
Proc. of the 6th Annual International
Conference on Mobile Computing and
Networking (MOBICOM 2000),
Boston, MA, August 2000.

An End-to-End Approach to Host Mobility

Alex C. Snoeren and Hari Balakrishnan�

MIT Laboratory for Computer Science
{snoeren, hari}@lcs.mit.edu

Abstract. We present the design and implementation of an
end-to-end architecture for Internet host mobility using dy-
namic updates to the Domain Name System (DNS) to track
host location. Existing TCP connections are retained using se-
cure and efficient connection migration, enabling established
connections to seamlessly negotiate a change in endpoint IP
addresses without the need for a third party. Our architecture
is secure—name updates are effected via the secure DNS up-
date protocol, while TCP connection migration uses a novel
set of Migrate options—and provides a pure end-system alter-
native to routing-based approaches such as Mobile IP.

Mobile IP was designed under the principle that fixed Internet
hosts and applications were to remain unmodified and only
the underlying IP substrate should change. Our architecture
requires no changes to the unicast IP substrate, instead mod-
ifying transport protocols and applications at the end hosts.
We argue that this is not a hindrance to deployment; rather,
in a significant number of cases, it allows for an easier de-
ployment path than Mobile IP, while simultaneously giving
better performance. We compare and contrast the strengths
of end-to-end and network-layer mobility schemes, and argue
that end-to-end schemes are better suited to many common
mobile applications. Our performance experiments show that
handoff times are governed by TCP migrate latencies, and are
on the order of a round-trip time of the communicating peers.

� This research was supported in part by DARPA (Grant No. MDA972-99-
1-0014), NTT Corporation, and IBM. Alex C. Snoeren is supported by a
National Defense Science and Engineering Graduate (NDSEG) Fellowship.



160 Alex C. Snoeren and Hari Balakrishnan

1 Introduction

The proliferation of mobile computing devices and wireless networking
products over the past decade has made host and service mobility on the
Internet an important problem. Delivering data to a mobile host across
a network address change without disrupting existing connections can
be tackled by introducing a level of indirection in the routing system.
This is the approach taken by Mobile IP [28, 30], which deploys a home
agent that intercepts packets destined for a host currently away from
its home network, and delivers it to the mobile host via a foreign agent
in the foreign network. This approach does not require any changes
to the fixed (correspondent) hosts in the Internet, but does require
changing the underlying IP substrate to effect this triangle routing, and
an authentication protocol to ensure that connections are not hijacked
by a malicious party. Mobile IP is a “pure” routing solution, a network-
layer scheme that requires no changes to any higher layer of the Internet
protocol stack.

There are many classes of mobile applications [17]: those where
other hosts originate connections to a mobile host and can benefit from
both host location and handoff support (e.g., a mobile Web server,
mobile telephony); those where the mobile host originates all connec-
tions, which do not require host location services but can benefit from
handoff support (e.g., mail readers, Web browsers); and those where
an application-level retry suffices if the network address changes unex-
pectedly during a short transaction, which need neither to work well
(e.g., DNS resolution). We believe that a good end-to-end architecture
for host mobility will support all these modes, and empower applica-
tions to make the choice best suited to their needs. Our architecture
is motivated by, and meets, this goal. It is an end-to-end approach; no
changes to the IP substrate are required.

In our mobility architecture, the decision of whether to support
transparent connectivity across network address changes (especially
useful for mobile servers) or not (not needed for short client-server
transactions) is left to the application. While Mobile IP-style, fully-
transparent mobility support is general and sufficient for mobile ap-
plications, this generality comes at significant cost, complexity, and
performance degradation.

To locate mobile hosts as they change their network attachment
point, we take advantage of the widely-deployed Domain Name System
(DNS) [21] and its ability to support secure dynamic updates [9, 36].
Because most Internet applications resolve hostnames to an IP address
at the beginning of a transaction or connection, this approach is viable



An End-to-End Approach to Host Mobility 161

for initiating new sessions with mobile hosts. When a host changes its
network attachment point (IP address), it sends a secure DNS update
to one of the name servers in its home domain updating its current lo-
cation. The name-to-address mappings for these hosts are uncacheable
by other domains, so stale bindings are eliminated.

The ability to support continuous communication during periods
of mobility without modifying the IP substrate is a more challenging
problem. Because TCP is a connection-oriented reliable protocol, many
TCP applications reasonably expect this service model in the face of
losses and transient link failures, route changes, or mobility. The two
communicating peers must securely negotiate a change in the underly-
ing network-layer IP address and then seamlessly continue communi-
cation. Furthermore, an approach that requires either communicating
peer to learn about the new network-layer address before a move oc-
curs is untenable because network-layer moves may be quite sudden
and unpredictable.

We design a new end-to-end TCP option to support the secure mi-
gration of an established TCP connection across an IP address change.
Using this option, a TCP peer can suspend an open connection and re-
activate it from another IP address, transparent to an application that
expects uninterrupted reliable communication with the peer. In this
protocol, security is achieved through the use of a connection identi-
fier, or token, which may be secured by a shared secret key negotiated
through an Elliptic Curve Diffie-Hellman (ECDH) key exchange [37]
during initial connection establishment. It requires no third party to
authenticate migration requests, thereby allowing the end points to use
whatever authentication mechanism they choose to establish a trust re-
lationship. Although we only describe details for TCP migration, we
find that this idea is general and can be implemented in a like man-
ner for specific UDP-based protocols such as the Real-time Transport
Protocol (RTP) to achieve seamless mobility for those protocols as well.

One way of thinking of our work is in the context of the end-to-
end argument [33], which observes that functionality is often best im-
plemented in a higher layer at an end system, where it can be done
according to the application’s specific requirements. We show that it
is possible to implement mobility as an end-to-end service without
network-layer support, while providing multiple mobility modes. In this
sense, this is akin to applications deciding between UDP and TCP as a
transport protocol; many opt for UDP’s simplicity and timeliness over
TCP’s reliability. In the same fashion, applications should be able to
select the mobility mode of their choice.



162 Alex C. Snoeren and Hari Balakrishnan

The other significant advantage of handling mobility on an end-to-
end basis is that it enables higher layers like TCP and HTTP to learn
about mobility and adapt to it. For example, it is a good idea after
a network route change to restart TCP transmissions from slow start
or a window-halving [14] since the bottleneck might have changed, or
adapt the transmitted content to reflect new network conditions. These
optimizations can be made naturally if mobility is handled end-to-end,
since no extra signalling is needed. Indeed, the large body of work in
mobile-aware applications [16, 23, 26] can benefit from our architecture.

Experience with previous end-to-end enhancements such as vari-
ous TCP options (e.g., SACK [20]), path MTU discovery, HTTP/1.1,
etc., has shown that such techniques often meet with less resistance
to widespread deployment than changes to the IP substrate. This sup-
ports our belief that, in addition to the flexibility it offers, an end-to-end
approach may be successfully deployed.

We have implemented this mobility architecture in Linux 2.2 and
have conducted several experiments with it. We are encouraged by the
ease with which seamless mobility can be achieved, the flexibility it
provides, and the lack of performance degradation. Since our scheme
does not impose any triangle routing anomalies, end-to-end latency for
active connections is better than standard Mobile IP, and similar to
Mobile IP with route optimization.

The rest of this paper describes the technical details of our ap-
proach. In Section 2, we survey related work in the area of mobility
support. We describe our architecture in Section 3, and detail our new
Migrate TCP option in Section 4. We discuss the security ramifications
of our approach in Section 5 and our implementation and performance
results in Section 6. We address some deployment issues in Section 7
and conclude in Section 8.

2 Related work

The problem of Internet host mobility has been approached from many
angles in the literature, but they can be classified into two categories.
Some techniques attempt to handle host relocation in a completely
transparent fashion, hiding any changes in network structure from the
end hosts. We term these techniques network-layer mobility. By con-
trast, many other approaches attempt to handle relocation at a higher
level in the end host.



An End-to-End Approach to Host Mobility 163

2.1 Network-layer mobility

Mobile IP (RFC 2002) [30] is the current IETF standard for supporting
mobility on the Internet. It provides transparent support for host mo-
bility by inserting a level of indirection into the routing architecture.
By elevating the mobile host’s home address from its function as an
interface identifier to an end-point identifier (EID), Mobile IP ensures
the delivery of packets destined to a mobile host’s home address, in-
dependent of the host’s physical point of attachment to the Internet,
as reflected in its care-of address. Mobile IP does this by creating a
routing tunnel between a mobile host’s home network and its care-of
address.

Such routing tunnels need to be implemented with care because ad-
vertising explicit host routes into the wide-area routing tables destroys
routing scalability. Mobile IP uses a home agent physically attached to
the mobile host’s home network to intercept and tunnel packets to the
mobile host. Hence, packets undergo triangle routing, which is often
longer than the optimal unicast path.

Further compounding the problem is the widespread deployment of
ingress filters [10], ratified in February 2000 by the IETF as a “Best
Current Practice” to combat denial-of-service attacks. With this mech-
anism, a router does not forward packets with a source address foreign
to the local network, which implies that a packet sent by a mobile host
in a foreign network with its source address set to its home address
will not be forwarded. The solution to this is to use reverse tunneling,
which tunnels packets originating at the mobile host first to the host’s
home agent (using the host’s care-of address as a source address), and
then from there on to the destination using the home address as the
source address. Thus, routing anomalies occur in both directions.

Perkins and Johnson present a route optimization option for Mo-
bile IP to avoid triangle routing [29]. Here, correspondent hosts cache
the care-of address of mobile hosts, allowing communication to proceed
directly. It requires an authenticated message exchange from the home
agent to the correspondent host [27]. The resulting Mobile IP scheme
achieves performance almost equivalent to ours, but requires modifi-
cations to the end hosts’ IP layer1 as well as the infrastructure. In
contrast, our approach achieves secure, seamless connection migration
without a third-party home agent. It also provides a mobile host the
ability to pick a mobility mode based on the needs of its applications.
1 In fact, the draft allows on-path routers to cache the care-of addresses

instead of the end host, but this requires modifying yet another level of
infrastructure.



164 Alex C. Snoeren and Hari Balakrishnan

IPv6 provides native support for multiple simultaneous host ad-
dresses, and Mobile IPv6 provides mobility support for IPv6 in much
the same fashion as Mobile IP for IPv4. IPv6 extensions allow for the
specification of a care-of address, which explicitly separates the role of
the EID (the host’s canonical IP address) and routing location (the
care-of address). Gupta and Reddy propose a similar redirection mech-
anism for IPv4 through the use of ICMP-like control messages which
establish care-of bindings at the end hosts [11].

Mysore and Bharghavan propose an interesting approach to network-
layer mobility [24], where each mobile host is issued a permanent Class
D IP multicast address that can serve as a unique EID. If multicast
were widely deployed, this is a promising approach; because a Class D
EID has the benefit of being directly routable by the routing infrastruc-
ture, it removes the need for an explicit care-of address. However, this
scheme requires a robust, scalable, and efficient multicast infrastructure
for a large number of sparse groups.

2.2 Higher-layer methods

The home-agent-based approach has also been applied at the transport
layer, as in MSOCKS [19], where connection redirection was achieved
using a split-connection proxy.

The general idea of using names as a level-of-indirection to handle
object and node mobility is part of computer systems folklore. For
some years now, people have talked about using the DNS to effect
the level-of-indirection needed to support host mobility, but to our
knowledge ours is the first specific and complete architecture that uses
the DNS to support Internet host mobility. Recently, Adjie-Winoto et
al. proposed the integration of name resolution and message routing in
an Intentional Naming System to implement a “late binding” option
that tracks highly mobile services and nodes [2], and it seems possible to
improve the performance of that scheme using our connection migration
approach.

Our approach differs fundamentally from EID/locator techniques
since it requires no additional level of global addressing or indirec-
tion, but only a (normally pre-existing) DNS entry and a shared con-
nection key between the two end hosts. Furthermore, unlike previ-
ous connection-ID draft proposals such as Huitema’s ETCP [12] for
TCP connection re-addressing, it requires no modification to the TCP
header, packet format, or semantics.2 Instead, it uses an additional
2 Special RST handling is required on some networks that may rapidly re-

assign IP addresses; Section 4.5 discusses this issue.



An End-to-End Approach to Host Mobility 165

TCP option and the inserts an additional field into the Transmission
Control Block (TCB).

There is a large body of work relating to improving TCP perfor-
mance in wireless and mobile environments [6, 7]. While not the focus
of our work, our adherence to standard TCP semantics allows these
schemes to continue to work well in our architecture. Furthermore,
since end hosts are explicitly notified of mobility, significant perfor-
mance enhancements can be achieved at the application level [26].

3 An end-to-end architecture

In this section, we describe our end-system mobility architecture. There
are three important components in this system: addressing, mobile host
location, and connection migration. By giving the mobile host explicit
control over its mobility mode, we remove the need for an additional
(third-party) home-agent to broker packet routing. The DNS already
provides a host location service, and any further control is managed
by the communicating peers themselves, triggered by the mobile host
when it changes network location.

We assume, like most mobility schemes, that mobile hosts do not
change IP addresses more than a few times a minute. We believe this
is a reasonable assumption for most common cases of mobility. We em-
phasize that this does not preclude physical mobility at rapid velocities
across a homogeneous link technology, since that can be handled at the
physical and link layers, e.g., via link-layer bridging [13].

The rest of this section discusses addressing in a foreign network
and host location using the DNS. Section 4 is devoted to a detailed
description of TCP connection migration.

3.1 Addressing

The key to the scalability of the Internet architecture is that the IP
address serves as a routing locator, reflecting the addressee’s point of
attachment in the network topology. This enables aggregation based on
address prefixes and allows routing to scale well. Our mobility archi-
tecture explicitly preserves this crucial property of Internet addressing.

Like Mobile IP, we separate the issues of obtaining an IP address
in a foreign domain from locating and seamlessly communicating with
mobile hosts. Any suitable mechanism for address allocation may be
employed, such as manual assignment, the Dynamic Host Configuration
Protocol (DHCP) [8], or an autoconfiguration protocol [35].



166 Alex C. Snoeren and Hari Balakrishnan

While IP addresses fundamentally denote a point of attachment in
the Internet topology and say nothing about the identity of the host
that may be connected to that attachment point, they have implicitly
become associated with other properties as well. For example, they
are often used to specify security and access policies as in the case of
ingress filtering to alleviate denial-of-service attacks. Our architecture
works without violating this trust model and does not require any form
of forward or reverse tunneling to maintain seamless connectivity. In a
foreign network, a mobile host uses a locally obtained interface address
valid in the foreign domain as its source address while communicating
with other Internet hosts.

3.2 Locating a mobile host

Once a mobile host obtains an IP address, there are two ways in which
it can communicate with correspondent hosts. First, as a client, when it
actively opens connections to the correspondent host. In this case, there
is no special host location task to be performed in our architecture;
using the DNS as before works. However, if the mobile host were to
move to another network attachment point during a connection, a new
address would be obtained as described in the previous section, and the
current connection would continue seamlessly via a secure negotiation
with the communicating peer as described in Section 4. If a mobile host
were always a client (not an uncommon case today), then no updates
need to be made to any third party such as a home agent or the DNS.

To support mobile servers and other applications where Internet
hosts actively originate communication with a mobile host, we use the
DNS to provide a level of indirection between a host’s current loca-
tion and an invariant end-point identifier. In Mobile IP, a host’s home
address is the invariant, and all routing (in the absence of route opti-
mization) occurs via the home agent that intercepts packets destined to
this invariant. Ours is not a network-layer solution and we can therefore
avoid the indirection for every packet transmission. We take advantage
of the fact that a hostname lookup is ubiquitously done by most ap-
plications that originate communication with a network host, and use
the DNS name as the invariant. We believe that this is a good ar-
chitectural model: a DNS name identifies a host and does not assume
anything about the network attachment point to which it may currently
be attached, and the indirection occurs only when the initial lookup is
done via a control message (a DNS lookup).

This implies that when the mobile host changes its attachment
point, it must detect this and change the hostname-to-address (“A-



An End-to-End Approach to Host Mobility 167

record”) mapping in the DNS. Fortunately, both tasks are easy to ac-
complish, the former by using a user-level daemon as in Mobile IP, and
the latter by using the well-understood and widely available secure DNS
update protocol [9, 36]. We note that some DHCP servers today issue
a DNS update at client boot time when handing out a new address to
a known client based on a static MAC-to-DNS table. This augurs well
for the incremental deployability of our architecture, since DNS update
support is widely available.

The DNS provides a mechanism by which name resolvers can cache
name mappings for some period of time, specified in the time-to-live
(TTL) field of the A-record. To avoid a stale mapping from being used
from the name cache, we set the time-to-live (TTL) field for the A-
record of the name of the mobile host to zero, which prevents this
from being cached.3 Contrary to what some might expect, this does
not cause a significant scaling problem; name lookups for an uncached
A-record do not have to start from a root name server, because in
general the “NS-record” (name server record) of the mobile host’s DNS
name is cacheable for a long period of time (many hours by default).
This causes the name lookup to start at the name server of the mobile
host’s domain, which scales well because of administrative delegation
of the namespace and DNS server replication in any domain. We note
that some content distribution networks for Web server replication of
popular sites use the same approach of small-to-zero TTL values to
redirect client requests to appropriate servers (e.g., Akamai [3]). There
is no central hot spot because the name server records for a domain are
themselves cacheable for relatively long periods of time.

Even with uncacheable DNS entries there still exists a possible race
condition where a mobile host moves between when a correspondent
host receives the result of its DNS query and when it initiates a TCP
connection. Assuming a mobile host updates its DNS entry immediately
upon reconnection, the chances of such an occurrence are quite small,
but non-zero, especially for a mobile host that makes frequent moves.
In this case, the correspondent host will attempt to open a TCP con-
nection to the mobile host’s old address, and has no automatic fail-over
mechanism.

In this case, the application must perform another DNS lookup to
find the new location of the mobile host. We note that the trend to-
wards dynamic DNS records has caused such application-level retries to
find their way into applications already—for instance, current FreeBSD
telnet and rsh applications try alternate addresses if an initial connec-

3 Modern versions of BIND honor this correctly.



168 Alex C. Snoeren and Hari Balakrishnan

tion fails to a host that has multiple DNS A-records. It seems to be only
a minor addition to refresh DNS bindings if connection establishment
fails.

4 TCP connection migration

A TCP connection [32] is uniquely identified by a 4-tuple: 〈source ad-
dress, source port, dest address, dest port〉. Packets addressed to a dif-
ferent address, even if successfully delivered to the TCP stack on the
mobile host, must not be demultiplexed to a connection established
from a different address. Similarly, packets from a new address are also
not associated with connections established from a previous address.
This is crucial to the proper operation of servers on well-known ports.

We propose a new Migrate TCP option, included in SYN segments,
that identifies a SYN packet as part of a previously established con-
nection, rather than a request for a new connection. This Migrate op-
tion contains a token that identifies a previously established connection
on the same destination 〈address, port〉 pair. The token is negotiated
during initial connection establishment through the use of a Migrate-
Permitted option. After a successful token negotiation, TCP connec-
tions may be uniquely identified by either their traditional 〈source ad-
dress, source port, dest address, dest port〉 4-tuple, or a new 〈source
address, source port, token〉 triple on each host.

A mobile host may restart a previously-established TCP connection
from a new address by sending a special Migrate SYN packet that
contains the token identifying the previous connection. The fixed host
will than re-synchronize the connection with the mobile host at the
new end point. A migrated connection maintains the same control block
and state (with a different end point, of course), including the sequence
number space, so any necessary retransmissions can be requested in the
standard fashion. This also ensures that SACK and any similar options
continue to operate properly. Furthermore, any options negotiated on
the initial SYN exchange remain in effect after connection migration,
and need not be resent in a Migrate SYN.4

Since SYN segments consume a byte in the TCP sequence number
space, Migrate SYNs are issued with the same sequence number as
the last transmitted byte of data. This results in two bytes of data
in a migrated TCP connection with the same sequence number (the
4 They can be, if needed. For example, it might be useful to renegotiate a

new maximum segment size (MSS) reflecting the properties of the new
path. We have not yet explored this in detail.



An End-to-End Approach to Host Mobility 169

new SYN and the previously-transmitted actual data), but this is not
a problem since the Migrate SYN segment need never be explicitly
acknowledged. Any packet received from the fixed host by a migrating
host at the mobile host’s new address that has a sequence number in the
appropriate window for the current connection implicitly acknowledges
the Migrate SYN. Similarly, any further segments from the mobile host
provide the fixed host an implicit acknowledgement of its SYN/ACK.
Thus, there is exactly one byte in the sequence space that needs explicit
acknowledgement even when the Migrate SYN is used.

4.1 An example

SYN 531521:531521(0)〈migrateOk km〉, 〈timestamp Tm〉, . . .

SYN 083521:083521(0)

ack 531522, 〈migrateOk kf 〉, 〈timestamp Tf 〉, . . .

ack 083522

545431:545967(53
6)

ack 092398

SYN 092397:092397(0)〈migrate T ,R〉

SYN 545967:545967(0)

ack 092398

ack 545968

mobile fixed

1

2

3

4

5

6

7

Fig. 1. TCP Connection Migration

Figure 1 shows a sample connection where a mobile client connects
to a fixed host and later moves to a new address. The mobile client ini-
tiates the TCP connection in standard fashion in message 1, including
a Migrate-Permitted option in the SYN packet. The values km and Tm

are parameters used in the token negotiation, described in Section 4.3.
The fixed server, with a migrate-compliant TCP stack, indicates its



170 Alex C. Snoeren and Hari Balakrishnan

acceptance of the Migrate-Permitted option by including the Migrate-
Permitted option in its response (message 2). The client completes the
three-way handshake with message 3, an ACK. The connection then
proceeds as any other TCP connection would, until message 4, the last
packet from the fixed host to the mobile host at its current address.

At some time later the mobile host moves to a new address, and
notifies the fixed server by sending a SYN packet from its new address
in message 5. This SYN includes the Migrate option, which contains the
previously computed connection token as part of a migration request.
Note that the sequence number of this Migrate SYN segment is the
same as the last byte of transmitted data. The server responds in kind
in message 6, also using the sequence number of its last transmitted
byte of data. The ACK, however, is from the same sequence space as
the previous connection. While in this example it acknowledges the
same sequence number as the SYN that generated it, it could be the
case that segments were lost during a period of disconnect while the
mobile host moves, and that the ACK will be a duplicate ACK for the
last successfully received in-sequence byte. Since it is addressed to the
mobile host’s new location, however, it serves as an implicit ACK of the
SYN as well. Upon receipt of this SYN/ACK, the mobile host similarly
ACKs in the previous sequence space, and the connection resumes as
before. All of the options negotiated on the initial SYN except the
Migrate-Permitted option are still in effect, and need not be replicated
in this or any subsequent migrations.

4.2 Securing the migration

It is possible to partially hijack TCP connections if an attacker can
guess the sequence space being used by the connection [22]. With the
Migrate options, an attacker who can guess both the sequence space
and the connection token can hijack the connection completely. Fur-
thermore, the ability to generate a Migrate SYN from anywhere greatly
increases the connection’s exposure. While ingress filtering can be used
to prevent connection hijacking by attackers not on the path between
the end hosts, such methods are ineffective in our case. We must there-
fore take care to secure the connection token.

The problem is relatively easy to solve if IP security (IPsec) [5]
were deployed. While the spectrum of approaches that could be used
is outside the scope of this paper, we note that IPsec provides suffi-
cient mechanisms to secure migrateable connections. Currently, how-
ever, IPsec has not found wide-spread deployment. Hence, we provide
a mechanism to self-secure the Migrate options. End hosts may elect



An End-to-End Approach to Host Mobility 171

to secretly negotiate an unguessable connection token, which then re-
duces the security of a migrateable TCP connection to that of a stan-
dard TCP connection, since no additional attacks are possible against
a migrateable connection without guessing the token, and any attack
against a standard TCP connection clearly remains feasible against a
migrateable TCP connection.

An unguessable connection token is secured with a secret connection
key. Since any host that obtains the connection key could fabricate the
token and issue a Migrate request, we select the key with an Elliptic
Curve Diffie-Hellman key exchange [37], as described below. Hosts using
IPsec, or unconcerned with connection security, may choose to disable
key negotiation to avoid excess computation.

4.3 Migrate-permitted option

Hosts wishing to initiate a migrateable TCP connection send a Migrate-
Permitted option in the initial SYN segment. Similar to the SACK-
Permitted option [20], it should only be sent on SYN segments, and
not during an established connection. Additionally, hosts wishing to
cryptographically secure the connection token may conduct an Elliptic
Curve Diffie-Hellman (ECDH) key exchange through the option nego-
tiation. (Elliptic Curve Diffie-Hellman is preferred to other methods
of key establishment due to its high security-to-bit-length ratio. Read-
ers unfamiliar with Elliptic Curve cryptography can find the necessary
background material in [4].)

Kind: 15 Length = 3/20 Curve Name ECDH PK

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

Fig. 2. TCP Migrate-Permitted option

As seen in figure 2, the Migrate-Permitted option comes in two
variants—the insecure version, of length 3, and the secure version, with



172 Alex C. Snoeren and Hari Balakrishnan

length 20. The secure version is used to negotiate a secret connection
key, and contains an 8-bit Curve Name and a 136-bit ECDH Public
Key fragment. The curve name field selects a particular set of domain
parameters (the curve, underlying finite field, F , and its representation,
the generating point, P , and the order of P , n), as specified in [4]. Use
of the insecure version, which contains only a Curve Name field (which
must be set to zero) allows the end host to skip the key negotiation
process. In that case, the connection key is set to all zeros.

The secure variant of the Migrate-Permitted option also requires
the use of the Timestamp [15] option in order to store up to 200 bits
of ECDH keying material. The EDCH Public Key is encoded using
the compressed conversion routine described in [4, Section 4.3.6]. The
136 least-significant bits are stored in the EDCH Public Key field of
the Migrate-Permitted option, while the remaining 64 bits of the key
are encoded in the Timestamp option. The timestamp option, while
often included, is not used on SYN segments. The Protection Against
Wrapped Sequence Numbers (PAWS) [15] check is only performed on
synchronized connections, which by definition [32] includes only seg-
ments after the three-way handshake. Similarly, the Round-Trip Time
Measurement (RTTM) [15] procedure only functions when a times-
tamp has been echoed—clearly this is never the case on an initial SYN
segment. Hence the value of the Timestamp option on SYN segments
is entirely irrelevant to current TCP stacks. Legacy TCP stacks will
never receive a Migrate-Permitted option on a SYN/ACK, hence the
Timestamp option will be processed normally. Special handling is only
required for the SYN/ACK and following ACK segment on connec-
tions that have negotiated the Migrate-Permitted option, as Times-
tamp fields on these segments will not contain timestamps. Hence the
RTTM algorithm must not be invoked for SYN/ACK or initial ACK
segments of connections that have negotiated the Migrate-Permitted
option.

The Timestamp TSVal field contains the 32 most-significant bits
of the public key, while the TSecr field contains the next 32 most-
significant bits. These two components, combined with the 136-bit
EDCH Public Key field of the Migrate-Permitted option, constitute
the host’s public key, k. If the public key is less than 200 bits, it is
left-padded with zeros. For any host, i, ki is generated by selecting a
random number, Xi ∈ [1, n − 1], where n is the order of P , and com-
puting

ki = Xi ∗ P

The ∗ operation is the scalar multiplication operation over the field F .
The security of the connection hinges on the secrecy of the negotiated



An End-to-End Approach to Host Mobility 173

key, hence Xi should be randomly generated and stored in the con-
trol block for each new connection. Any necessary retransmissions of
the SYN or SYN/ACK must include identical values for the Migrate-
Permitted and Timestamp option.

Upon receipt of an initial SYN with a Migrate-Permitted option, a
host, j, with a compliant TCP stack must include a Migrate-Permitted
option (and a Timestamp option if the secure variant is used) in its
SYN/ACK segment. It similarly selects a random Xj ∈ [1, n−1] which
it uses to construct kj , its public key, which it sends in the same fashion.

After the initiating host’s reception of the SYN/ACK with the
Migrate-Permitted and Timestamp options, both hosts can then com-
pute a shared secret key, K, as specified in [37]:

K = ki ∗ Xj = kj ∗ Xi

This secret key is then used to compute a connection validation to-
ken. This token, T , is computed by hashing together the key and the
initial sequence numbers Ni and Nj using the Secure Hash Algorithm
(SHA-1) [25] in the following fashion (recall that host i initiated the
connection with an active open, and host j is performing a passive
open):

T = SHA1(Ni, Nj , K)

While SHA-1 produces a 160-bit hash, all but the 64 most-significant
bits are discarded, resulting in a cryptographically-secure 64-bit token
that is unique to the particular connection. Since SHA-1 is collision-
resistant, the chance that another connection on the same 〈address,
port〉 pair has an identical token is extremely unlikely. If a collision is
detected, however, the connection must be aborted by sending a RST
segment. (The host performing a passive open can check for collisions
before issuing a SYN/ACK, and select a new random Xj until a unique
token is obtained. Hence the only chance of collision occurs on the host
performing the active open.)

4.4 Migrate option

The Migrate option is used to request the migration of a currently
open TCP connection to a new address. It is sent in a SYN segment
to a host with which a previously-established connection already exists
(in the ESTABLISHED or FIN WAIT states), over which the Migrate-
Permitted option has been negotiated.

There are two 64-bit fields in a Migrate option: a token, and a re-
quest. In addition, there is an 8-bit sequence number field, reqNo, which



174 Alex C. Snoeren and Hari Balakrishnan

Kind: 16 Length = 19 ReqNo

Token

Token (cont.)

Request

Request (cont.)

Fig. 3. TCP Migrate option

must be monotonically increasing with each new migrate request is-
sued by an end host for a connection. (The sequence number allows
correspondent hosts to ensure Migrate SYNs were not reordered by
the network. Sequence space wrap-around is dealt with in the standard
fashion.) The token is simply the 64 most-significant bits of the con-
nection’s SHA-1 hash as computed in the Migrate-Permitted option
exchange. The request, R, is similarly the 64 most-significant bits of
a SHA-1 hash calculated from the sequence number of the connection
initial sequence numbers N , Migrate SYN segment, S, the connection
key, K, and the request sequence number, I.

R = SHA1(Ni, Nj , K, S, I)

SYN segments may now correctly arrive on a bound port not in the
LISTEN state. They should be processed only if they contain the Mi-
grate option as specified above. Otherwise, they should be treated as
specified in [32]. Upon receipt of a SYN packet with the Migrate option,
a TCP stack that supports migration attempts to locate the connection
on the receiving port with the corresponding token. The token values
for each connection were precomputed at connection establishment, re-
ducing the search to a hash lookup.

If the token is valid, meaning an established connection on this
〈address, port〉 pair has the same token, and the reqNo is greater than
any previously received migrate request, the fixed host then computes
R = SHA1(Ni, Nj , K, S, I) as described above, and compares it with
the value of the request in the Migrate SYN. If the comparison fails, or
the token was invalid, a RST is sent to the address and port issuing the
Migrate SYN, and the SYN ignored. If, on the other hand, the token and
request are valid, but the reqNo is smaller than a previously received
request, the SYN is assumed to be out-of-order and silently discarded.



An End-to-End Approach to Host Mobility 175

If the reqNo is identical to the most recently received migrate request
this SYN is assumed to be a duplicate of the most recently received
SYN, and processed accordingly.

Otherwise, the destination address and port5 associated with the
matching connection should be updated to reflect the source of the Mi-
grate SYN, and a SYN/ACK packet generated, with the ACK field set
to the last received contiguous byte of data, and the connection placed
in the SYN RCVD state. Upon receipt of an ACK, the connection con-
tinues as before.

4.5 MIGRATE WAIT state

This section assumes that the reader is familiar with the TCP state
machine and transitions [34, Chapter 18].

Special processing of TCP RST messages is required with migrate-
able connections, as a mobile host’s old IP address may be reassigned
before it has issued a migrate request to the fixed host. Figure 4 shows
the modified TCP state transition diagram for connections that have
successfully negotiated the Migrate-Permitted option. The receipt of
a RST that passes the standard sequence number checks in the ES-
TABLISHED state does not immediately terminate the connection,
as specified in [32]. Instead, the connection is placed into a new MI-
GRATE WAIT state. (A similar, but far less likely situation can occur
if the fixed host is in the FIN WAIT1 state—the application on the
fixed host has closed the connection, but there remains data in the
connection buffer to be transmitted. For simplicity, these additional
state transitions are not shown in figure 4.)

Connections in the MIGRATE WAIT state function as if they were
in the ESTABLISHED state, except that they do not emit any seg-
ments (data or ACKs), and are moved to CLOSED if they remain in
MIGRATE WAIT for over a specified period of time. We recommend
using the 2MSL ([32] specifies a Maximum Segment Lifetime (MSL) as
2 minutes, but common implementations also use values of 1 minute or
30 seconds for MSL [34]) period of time specified for the TIME WAIT
state.

Any segments received while in the MIGRATE WAIT state should
be processed as in the ESTABLISHED state, except that no ACKs
should be generated. The only way a connection is removed from the
MIGRATE WAIT state is on the receipt of a Migrate SYN with the
5 Migrated connections will generally originate from the same port as before.

However, if the mobile host is behind a NAT, it is possible the connection
has been mapped to a different port.



176 Alex C. Snoeren and Hari Balakrishnan

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

MIGRATE WAIT
2MSL timeout

ap
pl

:c
lo

se
or

ti
m

eo
ut

appl: passive open
send: 〈nothing〉 appl: active

open

send: SY
N

recv: SYN
send: SYN, ACK

recv: ACK

rec
v:S

YN,A
CK;se

nd
:A

CK

appl: send
data

send: SYNrec
v:

RST

rec
v:

SY
N; s

en
d:

SY
N, A

CK

recv: SYN 〈migrate
T ,R〉

send: SYN, ACK
ap

pl:
m
ig
ra
te

sen
d:

SY
N
〈migr

ate
T ,R

〉

rec
v:

RST

re
cv

:S
Y

N
〈m

ig
ra

te
T

,R
〉

se
nd

:
SY

N
,
A

C
K

Fig. 4. Partial TCP state transition diagram with Migrate transi-
tions (adapted from [34, figure 18.12])



An End-to-End Approach to Host Mobility 177

corresponding connection key. The connection then responds in the
same fashion as if it were in the ESTABLISHED state when it received
the SYN.

The MIGRATE WAIT state prevents connections from being inad-
vertently dropped if the address allocation policy on the mobile host’s
previous network reassigns the mobile host’s old IP address before the
mobile host has reconnected at a new location and had a chance to
migrate the connection. It also prevents the continued retransmission
of data to an unreachable host.

This passive approach to disconnection discovery is preferred over
an active, mobile-initiated squelch message because any such message
could be lost.6 Furthermore, a mobile host may not have sufficient (if
any) notice of address reassignment to issue such messages. As an added
performance enhancement, however, mobile hosts aware of an impend-
ing migration may themselves emit a special RST to the peer, which
will force the connection into MIGRATE WAIT, preventing additional
packet transmission until the mobile host has successfully relocated,
although such action invokes the strict 2MSL time bound on the allow-
able delay for host relocation and connection migration.

5 Security issues

An end-to-end approach to mobility simplifies the trust relationships
required to securely support end-host mobility compared to network-
layer approaches such as Mobile IP. In addition to the relationship
between a mobile host and any proxies or home agents, several Mobile
IP-based proposals require that a correspondent host in communica-
tion with a mobile host assume the responsibility of authenticating
communication with an arbitrary set of foreign agents. In their route
optimization draft [29], Perkins and Johnson state:

One of the most difficult aspects of Route Optimization for Mo-
bile IP in the Internet today is that of providing authentication
for all messages that affect the routing of datagrams to a mobile
node.

Since no third parties are required or even authorized to speak on
the mobile host’s behalf in an end-to-end architecture, the only trust
relationship required for secure relocation is between the mobile and
correspondent host. Clearly they already must have a level of trust
6 And any guaranteed-reliable transmission mechanism could take un-

bounded time.



178 Alex C. Snoeren and Hari Balakrishnan

commensurate with the nature of their communications since they chose
to communicate in the first place.

Regardless of the simplicity of trust relationships, there remains
the possibility that untrusted parties could launch attacks against the
end hosts or connections between them utilizing either dynamic DNS
updates or the Migrate and Migrate-Permitted options. The security
of dynamic DNS updates is addressed in RFC 2137 [9], resting on the
strength of the digital signature scheme used to authenticate mobile
hosts.

Possible attacks against the Migrate TCP options include both
denial-of-service attacks and methods of migrating connections away
from their appropriate end hosts. We discuss these attacks below, and
either show why the Migrate options are not vulnerable, or explain why
the attack presents no additional threat in relation to standard TCP.

5.1 Denial of service

SYN flooding is a common form of Denial-of-Service (DoS) attack, and
most modern TCP implementations have taken great care to avoid
consuming unnecessary resources unless a three-way handshake is com-
plete. To validate a Migrate request, the correspondent host performs
a significant computation (the SHA-1 hash), which implies we need to
be especially vigilant against DoS attacks that attempt to deplete the
CPU resources of a target host. The validation is not performed unless
an attacker succeeds in guessing a valid, pre-computable token (with
a 1 in 264 probability); since a RST message is generated if either the
token or the request is invalid, an attacker has no way to identify when
it has found a valid token. Because a would-be attacker would therefore
have to issue roughly 263 Migrate SYNs to force a request validation, we
argue that the TCP Migrate option does not introduce any additional
DoS concerns above standard TCP.

5.2 Connection hijacking

Since a Migrate request contains a hash of both the SYN segment’s
sequence number and migrate request sequence number, a replayed
Migrate option can only be used until either a new byte of data or an-
other migrate connection is sent on the connection. Since self-migration
is not allowed, duplicate Migrate SYNs (received outside of the three-
way handshake) are ignored by the peer TCP. If, however, the mobile
host moves rapidly to a another new location, a replayed Migrate SYN



An End-to-End Approach to Host Mobility 179

could be used to migrate the connection back to the mobile host’s pre-
vious IP, which may have been subsequently assumed by the attacker.
In order to prevent this attack, the Migrate Request option processing
ignores the source address and port in duplicate packets, as a valid
request from a relocated mobile host would include a higher request
number.

More worrisome, however, is the fact that once a Migrate SYN has
been transmitted, the token is known by any hosts on the new path,
and denial-of-service attacks could be launched by sending bogus Mi-
grate SYNs with valid tokens. If a mobile host includes a new Migrate-
Permitted option in its Migrate SYN, however, the window of opportu-
nity when the previous connection token can be used (if it was snooped)
is quite small—only until the new three-way handshake is successfully
completed.

5.3 Key security

The connection key used by the Migrate option is negotiated via Ellip-
tic Curve Diffie-Hellman to make it extremely difficult even for hosts
that can eavesdrop on the connection in both directions to guess the
key. Without sufficient information to verify possible keys off-line, an
attacker would have to continually generate Migrate SYNs and trans-
mit them to one of the end hosts, hoping to receive a SYN/ACK in
response to a correct guess. Clearly such an attack is of little concern
in practice, as the expected 263 SYN packets required to successfully
guess the key would generate sufficient load as to be a DoS problem in
and of themselves.

Hosts that lie on the path between end hosts, however, have suffi-
cient information (namely the two Elliptic Curve Diffie-Hellman com-
ponents) to launch an attack against the Elliptic Curve system it-
self. The best known attack is a distributed version of Pollard’s rho-
algorithm [31], which [18] uses to show that a 193-bit EC system would
require 8.52 · 1014 MIPS years, or about 1.89 · 1012 years on a 450Mhz
Pentium II, to defeat.

While this seems more than secure against ordinary attackers, an
extremely well-financed attacker might be able to launch such an attack
on a long-running connection in the not-too-distant future. The obvious
response is to increase the key space. Unfortunately, we are restricted
by the 40-byte limitation on TCP options. Given the prevalence of the
MSS (4 bytes), Window Scale (3 bytes), SACK Permitted (2 bytes), and
Timestamp (10 bytes) options (of which we are already using 8 bytes) in
today’s SYN segments, the 20-byte Migrate-Permitted option is already



180 Alex C. Snoeren and Hari Balakrishnan

as large as is feasible. We argue that further securing the connection
key against brute-force attacks from hosts on the path between the two
end hosts is largely irrelevant, given the ability of such hosts to launch
man-in-the-middle attacks against TCP with much less difficulty!

The security of TCP connections, migrateable or not, continues to
remain with the authentication of end hosts, and the establishment of
strong session keys to authenticate ongoing communication. Although
we have taken care to ensure the Migrate option does not further de-
crease the security of TCP connections, the latter are inherently inse-
cure, as IP address spoofing and sequence number guessing are not very
difficult. Hence we strongly caution users concerned with connection se-
curity to use additional application-layer cryptographic techniques to
authenticate end points and the payload traffic.

5.4 IPsec

When used in conjunction with IPsec [5], there are additional issues
raised by the use of the Migrate options. IPsec Security Associations
(SAs) are established on an IP-address basis. When a connection with
an associated SA is migrated, a new SA must be established with the
new destination address before communication is resumed. If the estab-
lishment of a this new SA conflicts with existing policy, the connection
is dropped. This seemingly unfortunate result is actually appropriate.
Since IPsec’s Security Policy Database (SPD) is keyed on IP network
address, the policies specified within speak to a belief about the trust-
worthiness of a particular portion of the network.

If a mobile host attaches to a foreign network, any security assump-
tions based on its normal point of attachment are invalid. If the end
host itself continues to have sufficient credentials independent of its
point of attachment, an end-to-end authentication method should be
used, and a secure tunnel established for communication over the un-
trusted network. A discussion of such techniques is outside of the scope
of this document.

6 Implementation

We have implemented this architecture in the Linux 2.2.15 kernel, using
Bind 8.2.2-P3 as the name server for mobile hosts. The IPv4 TCP
stack has been modified to support the Migrate options. Connection
migration can be affected through two methods. Applications with open
connections may explicitly request a migration by issuing an ioctl()



An End-to-End Approach to Host Mobility 181

on the connection’s file descriptor specifying the address to migrate to.
Most current applications, however, lack a notification method so the
system can inform them the host has moved. Hence we also provide
a mechanism for processes to migrate open connections, regardless of
whether they have the file descriptor open or not.

This is done through the Linux /proc file system. A directory
/proc/net/migrate contains files of the form source address:source
port->dest address:dest port for each open connection that has success-
fully negotiated the Migrate-Permitted option. These files are owned
by the user associated with the process that opened the connection.
Any process with appropriate permissions can then write a new IP
address to these files, causing the corresponding connection to be mi-
grated to the specified address. This method has the added benefit of
being readily accessed by a user directly through the command line.

It is expected that mobile hosts will run a mobility daemon that
tracks current points of network attachment, and migrates open con-
nections based on some policy about the user’s preference for certain
methods of attachment. For instance, when an 802.11 interface comes
up on a laptop that previously established connections on a CDPD
link, it seems likely that the user would opt to migrate most open con-
nections to the address associated with the 802.11 link. Similarly the
daemon could watch for address changes on attached interfaces (possi-
bly as a result of DHCP lease expirations and renewals) and migrate
connections appropriately. We plan to implement such a daemon in the
near future.

6.1 Experiments

Figure 5 shows the network topology used to gather the TCP traces
shown in figures 6 and 7. The traces were collected at the fixed basesta-
tion, which is on the path between the fixed host and both mobile host
locations. We conducted TCP bulk transfers from a server on the fixed
host to a client on the mobile host. The client initiates the connection
from one location, and migrates to another location at some later point.
Both mobile host locations use identical connections, a 19.2Kbps serial
link with ≈100ms round-trip latency. The basestation and fixed host
are on a 100Mbps Ethernet segment, hence the link to the mobile host
is the connection bottleneck. This topology is intentionally simple in
order to isolate the various subtleties of migrating TCP connections,
as discussed below.

Figure 6 shows the TCP sequence trace of a migrated TCP connec-
tion. At time t ≈ 4.9s the mobile host moved to a new address and



182 Alex C. Snoeren and Hari Balakrishnan

Fixed
Host

Fixed
Basestation

Mobile
Location 1

Mobile
Location 2

100Mbps Ethernet

19.2Kbps
Modem

19.2Kbps
Modem

Fig. 5. Network topology used for migration experiments

70000

72000

74000

76000

78000

80000

82000

84000

86000

0 2 4 6 8 10 12

S
eq

ue
nc

e 
N

um
be

r 
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

Fig. 6. A TCP connection sequence trace showing the migration of
an open connection



An End-to-End Approach to Host Mobility 183

issued a Migrate SYN, as depicted by the dotted line. Since the host
is no longer attached at its previous address, all of the enqueued seg-
ments at the bottleneck are lost. (The amount of lost data is bounded
by the advertised receive window of the mobile host. A host that moves
frequently across low-bandwidth connections may wish to advertise a
smaller receive window to reduce the number of wasted segments.) Fi-
nally, at t ≈ 6.8s the fixed host’s SYN/ACK passes through the bot-
tleneck, and is ACKed by the fixed host a RTT later.

The fixed host does not immediately restart data transmissions be-
cause the TCP Migrate options do not change the congestion-avoidance
or retransmission behavior of TCP. The sender is still waiting for ACKs
for the lost segments; as far as it is concerned, it has only received two
(identical) ACKs—the original ACK, and one duplicate as part of the
Migrate SYN three-way handshake.

Finally, at t ≈ 7.8s the retransmission timer expires (the interval is
from the first ACK, sent earlier at t ≈ 4.9s) and the fixed host retrans-
mits the first of the lost segments. It is immediately acknowledged by
the mobile host, and TCP resumes transmission in slow-start after the
timeout.

68000

70000

72000

74000

76000

78000

80000

82000

84000

22 24 26 28 30 32 34

S
eq

ue
nc

e 
N

um
be

r 
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

Fig. 7. A TCP Migrate connection (with SACK) sequence trace
with losses just before migration

Figure 7 shows the TCP sequence trace of a similar migrate TCP
connection. As before, the dashed line indicates the mobile host issued a
migrate request at time t ≈ 27.1s. This time, however, there were addi-



184 Alex C. Snoeren and Hari Balakrishnan

tional losses on the connection that occurred just before the migration,
as can be seen at t ≈ 24.9s. These segments are fast-retransmitted, and
pass through the bottleneck at t ≈ 28s due to the DUP-ACKs gener-
ated by the remaining SYNs. Unfortunately, this is after the mobile
host has migrated, so they, along with all the segments addressed to
the mobile host’s initial address after t ≈ 27.1s, are lost.

At t ≈ 29s, the Migrate SYN/ACK makes it out of the queue at the
bottleneck, and the mobile host immediately generates an ACK. As in
the previous example, however, the fixed host is still awaiting ACKs for
previously transmitted segments. It is only at t ≈ 31s that the timer ex-
pires and the missing segments are retransmitted. Notice that because
SACK prevents the retransmission of the previously-received segments,
only those segments lost due to the mobile host’s address change are
retransmitted, and the connection continues as before. The success of
this trace demonstrates that the Migrate options work well with SACK
due to the consistency of the sequence space across migrations.

6.2 Performance enhancements

Several enhancements can be made by implementations to improve
overall connection throughput during connection migration. The most
obvious of these is issuing three DUP-ACKs immediately after a mi-
grate request, thereby triggering the fast-retransmit algorithm and avoid-
ing the timeout seen in the previous example [7]. By preempting the
timeout, the connection further avoids dropping into slow-start and
congestion avoidance.

Such techniques should be used with care, however, as they assume
the available bandwidth of the new path between mobile and fixed host
is on the same order-of-magnitude as the previous path. For migrations
across homogeneous technologies this may be a reasonable assumption.
When moving from local to wide-area technologies, however, there may
be order-of-magnitude discrepancies in the available bandwidth. Hence
we do not include such speed-ups in the TCP Migrate specification,
and leave it to particular implementations to responsibly evaluate the
circumstances and provide behavior compatible with standard TCP.

7 Deployment issues

As with any scheme for mobility support, there are some deployment
issues to be addressed. By pushing the implementation of mobility
mechanisms—connection migration in particular—to the end points,



An End-to-End Approach to Host Mobility 185

our system requires changes to each transport protocol. Fortunately,
our TCP connection migration protocol can be generalized to other
UDP-based protocols with little difficulty. Significant examples include
streaming protocols such as RTP and proprietary protocols like Real,
Quicktime and Netshow. We note that most of these already have a
control channel used for congestion and quality control, and such ap-
plications would likely wish to be informed of changes due to mobil-
ity as well. Furthermore, we argue that not all applications require
network-layer mobility, especially those characterized by short trans-
actions where an application-level retry of the transaction is easy to
perform; we therefore make the case using the end-to-end argument
that mobility might be best implemented as a higher-level, end-to-end
function just like reliability.

Perhaps the biggest limitation of our approach is that both peers
cannot move simultaneously.7 Because our scheme has no anchor point
like Mobile IP’s home agent, any IP address change must be completed
before the other can proceed. We do not view this as a serious limitation
to the widespread applicability of the protocol, since we are primarily
targeting infrastructure-based rather than ad-hoc network topologies
in this work.

In addition to these two limitations, there are several issues that
crop up when one considers presently-deployed applications. While it is
currently possible for Internet hosts to be re-addressed while operating
(due to a DHCP lease expiration or similar event), it is quite rare.
Hence some applications have made assumptions about the stability of
network addresses, which are no longer valid in our architecture. We
discuss some of these issues below.

7.1 Address caching

There is a class of applications that store IP addresses within the ap-
plication, and communicate these addresses to a remote host. Such
applications would not function properly under our architecture. They
are readily identifiable, however, as another currently widely-deployed
technology also breaks such applications: Network Address Translators
(NATs). While the wisdom of Network Address Translation is a hotly
debated topic, there is little chance it will disappear any time soon.
Hence most applications designed today take care not to transmit ad-
dresses as part of the application-layer communication, and therefore
7 “Simultaneously” is defined as whenever the intervals between address

change and the (would-be) reception of the Migrate SYN by the corre-
sponding host for both end hosts overlap.



186 Alex C. Snoeren and Hari Balakrishnan

will also work in our architecture. In fact, one can make the case that
such applications are broken, since IP addresses are only identifiers of
attachment points, not hosts.

Another, larger class of applications cache the results of gethostby-
name(), and may not perform further hostname resolution.8 Further-
more, DNS resolvers themselves cache hostname bindings as discussed
in Section 3. Unfortunately many older name servers enforce a local
TTL minimum, often set to five minutes. Since newer versions of pop-
ular name servers adhere to the TTL specified in the returned resource
record, this problem should disappear as upgrades are made.

7.2 Proxies and NATs

Proxies actually help the deployment of our scheme, as we only need to
modify the proxy itself, and all communications through the proxy will
support mobility. Similarly, NATs can also provide transparent support
without remote system modification. In fact, a NAT doesn’t even need
a modified TCP stack. It need only snoop on TCP SYNs (which it does
anyway), note the presence of a Migrate-Permitted option, and snoop
for the SYN/ACK (which it does anyway). If the SYN/ACK does not
contain a Migrate-Permitted option, the NAT can support connection
migration internal to its network by inserting a corresponding Migrate-
Permitted option, and continuing to snoop the flow looking for any
Migrate SYNs. It need only fabricate a corresponding SYN/ACK and
update its address-to-port mappings, without passing anything to the
end host. Further, by avoiding any explicit addressing in migrate re-
quests, the Migrate options function properly though legacy NATs, and
even allow a mobile host to move between NATs, as connections may
change not only address but port as well.

7.3 Non-transactional UDP applications

Many UDP applications are transactional in nature. UDP is, by defi-
nition, a datagram protocol, and an inopportune change of IP address
is only one of many reasons for an unsuccessful UDP transaction. The
transaction will need to be retried, although a new hostname binding
should be obtained first.

There exists at least one glaring exception to this rule. The Network
File System protocol (NFS) represents one of the most prevalent UDP

8 Some popular Web browsers display this behavior.



An End-to-End Approach to Host Mobility 187

applications in use today and uses IP addresses in its mount points.9

We believe, given the characteristics of network links likely to be en-
countered by mobile hosts, it is likely that NFS-over-TCP is a better
choice than UDP. Otherwise, a mobile host would need to dismount
and re-mount NFS filesystems upon reconnection.

8 Conclusion

This paper presents an end-to-end architecture for Internet host mo-
bility that makes no changes to the underlying IP communication sub-
strate. It uses secure updates to the DNS upon an address change to
allow Internet hosts to locate a mobile host, and a set of connection
migration options to securely and efficiently negotiate a change in the
IP address of a peer without breaking the end-to-end connection. We
have implemented this architecture in the Linux operating system and
are encouraged by the ease with which mobility can be achieved with-
out any router support, the flexibility to mobile hosts provided by it,
and performance comparable to Mobile IP with route optimization.

Our architecture allows end systems to choose a mobility mode best
suited to their needs. Routing paths are efficient with no triangle rout-
ing, and any connection involving the mobile host shares fate only with
the communicating peer and not with any other entity like a home
agent. When a mobile host is in a foreign network and communicating
with another host, the disruption in connectivity caused by a sudden
IP address change is proportional to the round-trip time of the connec-
tion. When a mobile host accepts no passive connections, the protocol
does not require even the DNS update notification, and seamless con-
nectivity across host mobility is achieved using completely end-to-end
machinery.

The security of our approach is based on a combination of the well-
documented secure DNS update protocol in conjunction with a new
secure connection migration mechanism. Our architecture and imple-
mentation function across a variety of other components of the Inter-
net architecture, including firewalls, NATs, proxies, IPsec, and IPv6.
We believe that our architecture scales well even when most Inter-
net hosts become mobile because lookups and updates are distributed
across administratively-delegated, replicated DNS servers.

9 We note that most other advanced file systems, such as Coda [23] and
newer versions of NFS use TCP, which gives good congestion control and
reliability behavior.



188 Alex C. Snoeren and Hari Balakrishnan

We note that our connection migration scheme, the
MIGRATE WAIT state in particular, avoids address assignment race
conditions, but does not support host disconnectivity. Hence, as with
Mobile IP and other mobility schemes, TCP connections may be lost
if the mobile host’s relocation is accompanied by a prolonged period
of disconnectivity. We are hopeful our end-to-end approach may be
extended to support general host disconnectivity as well.

9 Acknowledgements

We thank John Ankcorn, Frans Kaashoek, Eddie Kohler, Robert Mor-
ris, Srinivasan Seshan, Tim Sheppard, and Karen Sollins for helpful
comments on earlier drafts of this paper. We are indebted to David An-
dersen, who helped improve the security of our initial Migrate scheme,
and David Mazieres, who suggested we use Elliptic Curve Diffie-Hellman
key exchange for additional key strength.

References

1. August 1988.

2. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy
Lilley. The design and implementation of an intentional naming system.
In Proc. ACM SOSP ’99, pages 186–201, December 1999.

3. Akamai Technologies, Inc. http://www.akamai.com.

4. American National Standards Institute. Public key cryptography for the
financial service industry: The elliptic curve digital signature algorithm.
ANSI X9.62 - 1998, January 1999.

5. Randall Atkinson. Security architecture for the internet protocol.
RFC 1825, IETF, August 1995.

6. Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz. Improving
reliable transport and handoff performance in cellular wireless networks.
ACM Wireless Networks, 1(4):469–481, December 1995.

7. Ramon Caceres and Liviu Iftode. Improving the performance of reliable
transport protocols in mobile computing environments. IEEE JSAC,
13(5), June 1995.

8. Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131, IETF,
March 1997.

9. Donald E. Eastlake, 3rd. Secure domain name system dynamic update.
RFC 2137, IETF, April 1997.

10. Paul Ferguson and Daniel Senie. Network ingress filtering: Defeat-
ing denial of service attacks which employ IP source address spoofing.
RFC 2267, IETF, January 1998.



An End-to-End Approach to Host Mobility 189

11. Sumit Gupta and A. L. Narasimha Reddy. A client oriented, IP level
redirection mechanism. In Proc. IEEE Infocom ’99, March 1999.

12. Christian Huitema. Multi-homed TCP. Internet Draft, IETF, May 1995.
(expired).

13. IEEE. Wireless medium access control (MAC) and physical layer (PHY)
specifications. Standard 802.11, 1999.

14. Van Jacobson. Congestion avoidance and control. In Proc. ACM SIG-
COMM ’88 [1], pages 314–329.

15. Van Jacobson, Robert Braden, and David Borman. TCP extensions for
high performance. RFC 1323, IETF, May 1992.

16. Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Mobile
computing with the rover toolkit. IEEE Trans. on Computers, 46(3):337–
352, March 1997.

17. Phil Karn. Qualcomm white paper on mobility and IP addressing.
http://people.qualcomm.com/karn/papers/mobility.html, February
1997.

18. Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
http://www.cryptosavvy.com, November 1999.

19. David Maltz and Pravin Bhagwat. MSOCKS: An architecture for trans-
port layer mobility. In Proc. IEEE Infocom ’98, March 1998.

20. Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP
selective acknowledgment options. RFC 2018, IETF, October 1996.

21. Paul V. Mockapetris and Kevin Dunlap. Development of the domain
name system. In Proc. ACM SIGCOMM ’88 [1], pages 123–133.

22. Robert T. Morris. A weakness in the 4.2BSD UNIX TCP/IP software.
Computing science technical report 117, AT&T Bell Laboratories, Mur-
ray Hill, New Jersey, February 1985.

23. Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan. Exploiting
weak connectivity for mobile file access. In Proc. ACM SOSP ’95, pages
143–155, December 1995.

24. Jayanth Mysore and Vaduvur Bharghavan. A new multicasting-based
architecture for internet host mobility. In Proc. ACM/IEEE Mobicom
’97, pages 161–172, September 1997.

25. National Institute of Standards and Technology. The Secure Hash Algo-
rithm (SHA-1). NIST FIPS PUB 180-1, U.S. Department of Commerce,
April 1995.

26. Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric
Tilton, Jason Flinn, and Kevin R. Walker. Agile application-aware adap-
tation for mobility. In Proc. ACM SOSP ’97, pages 276–287, October
1997.

27. Charles E. Perkins and Pat R. Calhoun. Mobile IP chal-
lenge/response extensions. Internet Draft, IETF, February 2000.
draft-ietf-mobileip-challenge-09.txt (work in progress).

28. Charles E. Perkins and David B. Johnson. Mobility support in IPv6. In
Proc. ACM/IEEE Mobicom ’96, pages 27–37, November 1996.



190 Alex C. Snoeren and Hari Balakrishnan

29. Charles E. Perkins and David B. Johnson. Route optimiza-
tion in mobile IP. Internet Draft, IETF, February 2000.
draft-ietf-mobileip-optim-09.txt (work in progress).

30. Charles E. Perkins, ed. IP mobility support. RFC 2002, IETF, October
1996.

31. J. Pollard. Monte carlo methods for index computation mod p. Mathe-
matics of Computation, 32:918–924, 1978.

32. John Postel, ed. Transmission Control Protocol. RFC 793, IETF,
September 1981.

33. Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end
arguments in system design. ACM TOCS, 2(4):277–288, November 1984.

34. W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Ad-
dison Wesley, Reading, Massachusetts, 1994.

35. Susan Thomson and Thomas Narten. IPv6 stateless address autoconfig-
uration. RFC 2462, IETF, December 1998.

36. Paul Vixie, Susan Thomson, Yakov Rekhter, and Jim Bound. Dynamic
updates in the domain name system (DNS UPDATE). RFC 2136, IETF,
April 1997.

37. Robert Zuccherato and Carlisle Adams. Using elliptic curve Diffie-
Hellman in the SPKM GSS-API. Internet Draft, IETF, August 1999.
draft-ietf-cat-ecdh-spkm-00.txt (work in progress).


