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Abstract. Despite the popularity of mobile computing plat-
forms, appropriate system support for mobile operation is lack-
ing in the Internet. This paper argues this is not for lack of
deployment incentives, but because a comprehensive system ar-
chitecture that efficiently addresses the needs of mobile applica-
tions does not exist. We identify five fundamental issues raised
by mobility—location, preservation of communication, discon-
nection handling, hibernation, and reconnection—and suggest
design guidelines for a system that attempts to support Internet
mobility.

In particular, we argue that a good system architecture should
(i) eliminate the dependence of higher protocol layers upon
lower-layer identifiers; (ii) work with any application-selected
naming scheme; (iii) handle (unexpected) network disconnec-
tions in a graceful way, exposing its occurrence to applications;
and (iv) provide mobility services at the mobile nodes them-
selves, rather than via proxies. Motivated by these principles,
we propose a session-oriented, end-to-end architecture called
Migrate, and briefly examine the set of services it should pro-
vide.

1 Introduction

The proliferation of laptops, handheld computers, cellular phones, and
other mobile computing platforms connected to the Internet has trig-
gered much research into system support for mobile networking over
the past few years. Yet, when viewed as a large-scale, heterogeneous,
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distributed system, the Internet is notoriously lacking in any form of
general support for mobile operation.

We argue that previous work has failed to comprehensively address
several important issues. This paper discusses some of these issues and
describes a session-oriented architecture we are developing to preserve
end-to-end application-layer connectivity under various mobile condi-
tions.

Mobility raises five fundamental problems:

1. Locating the mobile host or service: Before any communica-
tion can be initiated, the desired end-point must be located and
mapped to an addressable destination.

2. Preserving communication: Once a session has been established
between end points (typically applications), communication should
be robust across changes in the network location of the end points.

3. Disconnecting gracefully: Communicating applications should
be able to rapidly discern when a disconnection at either end, or a
network partition, causes communication to be disrupted.

4. Hibernating efficiently: If a communicating host is unavailable
for a significant period of time, the system should suspend commu-
nications, and appropriately reallocate resources.

5. Reconnecting quickly: Communicating peers should detect the
resumption of network connectivity in a timely manner. The sys-
tem should support the resumption of all previously established
communication sessions without much extra effort on the part of
the applications.

Most current approaches provide varying degrees of support for
the first two problems. The last three—disconnection, hibernation, and
reconnection—have received little attention outside of the file system
context [19]. We argue that a complete—and useful—solution must ad-
dress all these issues.

One need look no further than interactive terminal applications like
ssh or telnet, one of the Internet’s oldest applications, for a practical
example of the continuing lack of support for these important com-
ponents. A user with an open session might pick up her laptop and
disconnect from the network. After traveling for some period of time,
she reconnects at some other network location and expects that her
session continue where it left off. Unfortunately, if there was any activ-
ity on the session during the period of disconnectivity, she will find the
connection aborted upon reconnection to the network. The particular
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details of the example are irrelevant, but demonstrate just how lacking
current support is, even for this simple scenario.

Based on our own experience developing various mobile protocols
and services [3, 5, 14, 26] and documented reports of several other re-
searchers over several years [9, 13, 15, 18, 28], we identify four important
guidelines that we believe should be followed as hints in designing an
appropriate network architecture for supporting mobile Internet ser-
vices and applications:

1. Eliminate lower-layer dependence from higher layers. A large num-
ber of problems arise because many higher layers of the Internet
architecture use identifiers from lower layers, assuming they will
never change during a connection.

2. Do not restrict the choice of naming techniques. Dynamic naming
and location-tracking systems play an important role in address-
ing mobility. In general, whenever an end point moves, it should
update a naming system with its new location—but forcing all ap-
plications to use a particular naming scheme is both unrealistic and
inappropriate.

3. Handle unexpected disconnections gracefully. We advocate treating
disconnections as a common occurrence, and exposing them to ap-
plications as they occur.

4. Provide support at the end hosts. Proxies are attractive due to their
perceived ease of deployment. However, it becomes markedly more
difficult to ensure they are appropriately located when hosts are
mobile.

We elaborate upon these guidelines in Section 2. They have served
as a guide in our development of an end-to-end, session-oriented system
architecture, called Migrate, over which mobile networking applications
and services can be elegantly layered. We describe our proposed archi-
tecture in Section 3, discussing how it addresses four of the five prob-
lems mentioned above: preserving communication, and handling dis-
connection, hibernation, and resumption. We do not provide or enforce
a particular location or naming scheme, instead leveraging domain-
specific naming services (e.g., DNS, service discovery schemes [3, 12],
etc.) for end-point location.

An attractive feature of our architecture is that it accomplishes
these tasks without sacrificing common-case performance. Migrate pro-
vides generic mechanisms for managing disconnections and reconnec-
tions in each application session, and for handling application state and
context. We briefly discuss related work in Section 4 before concluding
in Section 5.



194 Alex C. Snoeren, Hari Balakrishnan and M. Frans Kaashoek

2 Design guidelines

In this section, we elaborate on our four design guidelines for supporting
applications on mobile hosts.

2.1 Eliminate lower-layer dependence

The first step in enabling higher-layer mobility handling is to remove
inter-layer dependences. In a 1983 retrospective paper on the DoD In-
ternet Architecture, Cerf wrote [8]: “TCP’s [dependence] upon the net-
work and host addresses for part of its connection identifiers” makes
“dynamic reconnection” difficult, “a problem . . . which has plagued net-
work designers since the inception of the ARPANET project in 1968.”
The result is that when the underlying network-layer (IP) address of
one of the communicating peers changes, the end-to-end transport-layer
(TCP) connection is unable to continue because it has bound to the
network-layer identifier, tacitly (but wrongly) assuming its permanence
for the duration of the connection.

A host of other problems crop up because of similar linkages. For
example, the increasing proliferation of network address translators
(NATs) in the middle of the network has caused problems for appli-
cations (like FTP) that use network- and transport-layer identifiers as
part of their internal state. These problems can be avoided by removing
any assumption of stability of lower-layer identifiers. If a higher layer
finds it necessary to use a lower-layer identifier as part of its internal
state, then the higher layer should allow for it to change, and continue
to function across such changes.

Furthermore, each layer should expose relevant changes to higher
layers. In today’s Internet architecture, applications have almost no
control over their network communication because lower layers (for the
most part) do not concern themselves with higher-layer requirements.
When important changes happen at a lower layer, for example to the
network-layer address, they are usually hidden from higher layers. The
unfortunate consequence of this is that it makes it hard for any form
of adaptation to occur.

For example, a TCP sender attempts to estimate the properties
of the network path for the connection. A significant change in the
network-layer attachment point often implies that previously discov-
ered path properties are invalid, and need to be rediscovered. This con-
sequence is not limited to classical TCP congestion management—for
example, if mobile applications are notified of changes in their envi-
ronment and given the power to effect appropriate changes, significant
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improvements in both performance and usability can be realized [19,
21]. Similar results have also been shown in the network layer [9, 13,
30], and in the area of transport optimization over wireless links [5, 7,
26].

2.2 Beware the Siren song of naming

Many researchers have observed that the first problem raised by mo-
bility, namely locating the mobile host or service, can be addressed
through a sophisticated naming system, hence most proposals for man-
aging Internet mobility attempt to provide naming and location services
as a fundamental part of the mobility system.1 Unfortunately, the tight
binding between naming schemes and mobility support often causes the
resulting system to be inefficient or unsuitable for various classes of ap-
plications. For example, Mobile IP assumes that the destination of each
packet needs to be independently located, thereby necessitating a home
agent to intercept and forward messages to a mobile host. The utility
of alternative proposals to use agile naming [3] or IP multicast [20]
for mobility support hinges on widespread deployment of their location
systems.

We believe that inexorably binding mobility handling with nam-
ing unnecessarily complicates the mobility services, and restricts the
ability to integrate advances in naming services. On the face of it, it
appears attractive that a “good” naming scheme can provide the level
of indirection by which to handle mobility. In practice, however, it is
important to recognize and separate two distinct operations. The first
is a “location” operation: The process of finding an end point of interest
based on an application-specific name. The second is a “tracking” oper-
ation: Preserving the peer-to-peer communication in some way. There
are two problems with using a new idealized naming scheme: First,
there are a large number of ways in which applications describe what
they are looking for, which forces this ideal naming scheme to perform
the difficult task of accommodating them all. Experience shows that
each application is likely to end up using a naming scheme that best
suits it (e.g. INS, DNS, JINI, UPnP), rather than suffer the inadequa-
cies of a universal one. Second, if this tracking is done through the same
name resolution mechanism, every packet would invoke the resolution
process, adding significant overhead and degrading performance.

We therefore suggest that an application use whichever naming
scheme is sufficiently adept at providing the appropriate name-to-loca-
1 Indeed, the authors of this paper are guilty of having taken this position

in the past.



196 Alex C. Snoeren, Hari Balakrishnan and M. Frans Kaashoek

tion binding in a timely fashion. This service is used at the beginning of
a session between peers, or in the (unlikely) event that all peers change
their network locations “simultaneously.” At all other times, the onus
of preserving communication across moves rests with the peers them-
selves. In the common case when only a subset of the peers moves at a
time, the task of reconnection is efficiently handled by the peers them-
selves. We have previously described the details of such a scheme in the
context of TCP connection migration [26].

2.3 Handle unexpected disconnections

The area of Internet mobility that has received the least attention is
support for efficient disconnection and reconnection. While significant
work has been done in the area of disconnected file systems [15, 19], less
attention has been paid to preserving application communication when
a disconnection occurs, enabling it to quickly resume upon reconnec-
tion. The key observation about disconnections is that they are usually
unexpected. Furthermore, they last for rather unpredictable periods of
time, ranging from a few seconds to several hours (or more). Today’s
network stacks terminate a connection as soon as a network disconnec-
tion is detected, with unfortunate consequences—the application (and
often the user) has to explicitly reinitiate connectivity and application
state is usually lost.

Like all other aspects of network communication, we believe the
system should therefore provide standard support for unexpected dis-
connection, enabling applications to gracefully manage session state,
releasing system resources and reallocating them when communication
is restored. Even if the duration of the disconnection period is short
enough to avoid significantly impacting communication or draining sys-
tem resources, the disconnection and ensuing reconnection events are
often hidden by current network stacks, leaving the higher network
layers and application to eventually discover (often with unfortunate
results) that network conditions have changed dramatically.

2.4 Provide services at the end points

A great deal of previous work in mobility management has relied on a
proxy-based architecture, providing enhanced services to mobile hosts
by routing communications through a (typically fixed) waypoint that
is not collocated with the host [5, 10, 11, 17, 22, 28]. It is often easier
to deploy new services through a proxy, as the proxy can provide en-
hanced services in a transparent fashion, inter-operating with legacy
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systems. Unfortunately, in order to provide adequate performance, it
is not only necessary to highly engineer the proxy [17], but locate the
proxy appropriately as well.

Several researchers have proposed techniques to migrate proxy ser-
vices to the appropriate location, avoiding the need to preconfigure
locations [10, 27]. Unfortunately, all candidate proxy locations must be
appropriately preconfigured to participate. Further, in the face of gen-
eral mobility, proxies (or at least their internal state) must be able to
move with the mobile host in order to remain along the path from the
host to its correspondent peers. This is a complex problem [28]; we
observe that it can be completely avoided if the support is collocated
with the mobile host itself.

3 Migrate approach

We now describe the Migrate approach to mobility, which leverages ap-
plication naming services and informed transport protocols to provide
robust, low-overhead communication between application end points.
We describe a session-layer protocol that handles both changes in net-
work attachment point and disconnection in a seamless fashion, but
is flexible enough to allow a wide variety of applications to maintain
sufficient control for their needs.

3.1 Service model

The number of communication paradigms in use on the Internet re-
mains small, but the type and amount of mobility support needed varies
dramatically across modalities [9]. In particular, the notion of a session
is application-dependent and varies widely, from a set of related connec-
tions (e.g. FTP’s data and control channels) to an individual datagram
exchange such as those often found in RPC-based applications (e.g. a
cached DNS response). As the lengths of sessions grow longer and they
become more complex in terms of the system resources they consume,
applications can benefit from system support for robust communication
between application end points. However, due to the disparate perfor-
mance and reliability requirements of different session-based applica-
tions, it is important that a mobility service enables the application to
dictate its requirements through explicit choice of transport protocols
and policy defaults.

Hence we propose an optional session layer. This layer presents a
simple, unified abstraction to the application to handle mobility: a ses-
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sion. Sessions exist between application-level end points, and can sur-
vive changes in the transport, network, and even other session layer
protocol states. It also includes basic check-pointing and resumption
facilities for periods of disconnection, enabling comprehensive, session-
based state management for mobile-aware applications. Unlike previous
network-layer approaches, our session layer exports the specifics of the
lower layers to the application, and provides an API to control them,
if the application is inclined to do so.

3.2 Session layer

Applications specify their notion of a session by explicitly joining to-
gether related transport-layer connections (or destinations in connec-
tionless protocols). Once established, a session is identified by a locally-
unique token, or Session ID, and serves as the system entity for inte-
grated accounting and management. The session layer exports a unified
session abstraction to the application, managing the connections as a
group, adapting to changes in network attachment point as needed.
The selection of network end point and transport protocol, however,
remains completely under the application’s control.

To assist in the timely detection of connectivity changes, the ses-
sion layer accepts notification from lower layers (e.g., loss of carrier,
power loss, change of address, etc.), the application itself, or appropri-
ately authorized external entities that may be concurrently monitoring
connection state [4]. Since a session may span multiple protocols, con-
nections, destinations, and application processes, there may be several
sources of connectivity information. Regardless of the source, the ses-
sion manager handles notification of disconnection and reconnection in
a consistent fashion.

3.2.1 Disconnection. If a host can no longer communicate with a
session end point due to mobility, as signaled by changes in the network
layer state, transport layer failure, or other mechanisms, it informs the
application. If the application is not prepared to handle intermittent
connectivity itself, the session layer provides appropriate management
services, depending on the transport layers in use, including data buffer-
ing for reliable byte streams. Specifically, it may block or buffer stream
sockets, selectively drop unreliable datagrams, etc. Additional applica-
tion and transport-specific services can be provided, such as disabling
TCP keep-alives.

Depending on the system configuration, the session layer may need
to actively attempt to reestablish communication, or it may be notified
by network or transport layers when it becomes available again. Sys-
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tem policy may dictate trying multiple network interfaces or transport
protocols. In either case, if the period of disconnection becomes appro-
priately long (as determined by system and application configuration),
it will attempt to conserve resources by reducing the state required in
the network, transport, and session layers (with possibly negative per-
formance implications upon reconnection), and notify the application,
enabling additional, domain-specific resource reallocation.

3.2.2 Reconnection. Upon reattachment, a mobile host contacts
each of its correspondent hosts directly, informing them of its new loca-
tion. Some transport layers may be unable to adequately or appropri-
ately handle the change in network contexts. In that case, the session
layer can restart them, using the session ID to re-sync state between the
end points. In either case, the session layer informs the application of
reattachment, and resynchronizes the state of the corresponding session
layers.

The complexity of synchronization varies with the transport pro-
tocols in use; a well-designed transport layer can handle many things
by itself. By using a transport-layer token, and not a network layer
binding, the persistent connection model can provide limited support
for changes in attachment point, often with better performance than
higher-layer approaches [23, 26]. Similarly, the performance of even tra-
ditional transport protocols can be enhanced when the network layer
exposes the appropriate state [5, 7]. Similarly, grouping multiple trans-
port instances between the same end points into sessions can provide
additional performance improvement [4, 24].

Legacy transport protocols may be completely unable to handle
changes in network addresses. In that case, the session layer may initiate
an entirely new connection, and resynchronize them transparently at
the session layer. In the worst case, the application itself may be unable
to handle unexpected address changes, and provide no means of system
notification. Such applications are still supported via IP encapsulation.
The correspondent session layers establish an IP tunnel to the new end
point, and continue to send application data using the old address.

If a correspondent end point is no longer reachable (possibly be-
cause the other end point also moved), the application is instructed
to perform another naming/location resolution operation in attempt
to locate the previous correspondent, returning a network end point
(host, protocol, port) to use for communication. The particular seman-
tics of suitable alternative end points and look-up failure are application
specific. It may be a simple matter of another application-layer name
resolution (perhaps a fresh DNS query), or the application may which
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wish to perform its own recovery in addition to or in place of reissuing
the location query.

While the amount overhead varies with the capabilities of the avail-
able lower layer technologies, overhead is incurred almost exclusively
during periods of disconnectivity and reconnection. This provides high
performance for the common case of communication between static
peers.

3.3 State management

In a spirit similar to Coda, our architecture considers disconnection to
be a natural, transient occurrence that should be handled gracefully
by end hosts. For extended periods of disconnection, resource alloca-
tion becomes an additional concern. While managing application state
is outside the scope of our architecture, enabling efficient strategies
is decidedly not. In particular, since disconnection often occurs with-
out prior notice, applications may require system support to reclaim
resources outside of their control.

There has been a great deal of study on application specific-methods
of dealing with disconnected or intermittent operation. Most of it has
focused on providing continued service at the disconnected client, and
has not addressed the scalability of servers. If our approach becomes
popular, and disconnected sessions begin to constitute a non-negligible
fraction of the connections being served, servers will need to free re-
sources dedicated to those stalled connections, and be able to easily re-
allocate them later. We are considering a variety of state management
services the session layer should implement, and briefly hypothesize
about two: migrating session state between the system and applica-
tion, and providing contextual validation of session state.

3.3.1 State migration. We believe the session abstraction may
be a useful way to compartmentalize small amounts of connection state,
reducing the amount of state applications need to store themselves, and
simplifying its management. Furthermore this state could be tagged as
being associated with a particular communication session, and managed
in an efficient fashion together with system state [6]. System support
may allow intelligent paging or swapping of associated state out of core
if the period of disconnection becomes too long.

3.3.2 Context management. There is a significant amount of
context associated with a communication session, and it may be the
case that some (or all) of it will be invalidated by disconnection and/or
reconnection. In particular, previous work has shown that context
changes in the transport layer can be leveraged to adapt application
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protocol state [25]. Hence any state the session layer manages needs to
be revalidated, possibly internally, possibly through application-specific
up-calls. Changes in context may dictate that buffers be cleared, data
be reformatted, alternate transport protocols be selected, etc. This re-
quires a coherent contextual interface between the application and the
session layer.

4 Related work

The focus of the Migrate architecture is on preserving end-to-end ap-
plication communication across network location changes and discon-
nections. Much work has been done in the area of system support for
mobility over the past few years; this section outlines the work most
directly related to ours.

At the network-layer, several schemes have been proposed to han-
dle mobile routing including Mobile IP [22] and multicast-based mo-
bility [20]. Mobile IP uses a home agent as to intercept and forward
packets, with a route optimization option to avoid triangle routing.
The home-agent-based approach has also been applied at the transport
layer, as in MSOCKS [17], where connection redirection was achieved
using a split-connection proxy, providing so-called transport-layer mo-
bility. Name resolution and message routing were integrated to imple-
ment a “late binding” option that tracks highly mobile services and
nodes in the Intentional Naming System [3].

Most TCP-specific solutions for preserving communication across
network-layer changes [23, 26] do not handle the problems associated
with connections resuming after substantial periods of disconnectivity.
A “persistent connection” scheme where the communication end-points
are location independent was proposed for TCP sockets and DCE
RPC [29], but the mapping between global endpoint names and current
physical endpoints is done through a global clearinghouse, which no-
tifies everyone of binding updates. Session layer mobility [16] explored
moving entire sessions by utilizing a global naming service to provide
endpoint bindings; address changes are affected through a TCP-specific
protocol extension.

5 Conclusion

In this paper, we have defined five salient issues concerning host mobil-
ity in the Internet. We presented a set of design guidelines for building
a system to address these issues, distilled from a decade of research in
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mobile applications and system support for mobility on the Internet.
Following these principles, we outlined Migrate, a basic session-based
architecture to preserve end-to-end application-layer communication in
the face of mobility of the end points. We believe the general abstrac-
tions for disconnection, hibernation, and reconnection provided by the
session layer define an appropriate set of interfaces to enable more ad-
vanced system support for mobility.
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