
Proceedings of the 3rd International
Conference on Mobile Data
Management, Singapore, January 2002,
to appear.

An Approach to Disconnected Operation
in an Object-Oriented Database

Sidney Chang and Dorothy Curtis

MIT Laboratory for Computer Science
sidchang@alum.mit.edu, dcurtis@lcs.mit.edu

Abstract. With the advent of mobile computers, new chal-
lenges arise for software designers. This paper focuses on dis-
connected operation: making mobile computers work well on
shared data whether the network is available or not. Initially
the shared data is cached on the mobile computer. Modifi-
cations and additions to this cached data will be reconciled
with the shared data when the mobile computer is reconnected
to the network. Conflict resolution will be used to reconcile
conflicting changes. In this paper, we examine these issues by
adding support for disconnected operation to Thor, an object-
oriented database.

1 Introduction

As computers become more mobile, software needs to be adapted to
work well, whether a network is available or not. The challenging aspect
is to function without a network and still have local changes integrate
easily with other data when the network is available. Initially the mobile
computer needs to cache relevant data before disconnecting from the
network. When network accessibility again becomes available, additions
and modifications to the cached data need to be reconciled with the
original data. Beyond this if two users have modified the same cached
data while disconnected, some form of conflict resolution must be used
to integrate these changes. This all must be done without violating
serializability.

For example, a travelling salesperson commuting to the office would
like to use his hand-held device to enter an appointment into his cal-
endar which is stored in a central database at work. The hand-held

104 Sidney Chang and Dorothy Curtis

device has a cached version of the salesperson’s calendar which was
downloaded the night before. Meanwhile back at the office, the sales-
person’s assistant is sitting in front of a desktop machine connected
directly to the central database. The assistant enters an appointment
into the salesperson’s calendar for 2 PM to 4 PM, which is automat-
ically updated in the central database. After the database is updated
to reflect the assistant’s change, the salesperson on his way to work
now has stale data in his calendar. He thinks that he is free from 2
PM to 4 PM when he actually has an appointment for that time. To
make things even worse, the salesperson, on his way to work, also en-
ters an appointment into his calendar for 1 PM to 3 PM. This causes a
conflict which must be resolved once the salesperson gets to work and
reconnects his hand-held device to the database.

Several general properties become apparent from the example de-
scribed. Concurrent modifications to the same data may not always be
undesirable. In the case of the calendar, if the assistant had entered an
appointment for 12 PM to 2 PM while the salesperson made an ap-
pointment for 3 PM to 5 PM, the same shared calendar data would be
concurrently modified yet this would not violate the consistency of the
data even though the salesperson modified his calendar while it con-
tained stale data. Conflicts are based on application semantics. In the
calendar, a conflict is an overlapping of appointments in time but could
be completely different in another application. From the user’s perspec-
tive, automatic resolution of conflicts upon reconnection is desirable but
may not always be possible; thus flexibility in resolving conflicts is im-
portant. The salesperson may want all of the entries that he adds to
the calendar to take precedence over others so his assistant’s conflict-
ing entry would have been deleted to make room for his entry. However
there may also be special cases where the salesperson would not want
this to apply.

1.1 Problem Statement

The problem of concurrency and shared data has been studied at length
in the context of databases. The problem of shared data and discon-
nected operation has also been studied a great deal in the context of
network partitions. But the problem of shared data and disconnected
operation in the context of mobile devices changes because disconnec-
tions are more frequent and more predictable [12]. As a result, conflicts
will be more likely. Therefore intelligent conflict resolution is neces-
sary since the user of the mobile device will not want to lose all of the
operations that he or she has performed while disconnected.

An Approach to Disconnected Operation 105

The problem that this paper addresses is how to build a system that
manages shared data in the presence of disconnected operation. This
system must address the issues of using stale data while disconnected
and dealing with conflicting updates upon reconnection.

1.2 Achieving consistency

To achieve consistency a system can either use a pessimistic or an opti-
mistic approach. In an optimistic scheme, users are allowed to modify
shared data that may be concurrently accessed by other users. If an op-
timistic scheme is employed and users can be disconnected, some form
of conflict resolution is required.

Pessimistic schemes prevent conflicts from occurring by permitting
modifications only to that shared data for which the user has a lock.
For the mobile computing setting, requiring the possession of locks to
modify data limits the availability of data for other users.

Another aspect of achieving consistency with shared data, is main-
taining serializability of data. Thus, a common way to handle concur-
rent accesses to shared data is to use transactions to aid in achieving
both consistency and serializability of operations on shared data. Tra-
ditional properties of transactions are: atomicity, consistency, isolation,
and durability (ACID) [10].

Various transaction models for mobile computing have been studied
in [10, 5, 9]. Each is similar in that weaker forms of transactions (i.e.
weak, tentative, or second-class transactions) are defined for transac-
tions made on data local to a mobile device while disconnected. Using
this weaker notion of transactions or tentative transactions allows for
a system to have both consistency and an optimistic scheme in the
presence of disconnections. While disconnected, tentative transactions
operate on locally cached data. Each tentative transaction is logged at
the disconnected device. Upon reconnection, each tentative transaction
will either commit or abort as it is replayed against the shared data.

1.3 Flexible conflict resolution

Tentative transactions result in the need for intelligent conflict reso-
lution. Since potentially all of the tentative transactions made while
disconnected could be aborted, it is important that the system employ
conflict resolution for those aborted transactions so that the discon-
nected user’s operations are not lost.

Dealing with conflicts or aborts that occur upon reconnection is
not simple. The problem is that resolution of conflicts is defined by

106 Sidney Chang and Dorothy Curtis

application semantics and providing general support for a variety of
applications is hard. Systems can automatically try to resolve conflicts.
Another way to resolve the conflicts is to consult the user upon a failure.
Conflict resolution can also be left up to the application since it is best
aware of its own semantics. In the end, the most complete approach
to resolving conflicts is a combination of system, application, and user
support

Examples of such systems are Coda, Bayou, and Rover [7, 4, 6].
These systems will be discussed in greater detail in Section 5 and com-
pared with the system presented here.

2 Thor overview

This project uses the Thor distributed object-oriented database system
[8]. This paper proves the serializability of Thor and its ACID proper-
ties. In this section, an overview of the Thor architecture is presented.

2.1 Thor architecture

Thor provides a persistent store of objects where each object has a
unique identity, set of methods on a per type basis, and state. The
system has a client/server architecture where servers are repositories
of persistent objects. The server or object repository (OR) consists of
a root object plus all persistent objects that are reachable from the
root object. The OR handles validation of transactions across multiple
clients by using an optimistic concurrency control scheme described in
[1]. Clients in Thor consist of a front end (FE) and an application. The
FE handles caching of objects from the OR and transaction processing.
Applications operate on cached objects at the FE inside transactions
and commit transactions through the FE to the OR.

2.2 Objects in Thor

Each object is uniquely identified by an identifier known as an oref.
Orefs are also used to locate an object within pages at the OR and
FE. At the OR’s objects are known only by their orefs. Objects at the
FE are categorized as either persistent or non-persistent. Persistent
objects are objects that the OR’s are aware of and that are reachable
from the persistent root object. Non-persistent objects are objects that
are newly created by an application that have not yet been committed
at the OR or objects that are used temporarily by the application and

An Approach to Disconnected Operation 107

that will not need to persist across different runs of an application.
Persistent objects at the FE are stored in the persistent cache which
caches whole pages from the OR. An object in the persistent cache can
be reached at the FE via its oref. Non-persistent objects are stored
in the volatile heap and do not have orefs until they are committed
and assigned oref’s by the OR. To facilitate program access to objects
at the FE in the persistent cache, orefs are mapped to local memory
addresses.

2.3 FE transaction logging and committing transactions

Applications make high level operations on objects. These high-level
operations on objects are reduced to reads, writes, and creations of
objects. Each of these is logged by the FE in order to create the correct
read, written, and created object sets to be sent to the OR in a commit
request.

An application completes a transaction by making a request to the
FE to commit the transaction. The FE processes this request by col-
lecting all of the logged commit sets: the read object set (ROS), modi-
fied object set (MOS), and new object set (NOS). These sets are sent
to the OR in the form of a commit request. The ROS and MOS will
contain only persistent objects and the NOS will contain only those
non-persistent objects created inside the transaction that are reachable
from some persistent object. Before a NOS is sent to the OR it must
contain orefs. The FE maintains some free pages for new orefs but in
the event that there are no free orefs available, the OR is contacted to
obtain new orefs.

To handle concurrency, an OR will validate a transaction based on
whether or not that transaction read or wrote invalidated objects. The
OR maintains a per-FE set of invalidated objects. These are objects
whose state has become invalid since the time the FE cached them. An
object at an FE is invalidated when another FE successfully commits
a transaction modifying that object since the cached version is now
stale. FE’s are notified of invalidations and must acknowledge them by
invalidating the objects in the persistent cache so that if those objects
are ever accessed by the application, their new state will be fetched
from the OR.

The OR can either commit or abort the FE’s commit request. If
the transaction is aborted by the OR, the FE must then roll back
any of the changes made by the application. This includes reverting
the state of modified objects back to the original state prior to the
transaction and removing any newly created objects from the volatile

108 Sidney Chang and Dorothy Curtis

heap. If the transaction is committed by the OR, the FE will move any
newly created objects from the volatile heap to the persistent cache.

2.4 Summary of Thor

Thor provides transaction controlled access to shared data. Its opti-
mistic concurrency scheme is appropriate for disconnected operation
and its object-oriented nature should provide some benefits.

3 Disconnected operation in Thor

In the previous section, Thor was introduced. This section describes
how we added disconnected operation to Thor [3].

The approach to disconnected operation in Thor is to use tentative
transactions to manage shared data while disconnected and to provide
a framework that enables the application to handle conflict resolution.
The extension of Thor to support disconnected clients has two main
aspects: extensions to the application and extensions to the FE (caching
and per transaction processing).

3.1 FE support for disconnected operation

FE support for disconnected operation can be divided into three phases.
The first is preparation for disconnection. The second is operating dis-
connected: handling transactions differently. The third is reconnecting
with the OR: processing the pending transactions and the commits and
aborts resulting from them.

Preparing for disconnect To prepare for disconnection from the
OR, the FE needs to prefetch objects into the cache by processing
queries specified by the application. The application may need a special
prefetch query to ensure that all the relevant data is cached in the FE.
This will be discussed in Section 3.2.

Operating disconnected Once the client has disconnected from the
OR, an application will attempt to commit transactions as it normally
would while connected. While disconnected, a commit becomes a ten-
tative commit meaning that the commit could potentially be aborted
by the OR upon reconnection. While disconnected, applications will
operate the same as when they are connected by making operations on

An Approach to Disconnected Operation 109

objects inside transactions. These operations will change the state of
cached objects at the FE.

The FE logs tentative transactions in the tentative transaction log.
This log saves enough state per tentative transaction in order to replay
each tentative transaction once the FE is reconnected with the OR. The
application is given an id for each tentative transaction that the appli-
cation can associate with operations performed during that transaction.
This information can be used later to assist the user in recovering from
an abort. Figure 1 depicts an example tentative transaction log.

ROS

NOS

MOS

ROS

NOS

MOS

ROS

NOS

MOSTTn−1

n−1

n−1

n−1

= { a, e }

= { a, e }

= { i, j, k }

ROS

NOS

MOS
n

n

TT

n

n

= { a, b, c }

= { l, m }

= { a, b }

...

TT

TT

2

1

1

1

1

2

2

2

= { b, c }

= { h }

Tentative Transaction Log

= { a, b, c, d, e }

= { d, e, f, g }

= { a }

= { a, b, g }

Fig. 1. Tentative Transaction Log

Tentative Transaction
The model used in connected Thor has the FE maintain transaction

information on a per transaction basis. This information, also known as
commit sets, consists of the read object set (ROS), the modified object
set (MOS), and the new object set (NOS) created during a transac-
tion. When the application commits the transaction, during connected
operation, these sets are inserted directly into a commit request to the
OR. But, while disconnected, these sets are maintained in the tentative
transaction log.

The definitions of the commit sets change for tentative transactions.
In a tentative transaction the ROS may consist of both persistent ob-
jects and objects that are tentatively persistent. An object is tentatively
persistent if it was created by some tentative transaction that was ten-
tatively committed but not yet committed at the OR. This also applies
to the MOS in a tentative transaction: it can have both persistent and

110 Sidney Chang and Dorothy Curtis

tentatively persistent objects. In Figure 1, TT2, contains object g in
ROS2 since it is tentatively persistent from TT1.

In a tentative transaction, commit sets must have all of their refer-
ences to objects in oref format before they are sent to the OR. Tempo-
rary orefs are assigned to objects that are created by tentative transac-
tions. In Figure 1, when TT2 is stored into the tentative transaction log,
references to g must be updated to the correct temporary oref assigned
to it in TT1.

In order to be able to handle the abort of a tentative transaction,
each tentative transaction in the log must also save the state of each
object in the MOS prior to its first modification. Objects in the MOS
may be modified multiple times but only the initial state of the object
before any modifications is saved in the log and only the state after the
final modification in the duration of that transaction is saved in the
MOS.

Reconnect When the FE reconnects with the OR, synchronization of
the log occurs before the FE can proceed with any connected opera-
tions. Synchronization with the OR consists of replaying each tentative
transaction in the order in which they were committed while discon-
nected, handling any aborts, and also handling invalidations.

Before sending a commit request to the OR, it is necessary to up-
date temporary orefs in the NOS to permanent orefs. Permanent orefs
are assigned either from free space in the current pages at the FE or by
contacting the OR. In addition, the MOS and NOS may contain tempo-
rary orefs for tentatively persistent objects and these must be updated
as well. Then the FE sends to the OR a commit request containing the
commit sets stored for the tentative transaction.

The OR will then check if the commit request should be committed
or aborted. The request will abort if an object in the read or write
set of the transaction has been modified by another FE. When the FE
receives the OR’s response to the commit request it will process either
a commit or an abort. On a commit the FE must install newly created
objects from the tentative transaction into its persistent cache. On an
abort, the FE uses the saved copies of modified objects to revert them
back to their original state before the tentative transaction and then
deletes newly created objects from the volatile heap.

When a tentative transaction is aborted, it is handled similarly to
a connected abort. But, for a tentative transaction, in addition to re-
verting modified objects to their state before the tentative transaction,
subsequent tentative transactions that depend on that tentative trans-

An Approach to Disconnected Operation 111

action must also be aborted. Tentative transaction TTl depends on TTk

where k < l if:

(ROSl ∩ MOSk �= ∅) ∨ (MOSl ∩ MOSk �= ∅) ∨ (ROSl ∩ NOSk �=
∅) ∨ (MOSl ∩ NOSk �= ∅).

This defines dependency since TTl can not be committed if it read
or modified objects that were in an invalid state (as indicated by the
abort of TTk). Because the abort of TTk causes the objects in NOSk

to be deleted, overall bookkeeping is simpler if transactions involving
references to NOSk are removed at the same time.

In checking for dependencies, if a subsequent tentative transaction
in the log aborts due to its dependency on an aborted transaction,
then any tentative transactions dependent on it must also abort. It is
important to be careful about the order in which the state of objects
in a tentative transaction’s MOS are reverted to their saved state. For
example, TTk with MOSk = {a} aborts. TTl with MOSl = {b} is
dependent on TTk because ROSl = {a,b}. TTm with MOSm = {b}
is dependent on TTl because ROSm = {b}. So here is a chain of de-
pendencies and after all of the dependent aborts have been processed,
the state of object a should be as it was before TTk and the state of
object b should be as it was before TTl. In the case of object b, it is
important that its state be undone backwards, first to the saved state
in TTm and then to the state saved in TTl. Therefore when aborts are
processed, the dependencies are found in a forward scan but undoing
the state of each is done in a backwards process through each of the
dependent tentative transactions.

After the entire log of tentative transactions has been processed, in-
validations are handled. In the process of replaying the tentative trans-
actions, the FE may receive invalidation messages containing orefs of
objects that have become stale. These stale objects must be marked
invalid in the persistent cache.

After the FE processes all tentative transactions and invalidations,
it must notify the application of any failures. It does this by returning
to the application a set of tentative transaction id’s containing the id
of each tentative transaction that aborted.

Figure 2 depicts the reconnect process for a sample scenario. The
tentative transaction log in this case contains three tentative trans-
actions. TT1 is aborted since some other FE made a modification to
object a which this FE has not yet seen. Object a is in ROS1 and
MOS1 so the OR must abort TT1. The OR also sends an invalidation
message for object a. Since MOS2 ∩ NOS1 �= ∅, the FE will automat-
ically abort TT2 without sending a commit request to the OR for it.

112 Sidney Chang and Dorothy Curtis

TT3 is committed successfully. Then the FE processes the invalidation
message and sends the acknowledgement to the OR. Finally the FE
passes back to the application the list of tentative transaction id’s that
failed to commit.

Commit reply TT1

FE ORApplication

Commit reply TT3

3Commit request TT

1Commit request TT

(MOS = d)
TT depends on TT − request not sent

12
2

[TT , TT]
1 2

Reconnect

Invalidation message

Failed TT’s

Invalidation Ack

[abort]

[a]

[commit]

 MOS=a

 MOS=b
[ROS=b,c

 NOS=f]

[ROS=a.b.c

 NOS=d,e]

Fig. 2. Synchronizing the Log

3.2 Application support for disconnected operation

In addition to the support provided by the FE for disconnected opera-
tion, the application must also provide support for disconnected oper-
ation, namely support specific to application semantics. This support
can be divided into the three components of preparing for disconnec-
tion, operating disconnected, and reconnecting. A specific example of
an application and the support it provides will be discussed in Section
4.1.

Preparing for disconnect Application specific hoarding queries are
used to prepare the client for disconnection from the OR. A hoarding
query is an operation on the persistent objects in the database that
causes objects to be fetched or hoarded from the OR into the FE cache
prior to disconnecting from the OR.

An Approach to Disconnected Operation 113

Operating disconnected When disconnected, attempting to commit
a transaction returns an id for the tentative commit. An application
will use this id to identify data associated with the tentative transac-
tion if it should abort. This contextual data can include operation type,
parameters, or priority. Each operation type could also have an asso-
ciated resolution function which attempts to use the saved parameters
from the tentative transaction context to resolve a failure to commit.
This extra support is necessary since Thor provides only a notification
of conflicts and does no resolution itself.

Reconnect On reconnect, after the entire tentative transaction log
has been replayed, the application receives a list of the id’s of aborted
transactions and then deals with their resolution. It does this by iterat-
ing through the list of failed transactions and calling their appropriate
resolution functions. In the process of calling a resolution function, it
is possible that the transaction will be aborted again and a series of
nested calls to resolution functions and aborts may occur.

To resolve a conflict, the application has the flexibility to do a vari-
ety of resolutions since the application has control over where conflicts
are detected and also has saved context for each transaction. While
Thor provides conservative abort semantics that guarantee serializabil-
ity of operations on shared objects, successful retries of a failed tenta-
tive transaction actually allow applications that do not require Thor’s
conservative abort semantics to achieve more relaxed semantics.

4 Evaluation

This section discusses how well disconnected operation in Thor achieves
the goals of consistent shared data and flexible conflict resolution
through the development of a sample application on top of the Thor
framework. In addition, an analysis of performance is presented to dis-
cuss the overhead from disconnected operation.

4.1 Sample client program: a shared calendar

A shared calendar system was implemented as an application using
the disconnected Thor framework described in Section 3. The calen-
dar system maintains a database of calendars where each calendar is
associated with a user but multiple users may modify a single calen-
dar. Concurrent modifications to a single calendar are possible. A user

114 Sidney Chang and Dorothy Curtis

can add and delete events to and from a calendar. Each event has an
associated day and time.

The essential aspect of the design of the calendar application was the
data modelling phase or development of the application’s schema. The
schema is the organization or structure of the data as represented in
the database. In the data modelling phase it is important to consider
the effect of concurrency on the data. It is especially important in
Thor since conflicts are detected at the granularity of an object and
therefore the design of the object-oriented schema will directly impact
what conflicts are detected. In the calendar application, concurrent
additions of events to a user’s calendar are permissible so long as they
do not overlap in time. The correct behavior is for a conflict to be
detected only when concurrent updates to the calendar modify events
that conflict in time. However, these conflicts are not always significant
and in some situations, a user may want more relaxed semantics. These
situations can be accommodated with the flexible resolution of conflicts.

Calendar

Time Slots ...
Event

Description

Fig. 3. Calendar Schema

To achieve the correct calendar conflict semantics in the calendar
application, the schema was designed to detect conflicts at the granu-
larity of time slot objects rather than the entire calendar object. This
is depicted in Figure 3 where the calendar is a set of time slot objects
and each time slot can be assigned to some event. With this design, if
two users concurrently modify the same time slot object, then a conflict
will be detected by Thor. This is the correct semantics for a conflict in
a calendar, namely when two appointments are made for overlapping
times. However since the user may want to allow this at times, it is im-
portant to consider the conflict resolution and the different properties
that a user might want to be able to have in his calendar.

With the described design of the calendar, we maintain consistency
in addition to getting the correct conflict semantics. Consistency is
maintained since multiple users can concurrently add events to the
calendar without having a conflict as long as a transaction does not read

An Approach to Disconnected Operation 115

stale objects in the calendar. An additional factor to consider in the
calendar application design is that a transaction that writes an event
should be careful not to include reads of other time slots. This requires
that the application developer be very careful in the organization of
commit points in the application. For example, in a transaction that
adds an event to the calendar, the application should not also read all
of the objects in the calendar, since this will increase the likelihood of
an abort.

Conflict resolution in the calendar application is flexible since it is
possible for the application to have control over where conflicts are de-
tected. In the case of the calendar, we know that conflicts are over time
slots, so if a conflict occurs, we know it is because another user has al-
ready modified that same time slot. It is then up to the application to
deal with this conflict. In order to be able to deal with a conflict the ap-
plication needs to understand the context for a transaction. Therefore,
as discussed in section 3.2, the calendar application saves the high-level
operations made by the transaction and any arguments to the opera-
tions.

Using the saved context and having fine-grained control over conflict
detection through the design of the application schema, any number of
policies can be implemented to resolve conflicts.

4.2 Performance

The overall performance of the Thor system is discussed in [1]. Thor
compares favorably with similar systems in terms of throughput and
scalability. This section discusses the added overhead of supporting
disconnected operation. First, the number of tentative transactions is
limited by the amount of memory in the client. The overhead varies by
the number of tentative transactions in the log, the read:write:new ob-
ject ratio in the commit sets, and the level of contention or percentage
of aborts for a given number of tentative transactions in the log. The
remainder of this section will discuss the overhead of disconnected op-
eration in Thor using experiments based on the OO7 benchmark which
provides a comprehensive test of object-oriented database management
system performance. The details of this benchmark are described in [2].

In comparison to connected operation in Thor, the design of dis-
connected operation in Thor has several differences that affect perfor-
mance. These differences occur both while operating disconnected and
upon reconnection. Experiments were conducted with a single FE and
OR. The OR was run on a 400 Mhz dual Pentium II with 128 MB
of RAM running the Linux Redhat distribution 6.2. The FE was run

116 Sidney Chang and Dorothy Curtis

a 450 Mhz Pentium II with 128 MB of RAM running Linux Redhat
distribution 6.2. The FE cache size for all experiments was 24 MB. All
communication between the two machines was on an isolated network
so that variations in network traffic would not affect the experimental
results.

Each experiment uses an OO7 traversal to compare connected with
disconnected operation. The difference between disconnected and con-
nected operation occurs at commit points. During connected operation,
the application simply waits for the response to a commit request from
the OR. In disconnected operation, a commit has two parts. The first
part is to tentatively commit the transaction while disconnected. This
places the transaction in the tentative transaction log. The second part
is to reconnect and send the tentative transaction from the log to the
OR as a commit request.

Upon reconnection, replay of the log incurs two major costs that
do not occur in connected commits. The first overhead incurred is,
in preparation to send the tentative transaction as a commit request
to the OR, newly created objects that have temporary orefs must be
updated to have new permanent orefs. Getting permanent orefs is a
cost that is also incurred during connected commits, however objects
in the MOS and NOS need to be updated with these new orefs. This
updating incurs the extra cost of a second traversal of the objects in
the MOS and NOS for all tentatively committed transactions in the
log.

We evaluated the average overhead to be 36.32% for updating tem-
porary orefs on logs ranging from 10-100 tentative transactions with a
workload of an OO7 insertion query with 5 new composite objects and 2
modified objects per transaction. The growth of the time to tentatively
commit and reconnect is linear with respect to the number of tenta-
tive transactions. However it does grow at a faster rate than connected
commits. This is due to an increasing number of permanent orefs to
search through when replacing temporary orefs with permanent ones.

The second major source of overhead from disconnected operation
comes from aborts. If a transaction is aborted, the log must be updated
to abort any dependent transactions. This dependency check has the
extra cost of scanning the log with a backwards undo (as described in
Section 3.1) each time an abort happens.

Experiments were conducted in both low and moderate contention
(abort rate) environments similar to experiments made by Adya for
concurrency control studies in Thor [1]. The experiments make use of
the OO7 T2a traversal rather than the Tnew since the Tnew traversal
creates dependent tentative transactions. By using the T2a traversal

An Approach to Disconnected Operation 117

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

T
ot

al
 T

im
e

(s
ec

)

(Tentative) Transactions

OO7 T2a: Tentatitive Commit + Reconnect vs. Commit with Moderate Abort Rate

 Tentative Commit + Reconnect
 Commit

Fig. 4. Abort Overhead (20% abort rate)

both the low and moderate abort rate experiments have no dependen-
cies between transactions to show the case of maximal scanning. Figure
4 shows the results for an OO7 T2a traversal with a 20% abort rate
which is considered moderate contention. The results for a low 5% abort
rate show similar trends.

5 Related work

Providing consistent shared data in the presence of disconnected oper-
ation is not a new problem. Researchers have analyzed the issues and
systems have been implemented that support disconnected operation
and the sharing of data.

The major relevant analytical work is [11]. Disconnected operation
in Thor largely implements the behavior described in the caching ex-
ample in this paper: the mobile computer performs weak transactions
while disconnected. These transactions are committed only if they do
not conflict with the strict transactions at the server. Beyond actually
implementing this model, we have started to understand how applica-
tions can make use of this system.

Some implementations include Bayou, Rover, and Coda as men-
tioned in Section 1.3. Having discussed the design of disconnected op-
eration in Thor and evaluated its effectiveness in achieving consistent
shared data with flexible conflict resolution, this section visits each of
the systems described in Section 1.3 to see how they compare. In general
each system uses a similar notion of “tentative” data for data modified
while disconnected but has different methods for handling concurrency
and conflicts.

Coda supports disconnected operation but it is oriented around a
file system. Conflicts are detected only at the granularity of files which
gives an application much less control over the semantics of conflicts.

118 Sidney Chang and Dorothy Curtis

Thor on the other hand, can be used for a variety of applications where
data easily fits into an object model where objects are small. However
if an application is concerned over file-sharing such as in a collaborative
document editing system, Coda may actually be a more suitable choice.

Both Bayou and Rover do not provide for any built-in notion of con-
sistency. It is up to the application to define in its procedures, checks
for conflicts and the procedures to resolve them. Thor takes some of
the burden of this away from the application by having built-in con-
flicts detected on objects. While it is true that the application does
play a role in defining conflicts since the application schema must be
carefully designed to achieve the correct conflict semantics, Thor pro-
vides a framework with which the application can work. In addition
this framework is a familiar one since it is essentially the framework of
an object-oriented programming language.

Bayou and the approach to disconnected operation in Thor are sim-
ilar in that application-specific conflict detection and resolution are fa-
cilitated. Bayou’s dependency-check procedure is analogous to schema
design in Thor since the manner in which the schema is designed, con-
trols what conflicts are detected. Bayou’s merge-proc function is analo-
gous to application conflict resolution in Thor. The difference between
the two is that there is no built in notion of consistency in Bayou. While
Thor allows for an application to have control over where conflicts will
be detected, the serializability of data will not be violated at any point.
Thor could perhaps benefit from Bayou’s notion of merge-procs. Since
Thor applications must now include all conflict resolution code inside
the application, it would be beneficial to add to Thor, a framework for
applications to write resolution functions or perhaps even select from
a set of common resolution functions.

6 Conclusion

This paper has described a system that can, with more experimenta-
tion, be extended to support a variety of applications. These applica-
tions will behave well using shared data whether the network is available
or not.

Disconnected operation in Thor suits a variety of applications since
it can provide strict consistency rules for applications that require them
such as a banking system or airline reservation system. Yet, with the
framework provided, it also allows applications with more relaxed con-
sistency requirements to have enough control over conflicts and their
resolution to achieve more flexible consistency semantics.

An Approach to Disconnected Operation 119

7 Acknowledgements

The authors are grateful for support from members of the MIT Project
Oxygen partnership: Acer, Delta, Hewlett Packard, NTT, Nokia, and
Philips and from DARPA through the Office of Naval Research contract
number N66001-99-2-891702. We also wish to thank Chandra Boyapati,
Liuba Shrira, Hong Tian, John Ankcorn, Steve Garland, Paul Kim, and
Hari Balakrishnan for their thoughtful suggestions.

References

1. Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Ef-
ficient optimistic concurrency control using loosely synchronized clocks.
In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, pages 23–34, San Jose, CA, US, 1995.

2. M.J. Carey, D.J. DeWitt, and J.F. Naughton. The oo7 benchmark.
In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 12–21, Washington D.C., May 1993.

3. Sidney Chang. Adapting an object-oriented database for disconnected
operation. Master’s thesis, Massachusetts Institute of Technology, 2001.

4. A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and B. B. Welch. The bayou architecture: Support for data sharing
among mobile users. In Proceedings IEEE Workshop on Mobile Com-
puting Systems & Applications, pages 2–7, Santa Cruz, California, 8-9
1994.

5. Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers
of replication and a solution. In ACM SIGMOD International Conference
on Management of Data, pages 173–182, Montreal, Canada, 1996.

6. Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Mobile
computing with the rover toolkit. IEEE Transactions on Computers:
Special issue on Mobile Computing, 1997.

7. J. J. Kistler and M. Satyanarayanan. Disconnected operation in the
coda file system. In Thirteenth ACM Symposium on Operating Systems
Principles, pages 213–225, Asilomar Conference Center, Pacific Grove,
U.S., 1991. ACM Press.

8. Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. Provid-
ing persistent objects in distributed systems. In Rachid Guerraoui, ed-
itor, ECOOP ’99 — Object-Oriented Programming 13th European Con-
ference, Lisbon Portugal, volume 1628, pages 230–257. Springer-Verlag,
New York, NY, 1999.

9. Q. Lu and M. Satyanaranyanan. Isolation-only transactions for mobile
computing. Operating Systems Review, 28(2):81–87, 1994.

10. Evaggelia Pitoura and Bharat Bhargava. Revising transaction concepts
for mobile computing. In Proc. of the First IEEE Workshop on Mobile
Computing Systems and Applications, pages 164–168, Santa Cruz, CA,
December 1994.

120 Sidney Chang and Dorothy Curtis

11. Evaggelia Pitoura and Bharat Bhargava. Data consistency in intermit-
tently connected distributed systems. IEEE Transactions on Knowledge
and Data Engineering, 11(6):896–915, 1999.

12. Evaggelia Pitoura and George Samaras. Data Management for Mobile
Computing, chapter 3, pages 37–70. Kluwer Academic Publishers, 1998.

