm98, and our analysis eliminates 67–
82% of tag checks for these references. This gives an indication of the
expected improvement if stack accesses were included in the SUIF C
evaluation.

Direct Addressed Caches for Reduced Power Consumption 37

Table 3, like Table 2, shows the necessity of offset information. The
number of zero offset references (where the dominant and subordinate
access are to the same location) is lower in Java than in C because much
of the tag check elimination comes from stack accesses on function entry
and exit. These accesses load or store registers to sequential locations
on the stack.

The f() column is the percentage of accesses that have to be tag
checked because a function call between a DAR definition and use in-
validated the DAR. As with our C benchmarks, random permutation
of DAR numbers keeps this interference low.

Finally in Table 4, the mSP column shows that by ignoring spill
code and parameter accesses, we are not missing a major opportunity.
The generally low numbers indicate that the register allocator is not
doing excessive spilling.

Mpegaudio sticks out because there is excessive spilling in this
benchmark. Transforming the spill code to use direct addressing would
get us a large part of the 52.0% of stack references which are not being
analyzed. This would bring mpegaudio into the 50–60% tag elimination
range of the other applications.

In order to transform spill code, we would generalize our direct
register analysis and allocation to work on the post-register allocated
version of the program (all the needed information is still available in
FLEX).

Benchmark Jinst Jrefs JavaSP RunSP mSP # inst # ld # st
jess 44.6% 45.9% 66.2% 59.1% 0.5% 386362871 74217394 38927873
jack 60.0% 51.6% 45.2% 55.1% 4.4% 742795569 97902751 83399493
raytrace 19.1% 12.8% 79.7% 26.2% 6.9% 711506624 121545307 87011062
compress 99.7% 99.5% 49.3% 11.4% 1.8% 1995067192 318765365 182481314
db 63.7% 49.2% 53.9% 55.2% 0.2% 229082873 36830775 17634446
mpegaudio 7.9% 4.6% 62.9% 24.4% 52.0% 3798725510 860533959 164886641

Table 4. All benchmarks were run with -s10, which is the middle sized spec
input. Jinst is the percentage of instructions executed in Java code. The
remainder executed in the runtime. Jrefs is the percentage of memory ref-
erences issued in Java. JavaSP is the percentage of Java memory references
that are to the stack. RunSP is the percentage of memory references made
to the stack by the Java runtime. mSP is the maximum possible contribu-
tion to the tag unchecked references if we converted every remaining stack
access–namely spill code and parameter access. # inst/ld/st are the num-
bers of instructions, loads and stores from the Java code, not including the
runtime.

38 Emmett Witchel, Sam Larsen, et al.

7 Comparison with hardware tag-check
elimination schemes

In this section, we compare our direct addressing scheme for eliminating
tag checks at compile time with dynamic hardware alternatives that are
invisible to software. One approach is for the hardware to remember
the tag of the last cache line that was accessed and to compare this
against the tag of the next memory access before enabling the tag
search [2]. The main disadvantage of this scheme is that it adds a wide
tag compare into the critical path of every cache access, adding several
gate delays to this latency-sensitive path. A variant of this scheme is to
remember the last line accessed within each cache subbank, and only
power up cache tags if a different line is accessed within each subbank.

Table 5 compares results for the C and Java benchmarks using these
two schemes. Using 8 DARs usually removes more tag checks than a
hardware single last line buffer without the additional access latency,
although with pgp the hardware scheme is significantly better. The
hardware and software techniques can be combined, with the last line
buffer used in cases where the DARs were not specified or unsuccessful.
In this case, accesses will incur the additional cache access latency of the
hardware scheme. The results in the fourth column of Table 5 show that
combining the techniques usually does better than using each alone,
indicating that they are capturing different types of cache line reuse.

The fifth column in Table 5 shows the results for the per-subbank
last line buffer (16 subbanks). This removes many more tag checks than
the previous schemes, but requires an extra tag comparator in each
subbank and incurs the additional memory access latency. Finally, the
sixth column shows the effect of adding 8 DARs to the per-subbank last
line buffers. Here, there is little additional benefit (except for mipmap)
as the hardware scheme has captured most of the available cache line
reference locality.

The results for the Java benchmarks are similar, with the hardware
last line scheme eliminating roughly the same number of tag checks
as the 8 DAR scheme, but with the additional memory access latency.
There is a smaller benefit to combining the hardware and software
schemes for the Java programs, because the DARs only give benefit to
the hardware schemes where the analysis was successful, as in jess and
jack. Again, the per-subbank last line scheme performs well, removing
80–90% of all tag checks.

Direct Addressed Caches for Reduced Power Consumption 39

Program 8 DAR last ln last ln ll-sub ll-sub
+ 8 DAR + 8 DAR

C Benchmarks

g721 de 76.5% 73.5% 82.1 +08.6% 98.4% 98.4 +00.0%

g721 en 76.3% 73.2% 81.7 +08.5% 98.4% 98.4 +00.0%

untoast 75.0% 39.6% 82.3 +42.7% 97.3% 97.5 +00.2%

osdemo 65.7% 47.8% 75.6 +27.8% 86.4% 88.4 +02.0%

mipmap 57.2% 22.5% 64.6 +42.1% 60.1% 85.7 +25.6%

toast 52.9% 15.0% 87.7 +72.7% 91.4% 98.5 +07.1%

unepic 46.2% 57.0% 71.2 +14.2% 81.0% 83.9 +02.9%

peg en 43.2% 27.6% 46.6 +19.0% 65.5% 67.6 +02.1%

cjpeg 41.5% 17.5% 50.0 +32.5% 74.5% 79.6 +05.1%

texgen 39.3% 36.4% 56.2 +19.8% 78.4% 83.7 +05.3%

peg de 37.5% 19.4% 41.2 +21.8% 59.0% 62.0 +03.0%

mpeg2de 37.1% 7.7% 40.4 +32.7% 84.9% 86.1 +01.2%

rasta 33.7% 19.1% 43.9 +24.8% 81.0% 85.8 +04.8%

pgp de 29.2% 46.1% 57.2 +11.1% 89.8% 91.4 +01.6%

c audio 25.1% 0.1% 25.1 +25.0% 65.1% 68.8 +03.7%

d audio 25.1% 0.1% 25.1 +25.0% 58.1% 61.7 +03.6%

djpeg 24.0% 17.2% 30.5 +13.3% 64.5% 67.5 +03.0%

pgp en 23.6% 54.5% 67.6 +13.1% 95.4% 96.8 +01.4%

mpeg2en 16.8% 7.9% 22.1 +14.2% 88.7% 89.6 +00.9%

epic 16.5% 8.9% 19.1 +10.2% 70.7% 72.4 +01.7%

Java Benchmarks

jack 58.2% 54.6% 66.0 +11.4% 88.9% 90.7 +01.8%

raytrace 56.7% 66.9% 68.2 +01.3% 90.3% 90.7 +00.4%

compress 53.4% 54.8% 61.6 +06.8% 80.9% 82.3 +01.4%

jess 62.8% 58.2% 73.6 +15.4% 84.2% 87.7 +03.5%

db 51.8% 50.0% 62.5 +12.5% 81.2% 83.9 +02.7%

mpgaudio 18.0% 27.8% 36.5 +08.7% 81.4% 83.5 +02.1%

Table 5. Tag checks eliminated by 8 direct address registers (DARs), by
a last line hardware tag compare (last ln), by adding 8 DARs to a single
line buffer, by per-subbank last line buffers (ll-sub) with 16 subbanks, and
by adding 8 DARs to the subbank last line buffers. The hardware last line
schemes add the latency of an additional tag compare to all memory opera-
tions.

40 Emmett Witchel, Sam Larsen, et al.

8 Related work

The ARM instruction set includes load/store multiple instructions that
can be used to avoid tag checks for sequential accesses to the same
cache line [18]. These instructions are typically only used for procedure
call/return, whereas our model allows significantly greater flexibility.
For example, the results we presented for the C Mediabench code were
for non-stack accesses which are much less amenable to load/store mul-
tiple.

Some researchers [2, 14] have described hardware L0 caches designed
for low power access. These schemes have performance impacts, whereas
the direct addressing scheme does not affect performance. Direct ad-
dressing can also be combined with some of these hardware schemes to
save further power.

Other researchers [4, 9, 17] have developed software caching schemes
that use compile-time information to reduce software tag checks. Flex-
Cache [17] adds HotPage registers, which are similar to DARs except
they also hold a tag along with the direct address. They are used as
a small compiler-managed hardware tag array for a software associa-
tive cache. The HotPage-likely compiler analysis implements static soft-
ware way-prediction to index the likely HotPage register holding the
translation for a given memory access. The speculation is checked by
a hardware compare of the virtual address with the HotPage tag. The
authors mention that an additional optimization, HotPage-predictable
analysis [4], could avoid this tag check but do not include compiler al-
gorithms or results. In contrast, our work removes tag checks from a
hardware associative cache scheme with no performance penalty, and
our compiler analysis avoids tag checks by statically guaranteeing two
accesses are to the same line.

Fisher [12] and Ellis [3] were the first to use loop unrolling to im-
prove the alignment of memory references in a loop body. Their work
was done in the context of a clustered VLIW in which main memory
was divided among separate banks. Their architecture supported a fast
path to memory when data were located on a cluster’s local memory
bank. Alignment of memory operations was therefore an important fac-
tor in machine performance.

Barua et al. expanded on these ideas and introduced Modulo Un-
rolling [1]. This work introduced precise equations for determining the
unroll factors for loop nests. In Modulo Unrolling, outer loops may be
unrolled to create aligned references outside the inner loop. This work
was done in the conext of the RAW machine [5] in which processor
memory is distributed across processing tiles. As is the case with the

Direct Addressed Caches for Reduced Power Consumption 41

clustered VLIW, access to a local bank is faster than access to a remote
bank.

9 Conclusions

Direct addressed caches provide a new hardware-software interface to
use energy of cache accesses. Direct addressing uses compile-time infor-
mation plus a minimal amount of hardware to remove data cache tag
checks, thus saving energy. Our implementations of direct addressing
in a C and Java compiler resulted in data cache energy savings from
9–40% for C and 9–31% for Java. In contrast to other cache energy
saving techniques, direct addressing does not change the performance
of the processor, it just reduces the amount of microarchitectural work
the processor performs.

10 Acknowledgements

This work was funded by DARPA PAC/C award F30602-00-2-0562,
NSF Grant CCR-0073510, DARPA/AFRL Contract F33615-00-C-1692,
NSF Grant CCR00-86154, NSF Grant CCR00-63513, and NSF CA-
REER Grant CCR-0093354.

References

1. Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal.
Memory Bank Disambiguation using Modulo Unrolling for RAW Ma-
chines. In Proceedings of the Fifth International Conference on High
Performance Computing, Chennai, India, Dec 1998.

2. T. Burd. Energy-Efficient Processor System Design. PhD thesis, Uni-
versity of California at Berkeley, 2001.

3. J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT
Press, Cambridge, Massachussetts, 1985.

4. C. A. Moritz et al. Hot pages: Software caching for RAW microproces-
sors. MIT-LCS Technical Memo LCS-TM-599, August 1999.

5. Elliot Waingold et al. Baring It All to Software: RAW Machines.
30(9):86–93, Sep 1997.

6. J. Montanaro et al. A 160-MHz, 32-b, 0.5-W CMOS RISC microproces-
sor. IEEE JSSC, 31(11):1703–1714, November 1996.

7. M. Rinard et al. The FLEX compiler infrastructure. 1999–2001. http:/

/www.flex-compiler.lcs.mit.edu.
8. M. S. Lam et al. The SUIF compiler system. 1992–2001. http://

www-suif.stanford.edu.

42 Emmett Witchel, Sam Larsen, et al.

9. O.S. Unsal et al. Cool-Cache for hot multimedia. In MICRO–34, 2001.
10. S. B. Furber et al. ARM3 - 32b RISC processor with 4kbyte on-chip

cache. In G. Musgrave and U. Lauther, editors, Proceedings IFIP TC
10/WG 10.5 Int. Conf. on VLSI (VLSI’89), pages 35–44. Elsevier (North
Holland), 1989.

11. W. Lee et al. Space-time scheduling of instruction-level parallelism on a
RAW machine. ACM SIGPLAN Notices, 33(11):46–57, 1998.

12. Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru
Nicolau. Parallel Processing: A Smart Compiler and a Dumb Machine.
In ACM SIGPLAN ’84 Symposium on Compiler Construction, pages 37–
47, June 1984.

13. Intel Corp. Intel Xscale core developers manual, order no. 273473-001
edition, December 2000.

14. J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter cache: An
energy efficient memory structure. In MICRO–30, pages 184–193, 1997.

15. R. Krashinsky. Microprocessor energy characterization and optimization
through fast, accurate, and flexible simulation. Master’s thesis, Mas-
sachusetts Institute of Technology, May 2001.

16. A. Ma, M. Zhang, and K. Asanović. Way memoization to reduce fetch
energy in instruction caches. ISCA Workshop on Complexity Effective
Design, July 2001.

17. C. A. Moritz, M. Frank, and S. Amarasinghe. Flexcache: A framework
for flexible compiler generated data caching. Lecture Notes of Computer
Science, Springer–Verlag, 2001.

18. M. Muller. Power efficiency & low cost: The ARM6 family. In Hot Chips
IV, August 1992.

19. R. Panwar and D. Rennels. Reducing the frequency of tag compares for
low power I-cache design. In SLPE, pages 57–62, October 1995.

20. M. Zhang and K. Asanović. Highly-associative caches for low-power
processors. Kool Chips Workshop, MICRO-33, 2000.

