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Abstract. GLS is a new distributed location service which
tracks mobile node locations. GLS combined with geographic
forwarding allows the construction of ad hoc mobile networks
that scale to a larger number of nodes than possible with pre-
vious work. GLS is decentralized and runs on the mobile nodes
themselves, requiring no fixed infrastructure. Each mobile node
periodically updates a small set of other nodes (its location
servers) with its current location. A node sends its position
updates to its location servers without knowing their actual
identities, assisted by a predefined ordering of node identifiers
and a predefined geographic hierarchy. Queries for a mobile
node’s location also use the predefined identifier ordering and
spatial hierarchy to find a location server for that node.

Experiments using the ns simulator for up to 600 mobile nodes
show that the storage and bandwidth requirements of GLS
grow slowly with the size of the network. Furthermore, GLS
tolerates node failures well: each failure has only a limited effect
and query performance degrades gracefully as nodes fail and
restart. The query performance of GLS is also relatively insen-
sitive to node speeds. Simple geographic forwarding combined
with GLS compares favorably with Dynamic Source Routing
(DSR): in larger networks (over 200 nodes) our approach de-
livers more packets, but consumes fewer network resources.

� Jinyang Li and John Jannotti are supported by DARPA contract N66001-
99-2-8917. David Karger is supported by NSF contract CCR-9624239, an
Alfred P. Sloane Foundation Fellowship, and a David and Lucille Packard
Foundations Fellowship.



46 Jinyang Li, John Jannotti, et al.

1 Introduction

This paper considers the problem of routing in large ad hoc networks of
mobile hosts. Such networks are of interest because they do not require
any prior investment in fixed infrastructure. Instead, the network nodes
agree to relay each other’s packets toward their ultimate destinations,
and the nodes automatically form their own cooperative infrastructure.
We describe a system, Grid, that combines a cooperative infrastructure
with location information to implement routing in a large ad hoc net-
work. We analyze Grid’s location service (GLS), show that it is correct
and efficient, and present simulation results supporting our analysis.

It is possible to construct large networks of fixed nodes today.
Prominent examples include the telephone system and the Internet.
The cellular telephone network shows how these wired networks can be
extended to include large numbers of mobile nodes. However, these net-
works require a large up-front investment in fixed infrastructure before
they are useful—central offices, trunks, and local loops in the case of the
telephone system, radio towers for the cellular network. Furthermore,
upgrading these networks to meet increasing bandwidth requirements
has proven expensive and slow.

The fact that large fixed communication infrastructures already ex-
ist might seem to limit the usefulness of any competing approach. There
are, however, a number of situations in which ad hoc networks are de-
sirable. Users may be so sparse or dense that the appropriate level of
fixed infrastructure is not an economical investment. Sometimes fixed
infrastructure exists but cannot be relied upon, such as during disaster
recovery. Finally, existing services may not provide adequate service,
or may be too expensive.

Though ad hoc networks are attractive, they are more difficult to
implement than fixed networks. Fixed networks take advantage of their
static nature in two ways. First, they proactively distribute network
topology information among the nodes, and each node pre-computes
routes through that topology using relatively inexpensive algorithms.
Second, fixed networks embed routing hints in node addresses because
the complete topology of a large network is too unwieldy to process or
distribute globally. Neither of these techniques works well for networks
with mobile nodes because movement invalidates topology information
and permanent node addresses cannot include dynamic location infor-
mation. However, there is a topological assumption that works well for
radio-based ad hoc networks: nodes that are physically close are likely
to be close in the network topology; that is, they will be connected by
a small number of radio hops.
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Grid uses geographical forwarding to take advantage of the similar-
ity between physical and network proximity. A source must know the
geographical positions of any destination to which it wishes to send,
and must label packets for that destination with its position. An inter-
mediate node only needs to know its own position and the positions of
nearby nodes; that is enough information to relay each packet through
the neighbor that is geographically closest to the ultimate destination.
Although Grid forwards packets based purely upon local geographic
information, it is highly likely that packets are also approaching their
destination as measured by the number of remaining hops to the des-
tination. Because nodes only need local information, regardless of the
total network size, geographic forwarding is attractive for large-scale
networks.

However, to be useful in a larger context, a system based on geo-
graphic forwarding must also provide a mechanism for sources to learn
the positions of destinations. To preserve scalability, this location ser-
vice must allow queries and updates to be performed using only a hand-
ful of messages. Of course, the location service itself must operate using
only geographic forwarding. It should also be scalable in the following
senses:

1. No node should be a bottleneck—the work of maintaining the lo-
cation service should be spread evenly over the nodes.

2. The failure of a node should not affect the reachability of many
other nodes.

3. Queries for the locations of nearby hosts should be satisfied with
correspondingly local communication. This would also allow oper-
ation in the face of network partitions.

4. The per-node storage and communication cost of the location ser-
vice should grow as a small function of the total number of nodes.

The Grid location service (GLS) presented in this paper satisfies all
of these requirements.

The rest of the paper describes the design and simulated perfor-
mance of Grid. Section 2 reviews existing work in scalable ad hoc net-
working. Section 3 describes the characteristics of geographic forward-
ing. Section 4 describes Grid’s distributed location service algorithm.
Section 5 describes our implementation of geographic forwarding and
the GLS in detail. Section 6 analyzes Grid’s routing performance and
scalability using simulations. Section 7 suggests areas for future im-
provements. Section 8 summarizes the paper’s contributions.
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2 Related work

Most existing ad hoc routing systems distribute either topology infor-
mation or queries to all nodes in the network. Some, such as DSDV
[17], are proactive; they continuously maintain route entries for all des-
tinations. Other techniques are reactive, and construct routes to desti-
nations as they are required. This includes systems such as DSR [11],
AODV [16], and TORA[15]. Broch et al. [5] and Johansson et al. [10]
each provide overviews of these ad hoc routing techniques, along with
comparative measurements using small (30–50 node) simulations. Grid’s
main contribution compared to these works is increased scalability.

More closely related to Grid are protocols that use geographic po-
sitions. Finn’s Cartesian routing [8] addresses each node with a geo-
graphic location as well as a unique identifier. Packets are routed by
sending them to the neighbor closest to the packet’s ultimate destina-
tion. Dead ends are handled by scoped flooding. However, Finn gives no
detailed explanation of how node locations are found or how mobility
is handled.

More recent work on geographic approaches to routing includes the
DREAM [3] and LAR [14] systems. Both systems route packets ge-
ographically, in a manner similar to Finn’s Cartesian system. They
differ in how a node acquires the geographic position of a destination.
DREAM nodes proactively flood position updates over the whole net-
work, allowing other nodes to build complete position databases. LAR
nodes reactively flood position queries over the entire network when
they wish to find the position of a destination. Because they both in-
volve global flooding, neither system seems suited to large networks.

The Landmark system [18, 19] actively maintains a hierarchy to
provide routing in a changing network. Nodes in a Landmark network
have unique permanent IDs that are not directly useful for routing.
Each node also has a changeable Landmark address, which consists of
a list of IDs of nodes along the path from a well-known root to the
node’s current location. A Landmark address can be used directly for
routing, since it is similar to a source route. The Landmark system
provides a location service that maps IDs to current addresses. Each
node X sends updates containing its current Landmark address to a
node that acts as its address server, chosen by hashing X’s ID to pro-
duce a Landmark address A. If a node Y exists with that address, Y
acts as X’s location server. Otherwise the node with Landmark address
closest to A is used. Anyone looking for X can use the same algorithm
to find X’s location server, which can be queried to find X’s current
Landmark address. This combination of location servers and addresses
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that encode routing information is similar to the architecture described
in this paper. Grid, however, avoids building hierarchies, as they are
vulnerable to the movement of nodes near the top of the hierarchy.

3 Geographic forwarding

We use a simple scheme for geographic forwarding that is similar to
Cartesian routing [8]. Each node determines its own geographic posi-
tion using a mechanism such as GPS [2]; positions consist of latitude
and longitude. A node announces its presence, position, and velocity to
its neighbors (other nodes within radio range) by broadcasting periodic
HELLO packets. Each node maintains a table of its current neighbors’
identities and geographic positions. The header of a packet destined for
a particular node contains the destination’s identity as well as its geo-
graphic position. When node needs to forward a packet toward location
P, the node consults its neighbor table and chooses the neighbor closest
to P. It then forwards the packet to that neighbor, which itself applies
the same forwarding algorithm. The packet stops when it reaches the
destination.

A packet may also reach a node that does not know about any nodes
closer than itself to the ultimate destination. This dead-end indicates
that there is a “hole” in the geographic distribution of nodes. In that
case, the implementation described in this paper gives up and sends an
error message to the packet’s source node.

Recovering from dead-ends is possible using the same neighbor po-
sition table used in geographic forwarding. Karp and Kung propose
GPSR [13], a geographic routing system that uses a planar subgraph
of the wireless network’s graph to route around holes. They simulate
GPSR on mobile networks with 50–200 nodes, and show that it deliv-
ers more packets successfully with lower routing protocol overhead than
DSR on networks with more than 50 nodes. Bose et al. independently
demonstrate a loop-free method for routing packets around holes using
only information local to each node. The method works only for unit
graphs, in which two nodes can communicate directly in exactly the
cases in which they are within some fixed distance of each other.

3.1 Effect of density

Geographic forwarding works best when nodes are dense enough that
dead ends are not common. We present a simple evaluation of the ef-
fects of node density using the ns [7] network simulator. The simulated
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nodes have 2 Megabit per second IEEE 802.11 radios [6] with ranges
of about 250 meters; each node transmits HELLO messages at 2 sec-
ond intervals, and routing table entries expire after 4 seconds. Nodes
move continuously at 10 m/s; each node moves by selecting a random
destination, moving toward it, and selecting a new destination when
it reaches the old one. Each node sends packets to three destination
nodes selected at random; each conversation starts at a time selected
randomly over the 300 second life of the simulation. A conversation in-
volves sending 6 packets of 128 bytes each at quarter second intervals.
Senders know the correct geographic positions of destinations.

Figure 1 is the result of simulations over a range of node densities.
In each simulation, the nodes are placed at random in a 1 km2 square.
The graph reports the fraction of packets that were not delivered for
each node density. In this scenario, geographic forwarding works well for
more than 50 nodes per square kilometer. If 50 nodes are evenly placed
in a 1 km2 square, the inter-node spacing is 141 = 1000/

√
50 meters,

which is within radio range. More generally, the simulation results agree
with a mathematical analysis of random nodes distributed throughout
the unit square: one can prove that if the communication radius is r
and the number of points exceeds (6/r2) ln(6/r2) per km2, then dead
ends are extremely unlikely to occur.
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Fig. 1. Fraction of data packets unable to be delivered using geographic
forwarding with a perfect location service, as a function of node density. The
simulation area is 1 km2.
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4 The grid location service

Combining geographic forwarding with a mechanism for determining
the location of a node implements the traditional network layer: any
node can send packets to any other node. A trivial location service
might consist of a statically positioned location server. Nodes would
periodically update this server (using geographic forwarding to the
server’s well-known coordinates) with their current location. For a node
A to contact node B, A queries the location server for B’s current lo-
cation before using geographic forwarding to contact B.

Using a single location server has a number of problems. The cen-
tralized server is a single point of failure; it is unlikely to scale to a large
number of mobile nodes; it can not allow multiple network partitions to
each function normally in their own partition; and nodes near to each
other gain no advantages—they must contact a potentially distant lo-
cation server in order to communicate locally.

We introduce a distributed location service (GLS) that is designed
to address these problems. GLS is fault-tolerant; there is no dependence
on specially designated nodes. GLS scales to large numbers of nodes;
our goal is to provide a service that scales to at least the size of a large
metropolitan area. Finally, GLS operates effectively even for isolated
pockets of nodes. A node should be able to determine the location
of any node that it can reach with geographic forwarding. That is, a
location lookup should not involve nodes that are too far “out of the
way” of a straight line trip from the node performing the lookup to the
node being looked up.

GLS is based on the idea that a node maintains its current location
in a number of location servers distributed throughout the network.
These location servers are not specially designated; each node acts as a
location server on behalf of some other nodes. The location servers for
a node are relatively dense near the node but sparse farther from node;
this ensures that anyone near a destination can use a nearby location
server to find the destination, while also limiting the number of location
servers for each node. On the other hand long distance queries are
not disproportionally penalized: query path lengths are proportional to
data path lengths.

In order to spread uniformly the work of acting as location servers,
GLS avoids techniques such as leader election or hierarchy to determine
location server responsibility. These schemes place undue stress on the
nodes unlucky enough to be elected as a leader or placed at higher levels
in the hierarchy. Instead GLS allows a node X to select a set of location
servers that, probabilistically, is unlike the set of servers selected by
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other nodes and does not change drastically as nodes enter or leave the
network. Nodes searching for X are able to find X’s location servers
using no prior knowledge beyond node X’s ID. This is accomplished by
carrying out much the same protocol that X used to select its servers
in the first place.

Our approach draws its intuition from Consistent Hashing, a tech-
nique developed to support hierarchical caching of web pages [12]. To
avoid making a single node into the bottleneck of the hierarchical cache,
that paper used a hash function to build a distinct hierarchy for each
page, much as we use a distinct location service hierarchy for each tar-
get. Also like our paper, that paper used nested query radii to ensure
that queries for a given page did not go to caches much farther away
than the page itself.

GLS balances the location server work evenly across all the nodes
if there is a random distribution of node IDs across the network. GLS
ensures that nodes are allocated unique, random IDs by using a strong
hash function to obtain an ID from a node’s unique name. The name
could be any uniquely allocated name, such as Internet host names, IP
addresses, or MAC addresses. For purposes of discussing the GLS, a
node’s ID is more interesting than its original name, therefore when we
refer to a node A, we are referring to the node whose name hashes to
A.

4.1 Selecting and querying location servers

GLS provides for distributed location lookups by replicating the knowl-
edge of a node’s current location at a small subset of the network’s
nodes. This set of nodes is referred to as the node’s location servers. A
node A hoping to contact node B can query one of a number of other
nodes that know B’s location. Of course, A must be able to contact
the nodes that know B’s location. This means that A’s search for B’s
location servers and B’s original recruitment of location servers ought
to lead to the same servers. When B recruits location servers it uses
the same information that A will have when searching for B’s loca-
tion servers: B’s name and certain information that all nodes have at
startup.

At startup, all nodes know the same global partitioning of the world
into a hierarchy of grids with squares of increasing size, as shown in
Figure 2. The smallest square is referred to as an order-1 square. Four
order-1 squares make up an order-2 square, and so on. It is important
that not every square made up of four order-n squares is also an order-
(n + 1) square. Rather, to avoid overlap, a particular order-n square
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Fig. 2. A piece of the global partitioning of the world. A few example squares
of various orders are shown with dark shading. The lightly shaded square is
shown as an example of a 2x2 square which is not an order-2 square because
of its location. An order-n square’s lower left corner’s coordinates must be
of the form (a2n−1, b2n−1) for integers a,b.
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is part of only one order-(n + 1) square, not four. This maintains an
important invariant: a node is located in exactly one square of each
size. This system of increasing square sizes provides a context in which
a node selects fewer and fewer location servers at greater distances.
Our choice of a grid-based partition is somewhat arbitrary; any other
balanced hierarchical partition of the space can be used instead.

Consider how B determines which nodes to update with its changing
location, using its ID and the predetermined grid hierarchy. B knows
that other nodes will want to locate it, but that they will have little
knowledge beyond B’s ID. B’s strategy is to recruit nodes with IDs
“close” to its own ID to serve as its location servers. We define the
node closest to B in ID space to be the node with the least ID greater
than B. The ID space is considered to be circular, 2 is closer to 17 than
7 is to 17.
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Fig. 3. The inset squares are regions in which B will seek a location server.
The nodes that become B’s location servers are circled and shown in bold.

If we consider the tree corresponding to the grid decomposition, a
node selects location servers in each sibling of a square that contains
the node. The exact details of the selection are best understood with
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an example (see Figure 3). A node chooses three location servers for
each level of the grid hierarchy. For example, in the figure, B recruits
three servers in order-1 squares, three servers in order-2 squares, and
three servers in order-3 squares. In each of the three order-1 squares
that, along with B’s own order-1 square, make up an order-2 square,
B chooses the node closest to itself in ID space as a server. The same
location server selection process occurs in higher order squares. In the
three order-2 squares that combine with B’s order-2 square to make an
order-3 square, B selects 26, 31, and 43 as location servers.

Figure 4 shows the state of a Grid network once all nodes have
provided their coordinates to the nodes that will act as their location
servers. With the complete network state as reference, we can return
to the problem of how A finds the location of B.

To perform a location query, A sends a request (using geographic
forwarding) to the least node greater than or equal to B for which A
has location information. That node forwards the query in the same
way, and so on. Eventually, the query will reach a location server of
B which will foward the query to B itself. Since the query contains
A’s location, B can respond directly using geographic forwarding. The
location query is forwarded all the way to B so that B can respond
with its latest location.

For illustrative purposes we have ignored an important bootstrap-
ping issue. We have assumed that nodes select their location servers
appropriately and send their coordinates to them. This appears to as-
sume that a node can scan an entire square (of arbitrary size) and
choose the appropriate node to act as its server. In fact, nodes route
update packets to their location servers without knowing their identi-
ties. Assume that a node B wishes to recruit a location server in some
order-n square. B sends a packet, using geographic forwarding, to that
square. The first node L in the square that receives the packet begins a
location update process that closely resembles a query for B’s location;
but this update will actually carry the current location of B along with
it. As we will demonstrate below, the update will arrive at the least
node greater than B before leaving the order-n square containing L.
This is exactly the appropriate destination for the location update to
go to; the final destination node simply records B’s current location
and becomes a location server for B.

The only requirement for B to distribute its location to the appro-
priate server in an order-n square is that the nodes contained in the
square have already distributed their locations throughout that square.
If we imagine an entire Grid system being turned on at the same time,
order-1 squares would exchange information using the local routing
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protocol, then nodes could recruit their order-2 location servers, then
order-3, etc. Once the order-n location servers are operating, there is
sufficient routing capability to set up the order-(n +1) location servers.

4.2 Efficiency analysis
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Fig. 4. An entire network’s location server organization. Each node is shown
with the list of nodes for which it has up to date location information; B’s
location servers are shown in bold. Two possible queries by A for B’s location
are shown.

When nodes are not moving, the number of steps taken by a location
query from A to B is no more than the order of the smallest square in
which A and B are colocated. A location query step is distinct from
a single hop in the geographic forwarding layer; indeed, each location
query step is likely to require several geographic forwarding hops. In
Figure 4, the entire diagram is an order-4 square. Therefore all queries
can be performed in no more than four location query steps.

At each step, a query makes its way to the best (closest in ID
space to the destination) node at successively higher levels in the grid
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hierarchy. At the start, the query is forwarded to the best node in the
local order-1 square using the local routing protocol. From this point on,
each step moves the query to the best node in the next larger containing
square; when that next larger square contains the destination node, the
best node (closest to the destination ID) must be the destination itself.
Thus the query’s next step is to the destination. This behavior not only
limits the number of steps needed to satisfy a query, it also bounds the
geographic region in which the query will propagate. Because the query
proceeds into larger and larger squares that still contain the source, the
query will stay inside the smallest square containing the source and the
destination.

To understand why each step brings the query to the best node in
a larger square, we will first consider the query from node A (76) for
the address of B (17), shown starting in the lower right of Figure 4.
Our abbreviated topology has no more than one node per square, so
the query trivially begins at the best node, itself, in its order-1 square.
The query moves to the best node (21) in A’s order-2 square, because
76 happens to know the positions for all the nodes in its order-2 square.
This is an artifact of our sparse layout, so the next step tells the im-
portant story: why 21 knows the location of the best node in the next
higher order square.

Recall that 21 is the best node in its order-2 square. This guarantees
that no nodes in that square have IDs between 17 and 21. Now, consider
a node X somewhere in node 21’s order-3 square, but not in 21’s order-
2 square. Recall that X had to choose a location server in node 21’s
order-2 square. If X’s ID is between 17 and 21 then X must have
chosen node 21 as a location server since there are no better nodes in
node 21’s order-2 square. Thus, node 21 knows about all nodes in its
order-3 square that lie between 17 and itself, including the minimum
such node. In this case, that node is 20. At the next step, node 20 must
know about all nodes in the order-4 square between 17 and itself. Since
nodes 20 and 17 share the same order-4 square (the entire figure), node
20 knows about node 17, and the query is finished.

The above example demonstrates why node 21 knew node 20’s lo-
cation and was therefore able to move the query from the best node
in its order-2 square to the best node in its order-3 square. One may
wonder, however, why node 21 does not know about some other node
whose ID is between 17 and 20, and which lies at a distant location.
This would be undesirable as node 21 would then forward the packet
far away simply because, for example, it might know the location of
node 19. But this cannot happen because node 20 acts as a shield for
node 21 during location server selection. That is, for any node outside
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of the lower right quadrant of figure 4, node 21 is guaranteed not to be
the best choice for location server; node 20 will always be preferable.
In addition, because every location query is labelled with its source,
intermediate query steps know what level of the hierarchy the query is
currently in, and can refrain from sending queries too far away.

Having built an intuition, we now give an inductive proof that a
query needs no more than n location query steps to reach its des-
tination when the source and destination are colocated in an order-
n square. Furthermore, the query never leaves the order-n square in
which it starts. We assume, without loss of generality, that the destina-
tion node’s ID is 0. We then proceed inductively to prove the following
equivalent claim: in n or fewer location query steps, a query reaches the
node with the lowest ID (i.e closest to 0) in the order-n square contain-
ing the source. Since the destination is node 0, when the query reaches
the order-n square that contains both the source and the destination
nodes, it must reach the destination.

Base case (order-1 square): The query begins at a node X. Node X
may or may not be the node with the lowest ID in its order-1 square.
If so, the query trivially reaches the lowest node in the order-1 square
after zero location query steps. If X is not the node with the lowest ID,
then X will know the location of the node with the lowest ID in the
order-1 square, Y, through the local routing protocol. Node X will not
know of any other nodes with IDs lower than Y. Any such node would
not have selected X as a location server as Y would always have been
the better choice. Therefore the lowest node that X is aware of is Y
and the query will be forwarded there in one location query step.

Inductive step (order-(n +1) square): We claim that if a query is at
the node X with the lowest ID in its order-n square, then X will route
the query to the node Y with the lowest ID in its order-(n + 1) square
with one or zero location query steps. If X has the lowest node ID in the
order-(n+1) square, then our claim is trivially true. If not, X will know
the coordinates of Y and will not know the coordinates of any node
lower than Y outside the order-(n + 1) square. Node X will know the
coordinates of Y because Y will have selected X as a location server.
Node Y must have selected a location server in X’s order-n square
because Y’s order-n square is a part of the same order-(n + 1) square
as X’s. Node Y must have selected X because X is the lowest node in
its square that is greater than Y. Node X will not know the location of
any node lower than Y outside of its order-(n+1) square because when
any such node sought a location server in X’s order-(n+1) square, Node
Y was the better choice. Therefore the lowest node that X is aware of
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is Y and the query will be forwarded there in one location query step.
�

It is important to remember however, that this proof applies only
to a static network. Additional techniques, described in Section 5, help
Grid to deal with the problems cereated by mobility. These sections de-
scribe Grid’s approach to keeping location servers up to date in the face
of node motion and Grid’s recovery techniques when, despite updates,
location information is found to be out of date.

5 Implementation

This section describes the details of the geographic forwarding and GLS
protocols.

5.1 Geographic forwarding

The geographic forwarding layer uses a two hop distance vector pro-
tocol. This helps alleviate holes in the topology and ensures that each
node knows the location of all nodes in its order-1 square. Each node
maintains a table of immediate neighbors as well as each neighbor’s
neighbors. Each entry in the table includes the node’s ID, location,
speed, and a timestamp. Each node periodically broadcasts a list of
all neighbors it can reach in one hop, using a HELLO message. When
a node receives a HELLO message, it updates its local routing table
with the HELLO message information. Using this protocol nodes may
learn about two hop neighbors—nodes that cannot be reached directly,
but can be reached in two hops via the neighbor that sent the HELLO
message. The routing table is also updated every time a node receives
a packet, using the packet’s last hop information.

Each entry in the neighbor table expires after a fixed timeout. How-
ever, when an entry expires, the node estimates the neighbor’s current
position using its recorded speed. If it would likely still be in range,
the entry may still be used for forwarding, but it is not reported as a
neighbor in further HELLO messages. This special treatment is justi-
fied by two properties of the 802.11 MAC layer. First, broadcast packets
are more likely to be lost in the face of congestion than unicast pack-
ets. Thus it is not unusual to miss HELLO messages from a node that
is still nearby. Second, unicast transmissions are acknowledged. If the
neighbor has actually moved away, the transmitting node will be no-
tified when it attempts to forward packets through the missing node.
The invalid neighbor entry is then removed immediately and a new
forwarding path is chosen.
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HELLO

Source ID

Source location

Source speed

Neighbor list: IDs and locations

Forwarding pointers

Fig. 5. HELLO packet fields.

To select a next hop, nodes first choose a set of nodes from all nodes
in their neighbor table. This set consists of the best nodes to move the
packet to, as defined by the shortest distance to the destination from
the candidate nodes. All nodes whose distances to the destination are
nearly equal are considered in this set. Call this set B . If B contains any
single-hop neighbors, remove double-hop neighbors from B . A node,
X, is then chosen at random from B . If X is a single-hop neighbor,
the packet is forwarded to X, otherwise, since X may be reachable
from any number of single hop neighbors, the best such neighbor is
chosen and the packet is forwarded to that node. If the transmission
fails, the chosen node is removed from consideration and the packet is
reprocessed, starting with the original B (with X removed if it was a
single-hop neighbor).

5.2 Updating location information

GLS maintains two tables in each node. The location table holds the
node’s portion of the distributed location database; each entry consists
of a node ID and that node’s geographic location. The location cache
holds location information that the node learns by looking at update
packets it forwards. A node only uses the cache when originating data
packets. Because each node uses the neighbor table maintained by the
geographic forwarding layer to learn about other nodes in its order-1
square, the node does not need to send normal GLS updates within its
order-1 square.

As a node moves, it must update its location servers. Nodes avoid
generating excessive amounts of update traffic by linking their location
update rates to their distance traveled. A node updates its order-2
location servers every time it moves a particular threshold distance d
since sending the last update; the node updates its order-3 servers after
each movement of 2d . In general, a node updates its order-i servers after
each movement of 2i−2d . This means that a node sends out updates at
a rate proportional to its speed and that updates are sent to distant
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servers less often than to local servers. In addition, nodes send location
updates at a low rate even when stationary.

Location update packets (see Figure 6) include a timeout value that
corresponds to the periodic update interval, allowing the servers to in-
validate entries shortly after a new entry is expected. The time at which
the location update packet is generated is also included in the update
packet so that the freshness of location information obtained from dif-
ferent nodes for the same destination can be compared. GPS receivers
can provide every node in the network with closely synchronized time.

LOCATION UPDATE

Source ID

Source location

Source timestamp

Update destination square

Update timeout

Next location server’s ID

Next location server’s location

Fig. 6. GLS update packet fields.

When forwarding an update, a node adds the update’s contents to
its location cache. The node associates a relatively short timeout value
with the cached entries regardless of the recommended timeout value
carried in the update packet.

Nodes piggyback their location information on data packets, so that
two nodes who are communicating always know how to reach each
other. In the case of one-way communication, nodes also periodically
send their position information directly to nodes who are sending them
data.

5.3 Performing queries

When a node S originates a data packet for destination D, it first
checks its location cache and location table to find D’s location. If it
finds an entry for D, it sends the packet to D’s recorded location using
geographic forwarding. Otherwise, S initiates a location query for D
using the GLS. GLS will eventually deliver the query packet (Figure 7)
to D, which will geographically route a response to S that includes D’s
current location.

If S had to initiate a GLS query, it stores the data packet in a
send buffer while it waits for the reply from D. Node S reinitiates the
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query periodically if it gets no reply, using binary exponential backoff
to increase the timeout intervals.

LOCATION QUERY

Source ID

Source location

Ultimate target ID

Next location server’s ID

Next location server’s location

Timestamp from previous server’s database

Fig. 7. GLS query packet fields.

5.4 Location query failures

A location query may fail for two reasons. First, a node may receive
a query packet for D, and not know the location of any node with an
ID closer to D than itself. This type of failure is relatively uncommon.
It occurs when a location server has not recently received a location
update for a node it should know about. Because the server has timed
out the node’s previous update, it has no way to forward the query
packet. There are ways to alleviate these failures, such as using stale
location data in a last ditch effort to forward a query packet if the query
would otherwise fail. The second type of query failure occurs when a
location server forwards a packet to the next closest node’s square, but
the node is no longer in that square (that is, the location information at
the previous location server is out of date). Because this failure mode is
more common, Grid contains a specialized mechanism to alleviate the
problem.

Consider a node D that has recently moved from the order-1 square
s1 to the order-1 square s2. Node D’s location servers, particularly those
that are far away, will think that D is in s1 until D’s next updates reach
them. To cope with this, D leaves a “forwarding pointer” in s1 indicat-
ing that it has moved to s2. When a packet arrives in s1 for D, it can
be correctly sent on by following the forwarding pointer. D broadcasts
its forwarding pointer to all nodes in s1 when leaving. Conceptually,
we can think of the forwarding pointers as being located in the square
s1 rather than at any particular node. Therefore, all nodes that move
into s1 should pick up the forwarding pointers associated with s1, and
when nodes leave s1, they should forget the corresponding forwarding
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pointers. To propagate forwarding pointers to all nodes in the order-1
square and keep all newcomers to the square updated, a randomly cho-
sen subset of the forwarding pointers stored at a node (up to five in
our simulation implementation) is piggybacked on the node’s periodic
HELLO messages. Upon hearing a HELLO message, a node adds each
forwarding pointer in that message to its own collection of forward-
ing pointers, but only if the pointer’s original broadcaster was in the
same square as the node. In this way, forwarding pointer information
is effectively and efficiently spread to every node in the square. With
this propagation mechanism, even if all the nodes that originally re-
ceived D’s forwarding pointer were to leave the square themselves, the
information would still be available in the square.

6 Performance analysis

This section presents simulation results for GLS that show how well it
scales. Good scaling means that the amount of work each node performs
does not rise quickly as a function of the total number of nodes. We
use two metrics for work: the number of location database entries each
node must store, and the number of protocol packets each node must
originate or forward in order to route a given workload. The simulations
show that these costs scale well with the number of nodes.

Mobility increases the work required in two ways. First, a node that
moves must update its location servers. Second, if a node has moved
recently, some nodes may retain out-of-date location information for
it; this will cause queries for the moved node to travel farther than
necessary, or to fail and need to be resent. Handling mobility requires
a tradeoff between the bandwidth used by location updates and the
bandwidth available for data. If a moving node sends updates aggres-
sively, other nodes are more likely to be able to find it. However, the
updates consume bandwidth in competition with data. Worse, a very
aggressive update policy may cause enough congestion that updates
themselves are dropped. At the other extreme, a node could send up-
dates infrequently even when moving quickly, increasing the amount of
bandwidth available to data. However, that bandwidth is not useful if
the success rate of location query becomes low because of inaccurate
location information. The simulations show that Grid can achieve a
reasonable tradeoff for the choice of update rate.
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6.1 Simulation scenario

The simulations use CMU’s wireless extensions [9] for the ns [7] simu-
lator. The nodes use the IEEE 802.11 radio and MAC model provided
by the CMU extensions; each radio’s range is approximately a disc with
a 250 meter radius. The simulations without data traffic use 1 Megabit
per second radios; the simulations with data traffic use 2 Megabits per
second radios. Each simulation runs for 300 simulated seconds. Each
data point presented is an average of five simulation runs.

The nodes are placed at uniformly random locations in a square
universe. The size of each simulation’s universe is chosen to maintain
an average node density of around 100 nodes per square kilometer.
One reason for this choice is that we intend the system to be used
over relatively large areas such as a campus or city, rather than in
concentrated locations such as a conference hall. Another reason is
that we expect any deployed system to use radios that allow the power
level to be decreased in areas with high node density. The GLS order-1
square is 250 meters on a side. For a network of 600 nodes, which is the
biggest simulation we have done, the grid hierarchy goes up to order-5
in a square universe 2900m on a side.

Each node moves using a “random waypoint” model [5]. The node
chooses a random destination and moves toward it with a constant
speed chosen uniformly between zero and a maximum speed (10 m/s
unless noted otherwise). When the node reaches the destination, it
chooses a new destination and begins moving toward it immediately.
These simulations do not involve a pause time.

6.2 GLS results

The results in this section involve only GLS (and geographic forward-
ing), without any data traffic. The default simulation parameters for
this section are an 802.11 radio bandwidth of 1 Megabit per second,
and a communication model in which each node initiates an average of
15 location queries to random destinations over the course of the 300
second simulation, starting at 30 seconds. The location update thresh-
old distance is an important parameter that may need to be tuned. For
this reason we present results for three values of the threshold: 100,
150, and 200 meters.

Figure 8 shows the success rate for GLS location queries, as a func-
tion of the total number of nodes. Queries are not retransmitted, so
a success means a success on the first try. As mentioned earlier, most
failures are due to either location information invalidated by node mo-
tion or nodes not being correctly updated because of delayed or lost
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Fig. 8. GLS query success rate as a function of the total number of nodes.
The nodes move at speeds up to 10 m/s (about 22 miles per hour). Each line
corresponds to a different movement update threshold.

location updates. The success rate for data sent after a successful query
would be much higher than indicated here because the endpoints of a
connection directly inform each other of their movements.

Figure 9 shows the average number of Grid protocol packets for-
warded and originated per second per node as a function of the to-
tal number of nodes. Grid generates three types of protocol packets:
HELLO packets that are generated every two seconds but not for-
warded, location update packets that are also periodic but require for-
warding, and location query and reply packets that also require for-
warding. As location updates are generated by nodes as they move,
the results depend on node speeds; the simulated nodes move at speeds
uniformly distributed between 0 and 10 m/s. Figure 9 is generated from
the same simulations that produced Figure 8. The graph shows that
Grid imposes a modest protocol traffic load as the network size grows.

Figure 10 shows how the distance that query packets travel com-
pares with the actual distance in hops between the source and the
destination. We record the total number of geographical forwarding
hops (for all query steps) that each query takes, as well as how many
hops the reply takes. Since query replies are sent directly to the query
source using geographic forwarding, the reply return path indicates the
geographical forwarding hop distance between the source and destina-
tion. We averaged the query hop lengths for all queries with a given
response hop length. The graph shows that on average, query pack-
ets only travel about 6 hops more than the geographical forwarding
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Fig. 9. Average number of Grid protocol packets forwarded and originated
per second by each node as a function of the total number of nodes. Nodes
move at speeds up to 10 m/s.
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path length, for 300 nodes moving up to 10 m/s.
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Fig. 11. Average and maximum per-node location database size (number of
entries) as a function of the total number of nodes. The nodes move at speeds
up to 10 m/s.

route between nodes. Also, the distance traveled by a query between
two nodes is proportional to the actual distance between those nodes.
Our simulation agrees with a theoretical analysis that proves that with
a sufficiently dense uniform distribution, the number of hops traveled
by the query is proportional to the distance to the destination. The
simulation involves 300 nodes moving at speeds up to 10 m/s, with a
location update threshold of 200 meters.

Figure 11 shows the effect of the total number of nodes on the size
of each node’s GLS location table. The plots include both the average
and maximum location table size over all nodes. The spikes at 150
and 400 nodes occur because the simulated area does not exactly fill
a hierarchy, causing the database load to be distributed unevenly. At
these points, the maximum database size is larger because the squares
that extend across the edge of the simulated area contain relatively few
nodes; these nodes must store more than their fair share of location
database entries. On the other hand, the average table size grows very
slowly with the network size.

This highlights a problem that may arise in practice when nodes
are not uniformly distributed. A small number of nodes in a high-level
square may end up responsible for tracking the locations of a large
number of nodes in sibling squares. This would require large amounts
of space in these few nodes.

Figure 12 shows the effect of node movement speed on the GLS
query success rate, for 100 nodes. As nodes move faster, their location
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Fig. 12. GLS query success rate as a function of maximum node speed in a
network of 100 nodes. 50 m/s is about 110 mph.

servers are more likely to be out of date. On the other hand, the nodes
also generate updates faster. The net effect is that the query success
rate is relatively insensitive to node speed, however, the update traffic
grows as nodes move faster.

Figure 13 shows the effect of nodes turning on and off. Some nodes
are always on, while the rest alternate being on and off for intervals
uniformly distributed from 0 to 120 and 0 to 60 seconds, respectively.
As we are simulating node crashes, nodes do not do anything special
before turning off; they simply lose all their location table data. In
practice, if a node was manually turned off, it would be appropriate
to first redistribute its location table to get better performance. Each
point in the graph represents a simulation in which a different fraction
of nodes are always on. The simulations involve 100 nodes, each moving
with a maximum speed of 10 m/s. The statistics are limited to queries
addressed to nodes that are turned on; no queries are generated to
nodes that are off as these queries will always fail. When a node turns
off, a part of the distributed location database is lost; when a node
turns on, it will not be able to participate correctly in the update and
query protocol for a while. The graph shows that even a great deal of
instability does not have a disastrous effect, and that the query success
rate degrades gracefully as nodes turn on and off.



A Scalable Location Service for Geographic Ad Hoc Routing 69

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Q
ue

ry
 s

uc
ce

ss
 r

at
e

Fraction of stable nodes

100
150
200

Fig. 13. The effect of turning off nodes on the query success rate. The X
axis indicates the fraction of nodes that are always on; the remaining nodes
cycle on and off for random periods up to 120 and 60 seconds, respectively.
The simulations all involve 100 nodes moving at speeds up to 10 m/s.
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Fig. 14. The fraction of data packets that are successfully delivered in sim-
ulations for increasing numbers of nodes. The nodes move with a maximum
speed of 10 m/s.

6.3 Data traffic

The simulations in this section measure Grid’s behavior when forward-
ing data traffic. The 802.11 radio bandwidth is 2 Megabits per second,
and the location update threshold distance is 200 meters. The data
traffic is generated by a number of constant bit rate connections equal
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to half the number of nodes. No node is a source in more than one con-
nection and no node is a destination in more than three connections.
For each connection four 128-byte data packets are sent per second for
20 seconds. Connections are initiated at random times between 30 and
280 seconds into the simulation. For purposes of comparison we include
results for the DSR [11] protocol. This may not be a fair comparison
since DSR is optimized for relatively small networks [4].

Figure 14 shows the fraction of data packets successfully delivered.
Most of the data packets that Grid fails to deliver are due to GLS
query failures; these packets never leave the source. Once Grid finds
the location of a destination, data losses are unlikely, since geographic
forwarding adapts well to the motion of intermediate nodes. Below 400
nodes, most of the DSR losses are due to broken source routes; at 400
nodes and above, losses are mainly due to flooding-induced congestion.
Grid does a better job than DSR over the whole range of numbers of
nodes, especially for large networks.

Figure 15 shows the message overhead of the Grid and DSR pro-
tocols. Only protocol packets are included. In the case of Grid, these
are HELLO, GLS update, and GLS query and reply packets. In the
case of DSR, these are route request, reply, cached reply packets etc.
DSR produces less protocol overhead for small networks, while Grid
produces less overhead for large networks. At 400 nodes and above,
DSR suffers from network congestion. Almost half of the route reply
and cache reply messages are dropped due to congestion which causes
DSR to inject even more route requests into the network. Also, as the
network grows larger and congestion builds up, the source route is more
vulnerable to failure which will also induce DSR source nodes to send
more route request packets. DSR’s overhead drops at 600 nodes because
it could not send much more packets in the presence of congestion. We
present overhead in terms of packets rather than bytes because medium
acquisition overhead dominates actual packet transmission in 802.11,
particularly for the small packets used by Grid.

7 Future work

One area of the GLS protocol that could be improved is the handling
of node mobility. Accurate movement models may allow us to integrate
movement prediction into the GLS protocol. Our current system makes
little effort to predict the movement of nodes over long time periods
because our movement model is randomized, but in the real world a
node may not need to update a location server as often if its velocity
is constant or predictable.
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Fig. 15. The number of all protocol packets forwarded per node per second
as a function of the total number of nodes. No data packets are included.
The nodes move with a maximum speed of 10 m/s.

Currently the GLS protocol makes little effort to proactively correct
out-of-date information when, for instance, a node crosses a grid bound-
ary line. Proactive updates may reduce the incidence of query failures.
However, the tradeoff is obvious—care must be taken not to consume
too much bandwidth with the updates. An alternate strategy to ad-
dress the same problem is to place less trust in locations obtained from
distant location servers. Rather than trust a distant location server to
pinpoint the order-1 square in which a node is located, a query could
be moved to, for instance, the surrounding order-3 square. There the
query can be restarted with the fresher information available in that
square

Another potential area of improvement is adapting to node den-
sity. If an order-1 square becomes too crowded, each node will get less
bandwidth from the shared radio spectrum, and each node will have to
work harder to keep its neighbor table up to date. Radios with variable
power levels would help alleviate this problem by changing the effec-
tive density of nodes within radio range. In addition, each square in the
GLS may make a local decision about how finely to sub-divide itself;
distant areas need not agree on the size of the order-1 square.

Finally, as we noted earlier, the choice of a grid based system is
somewhat arbitrary. In fact, certain partitioning schemes offer the pos-
sibility of better scaling. The number of location servers that a node
must recruit is equal to the number of neighbors per level in the geo-
graphic hierarchy multiplied by the number of levels in the hierarchy.
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For a grid based system, this means that a node must maintain 3 log4 n
servers in a network that is n times the size of the coverage area of a
single radio. It is possible, however, to split the world in half at each
level, rather than in fourths, by using rectangles with an aspect ratio of
1/

√
2. At successive levels, each such rectangle may be divided into two

such rectangles. This leads to a network in which nodes must recruit
only log2 n location servers, or 2/3 the number of servers needed in a
grid based approach.

8 Conclusions

Wireless technology has the potential to dramatically simplify the de-
ployment of data networks. For the most part this potential has not
been fulfilled: most wireless networks use costly wired infrastructure
for all but the final hop. Ad hoc networks can fulfill this potential
because they are easy to deploy: they require no infrastructure and
configure themselves automatically. But previous ad hoc techniques do
not usually scale well to large networks.

We have presented a mobile ad hoc networking protocol with sig-
nificantly better scaling properties than previous protocols. Although
somewhat complicated to understand, our protocol is very simple to
implement. In many ways the two facets of our system, geographic
forwarding and the GLS, operate in fundamentally similar ways. Geo-
graphic forwarding moves packets along paths that bring them closer
to the destination in physical space, only reasoning about nodes with
nearby locations at each step along the path. GLS moves packets along
paths that bring them closer to the destination in ID space, using only
information about nodes with nearby IDs at each step along the path.
Both mechanisms are scalable because they only need local information
in their respective spaces.
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