
Proceedings of the ACM Symposium on
Applied Computing, Madrid, Spain,
March 2002, to appear.

Proxy-Based Security Protocols in

Networked Mobile Devices

Matthew Burnside, Dwaine Clarke, Todd Mills, Andrew Maywah,
Srinivas Devadas and Ronald Rivest�

MIT Laboratory for Computer Science
{event, declarke, mills, amaywah, devadas, rivest}@mit.edu

Abstract. We describe a resource discovery and communi-
cation system designed for security and privacy. All objects in
the system, e.g., appliances, wearable gadgets, software agents,
and users have associated trusted software proxies that ei-
ther run on the appliance hardware or on a trusted computer.
We describe how security and privacy are enforced using two
separate protocols: a protocol for secure device-to-proxy com-
munication, and a protocol for secure proxy-to-proxy com-
munication. Using two separate protocols allows us to run a
computationally-inexpensive protocol on impoverished devices,
and a sophisticated protocol for resource authentication and
communication on more powerful devices.

We detail the device-to-proxy protocol for lightweight wire-
less devices and the proxy-to-proxy protocol which is based on
SPKI/SDSI (Simple Public Key Infrastructure / Simple Dis-
tributed Security Infrastructure). A prototype system has been
constructed, which allows for secure, yet efficient, access to net-
worked, mobile devices. We present a quantitative evaluation
of this system using various metrics.

1 Introduction

Attaining the goals of ubiquitous and pervasive computing [6, 2] is be-
coming more and more feasible as the number of computing devices
� This work was funded by Acer Inc., Delta Electronics Inc., HP Corp., NTT

Inc., Nokia Research Center, and Philips Research under the MIT Project
Oxygen partnership, and by DARPA through the Office of Naval Research
under contract number N66001-99-2-891702.

302 Matthew Burnside, Dwaine Clarke, et al.

in the world increases rapidly. However, there are still significant hur-
dles to overcome when integrating wearable and embedded devices into
a ubiquitous computing environment. These hurdles include designing
devices smart enough to collaborate with each other, increasing ease-of-
use, and enabling enhanced connectivity between the different devices.

When connectivity is high, the security of the system is a key factor.
Devices must only allow access to authorized users and must also keep
the communication secure when transmitting or receiving personal or
private information.

Implementing typical forms of secure, private communication using
a public-key infrastructure on all devices is difficult because the nec-
essary cryptographic algorithms are CPU-intensive. A common public-
key cryptographic algorithm such as RSA using 1024-bit keys takes
43ms to sign and 0.6ms to verify on a 200MHz Intel Pentium Pro (a
32-bit processor) [30]. Some devices may have 8-bit micro-controllers
running at 1-4 MHz, so public-key cryptography on the device itself
may not be an option. Nevertheless, public-key based communication
between devices over a network is still desirable.

This paper presents our approach to addressing these issues. We
describe the architecture of our resource discovery and communication
system in Section 2. The device-to-proxy security protocol is described
in Section 3. We review SPKI/SDSI and present the proxy-to-proxy
protocol that uses SPKI/SDSI in Section 4. Related work is discussed
in Section 5. The system is evaluated in Section 6.

1.1 Our approach

To allow the architecture to use a public-key security model on the
network while keeping the devices themselves simple, we create a soft-
ware proxy for each device. All objects in the system, e.g., appliances,
wearable gadgets, software agents, and users have associated trusted
software proxies that either run on an embedded processor on the ap-
pliance, or on a trusted computer. In the case of the proxy running on an
embedded processor on the appliance, we assume that device to proxy
communication is inherently secure.1 If the device has minimal com-
putational power,2 and communicates to its proxy through a wired or

1 For example, in a video camera, the software that controls various actua-
tors runs on a powerful processor, and the proxy for the camera can also
run on the embedded processor.

2 This is typically the case for lightweight devices, e.g., remote controls,
active badges, etc.

Proxy-Based Security Protocols 303

wireless network, we force the communication to adhere to a device-to-
proxy protocol (cf. Section 3). Proxies communicate with each other us-
ing a secure proxy-to-proxy protocol based on SPKI/SDSI (Simple Pub-
lic Key Infrastructure / Simple Distributed Security Infrastructure).
Having two different protocols allows us to run a computationally-
inexpensive security protocol on impoverished devices, and a sophisti-
cated protocol for resource authentication and communication on more
powerful devices. We describe both protocols in this paper.

1.2 Prototype automation system

Using the ideas described above, we have constructed a prototype au-
tomation system which allows for secure, yet efficient, access to net-
worked, mobile devices. In this system, each user wears a badge called
a K21 which identifies the user and is location-aware: it “knows” the
wearer’s location within a building. User identity and location infor-
mation is securely transmitted to the user’s software proxy using the
device-to-proxy protocol.

Devices themselves may be mobile and may change locations. At-
tribute search over all controllable devices can be performed to find the
nearest device, or the most appropriate device under some metric.3

By exploiting SPKI/SDSI, security is not compromised as new users
and devices enter the system, or when users and devices leave the sys-
tem. We believe that the use of two different protocols, and the use of
the SPKI/SDSI framework in the proxy-to-proxy protocol has resulted
in a secure, scalable, efficient, and easy-to-maintain automation system.

2 System architecture

The system has three primary component types: devices, proxies and
servers. A device refers to any type of shared network resource, either
hardware or software. It could be a printer, a wireless security camera,
a lamp, or a software agent. Since communication protocols and band-
width between devices can vary widely, each device has a unique proxy
to unify its interface with other devices. The servers provide naming
and discovery facilities to the various devices.

We assume a one-to-one correspondence between devices and prox-
ies. We also assume that all users are equipped with K21s, whose prox-
ies run on trusted computers. Thus our system only needs to deal with
devices, proxies and the server network.
3 For example, a user may wish to print to the nearest printer that he/she

has access to.

304 Matthew Burnside, Dwaine Clarke, et al.

Event

Play Tape
Play Tape

Event

Device K21 VCR

Proxy K21 Proxy

Proxy Farm

VCR Proxy

Device-to-proxy

protocol

Server Network

Name Resolution Routing

(Section 3)

Device-to-proxy

protocol

Proxy-to-proxy
(Section 4)

protocol

Fig. 1. System Overview

The system we describe is illustrated in Figure 1.

2.1 Devices

Each device, hardware or software, has an associated trusted software
proxy. In the case of a hardware device, the proxy may run on an
embedded processor within the device, or on a trusted computer net-
worked with the device. In the case of a software device, the device can
incorporate the proxy software itself.

Each device communicates with its own proxy over the appropriate
protocol for that particular device. A printer wired into an Ethernet can
communicate with its proxy using TCP/IP. A wireless camera uses a
wireless protocol for the same purpose. The K21 (a simple device with a
lightweight processor) communicates with its proxy using the particular
device-to-proxy protocol described in Section 3. Thus, the device-side
portion of the proxy must be customized for each particular device.

Proxy-Based Security Protocols 305

2.2 Proxy

The proxy is software that runs on a network-visible computer. The
proxy’s primary function is to make access-control decisions on behalf
of the device it represents. It may also perform secondary functions
such as running scripted actions on behalf of the device and interfacing
with a directory service.

The proxy provides a very simple API to the device. The sendTo-
Proxy() method is called by the device to send messages to the proxy.
The sendToDevice() method is a called by the proxy to send messages
to the device. When a proxy receives a message from another proxy,
depending on the message, the proxy may translate it into a form that
can be understood by the proxy’s particular device. It then forwards
the message to the device. When a proxy receives a message from its
device, it may translate the message into a general form understood by
all proxies, and then forward the message to other proxies. Any time
a proxy receives a message, before performing a translation and pass-
ing the message on to the device, it performs the access control checks
described in Section 4.

For ease of administration, we group proxies by their administra-
tors. An administrator’s set of proxies is called a proxy farm. This set
specifically includes the proxy for the administrator’s K21, which is
considered the root proxy of the proxy farm. When the administrator
adds a new device to the system, the device’s proxy is automatically
given a default ACL, a duplicate of the ACL for the administrator’s
K21 proxy. The administrator can manually change the ACL later, if
he desires.

A noteworthy advantage of our proxy-based architecture is that it
addresses the problem of viruses in pervasive computing environments.
Sophisticated virus scanning software can be installed in the proxy, so
it can scan any code before it is downloaded onto the device.

2.3 Servers and the server network

This network consists of a distributed collection of independent name
servers and routers. In fact, each server acts as both a name server
and a router. This is similar to the name resolvers in the Intentional
Naming System (INS) [1], which resolve device names to IP addresses,
but can also route events. If the destination name for an event matches
multiple proxies, the server network will route the event to all matching
destinations.

When a proxy comes online, it registers the name of the device it
represents with one of these servers. When a proxy uses a server to

306 Matthew Burnside, Dwaine Clarke, et al.

perform a lookup on a name, the server searches its directory for all
names that match the given name, and returns their IP addresses.

2.4 Communication via events

We use an event-based communication mechanism in our system. That
is, all messages passed between proxies are signals indicating that some
event has occurred. For example, a light bulb might generate light-on
and light-off events. To receive these messages, proxy x can add itself
as an event-listener to proxy y. Thus, when y generates an event, x will
receive a copy.

In addition, the system has several pre-defined event categories
which receive special treatment at either the proxy or server layer.
They are summarized in Figure 2. A developer can define his own
events as well. The server network simply passes developer-defined
events through to their destination.

CommandEvent Used to instruct a device to turn on or off, for example.
ErrorEvent Generated and broadcast to all listeners when an error condi-

tion occurs.
StatusChangeEvent Generated when, for example, a device changes its

location.
QueryEvent When a server receives a QueryEvent, it performs a DNS (Do-

main Name Service) or INS lookup on the query, and returns the results
of the lookup in a ResponseEvent.

ResponseEvent Generated in response to a QueryEvent.

Fig. 2. Predefined Event Types

The primary advantage of the event-based mechanism is that it
eliminates the need to repeatedly poll a device to determine changes
in its status. Instead, when a change occurs, the device broadcasts an
event to all listeners. Systems like Sun Microsystems’ Jini [26] issue
“device drivers” (RMI stubs) to all who wish to control a given device.
It is then possible to make local calls on the device driver, which are
translated into RMI calls on the device itself.

2.5 Resource discovery

The mechanism for resource discovery is similar to the resource discov-
ery protocol used by Jini. When a device comes online, it instructs its

Proxy-Based Security Protocols 307

proxy to repeatedly broadcast a request for a server to the local sub-
network. The request contains the device’s name and the IP address
and port of its proxy. When a server receives one of these requests, it
issues a lease to the proxy.4 That is, it adds the name/IP address pair
to its directory. The proxy must periodically renew its lease by send-
ing the same name/IP address pair to the server, otherwise the server
removes it from the directory. In this fashion, if a device silently goes
offline, or the IP address changes, the proxy’s lease will no longer get
renewed and the server will quickly notice and either remove it from
the directory or create a new lease with the new IP address.

For example, imagine a device with the name [name=foo] which
has a proxy running on 10.1.2.3:4011. When the device is turned on,
it informs its proxy that it has come online, using a protocol like the
device-to-proxy protocol described in Section 3. The proxy begins to
broadcast lease-request packets of the form 〈[name=foo], 10.1.2.3:4011〉
on the local subnetwork. When (or if) a server receives one of these
packets, it checks its directory for [name=foo]. If [name=foo] is not
there, the server creates a lease for it by adding the name/IP address
pair to the directory. If [name=foo] is in the directory, the server renews
the lease. Suppose at some later time the device is turned off. When
the device goes down, it brings the proxy offline with it, so the lease
request packets no longer get broadcast. That device’s lease stops get-
ting renewed. After some short, pre-defined period of time, the server
expires the unrenewed lease and removes it from the directory.

3 Device-to-proxy protocol for
wireless devices

3.1 Overview

The device-to-proxy protocol varies for different types of devices. In
particular, we consider lightweight devices with low-bandwidth wire-
less network connections and slow CPUs, and heavyweight devices with
higher-bandwidth connections and faster CPUs. We assume that heavy-
weight devices are capable of running proxy software locally (i.e., the
proxy for a printer could run on the printer’s CPU). With a local proxy,
a sophisticated protocol for secure device-to-proxy communication is
unnecessary, assuming critical parts of the device are tamper resistant.
For lightweight devices, the proxy must run elsewhere. This section
4 Handling the scenario where the device is making false claims about its

attributes in the lease request packet is the subject of ongoing research.

308 Matthew Burnside, Dwaine Clarke, et al.

Gateway

Gateway Device 1

Device 3

Device 2

Proxy Farm

Proxy 3

Proxy 2

Proxy 1

UDP RF

Fig. 3. Device-to-Proxy Communication overview

gives an overview of a protocol which is low-bandwidth and not CPU-
intensive that we use for lightweight device-to-proxy communication.

3.2 Communication

Our prototype system layers the security protocol described below over
a simple radio frequency (RF) protocol. The RF communication be-
tween a device and its proxy is handled by a gateway that translates
packetized RF communication into UDP/IP packets, which are then
routed over the network to the proxy. The gateway also works in the
opposite direction by converting UDP/IP packets from the proxy into
RF packets and transmitting them to the device.

An overview of the communication is shown in Figure 3. This figure
shows a computer running three proxies; one for each of three separate
devices. The figure also shows how multiple gateways can be used;
device A is using a different gateway from devices B and C.

3.3 Security

The proxy and device communicate through a secure channel that en-
crypts and authenticates all the messages. The HMAC-MD5 [13][20]
algorithm is used for authentication and the RC5 [21] algorithm is used
for encryption. Both of these algorithms use symmetric keys; the proxy
and the device share 128-bit keys.

Authentication HMAC (Hashed Message Authentication Code) pro-
duces a MAC (Message Authentication Code) that can validate the

Proxy-Based Security Protocols 309

authenticity and integrity of a message. HMAC uses secret keys, and
thus only someone who knows a particular key can create a particular
MAC or verify that a particular MAC is correct.

Encryption The data is encrypted using the RC5 encryption algo-
rithm. We chose RC5 because of its simplicity and performance. Our
RC5 implementation is based on the OpenSSL [16] code. RC5 is a block
cipher; it usually works on eight-byte blocks of data. However, by im-
plementing it using output feedback (OFB) mode, it can be used as
a stream cipher. This allows for encryption of an arbitrary number of
bytes without having to worry about blocks of data.

OFB mode works by generating an encryption pad from an initial
vector and a key. The encryption pad is then XOR’ed with the data to
produce the ciphertext. Since X ⊕ Y ⊕ Y = X , the ciphertext can be
decrypted by producing the same encryption pad and XOR’ing it with
the ciphertext. Since this only requires the RC5 encryption routines to
generate the encryption pad, separate encrypt and decrypt routines are
not required.

For our implementation, we use 16 rounds for RC5. We use different
128-bit keys for encryption and authentication.

3.4 Location

Device location is determined using the Cricket location system[18, 17].
Cricket has several useful features, including user privacy, decentralized
control, low cost, and easy deployment. Each device determines its own
location. It is up to the device to decide if it wants to let others know
where it is.

In the Cricket system, beacons are placed on the ceilings of rooms.
These beacons periodically broadcast location information (such as
“Room 4011”) that can be heard by Cricket listeners. At the same time
that this information is broadcast in the RF spectrum, the beacon also
broadcasts an ultrasound pulse. When a listener receives the RF mes-
sage, it measures the time until it receives the ultrasound pulse. The
listener determines its distance to the beacon using the time difference.

4 Proxy to proxy protocol

SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Se-
curity Infrastructure) [7, 22] is a security infrastructure that is designed
to facilitate the development of scalable, secure, distributed computing

310 Matthew Burnside, Dwaine Clarke, et al.

systems. SPKI/SDSI provides fine-grained access control using a local
name space architecture and a simple, flexible, trust policy model.

SPKI/SDSI is a public key infrastructure with an egalitarian de-
sign. The principals are the public keys and each public key is a certifi-
cate authority. Each principal can issue certificates on the same basis
as any other principal. There is no hierarchical global infrastructure.
SPKI/SDSI communities are built from the bottom-up, in a distributed
manner, and do not require a trusted “root.”

4.1 SPKI/SDSI integration

We have adopted a client-server architecture for the proxies. When
a particular principal, acting on behalf of a device or user, makes a
request via one proxy to a device represented by another proxy, the
first proxy acts like a client, and the second as a server. Resources
on the server are either public or protected by SPKI/SDSI ACLs. A
SPKI/SDSI ACL consists of a list of entries. Each entry has a subject
(a key or group) and a tag which specifies the set of operations that
that key or group is allowed to perform. To gain access to a resource
protected by an ACL, a requester must include, in his request, a chain
of certificates demonstrating that he is a member of a group in an entry
on the ACL.5

If a requested resource is protected by an ACL, the principal’s re-
quest must be accompanied by a “proof of authenticity” that shows that
it is authentic, and a “proof of authorization” that shows the principal
is authorized to perform the particular request on the particular re-
source. The proof of authenticity is typically a signed request, and the
proof of authorization is typically a chain of certificates. The principal
that signed the request must be the same principal that the chain of
certificates authorizes.

This system design, and the protocol between the proxies, is very
similar to that used in SPKI/SDSI’s Project Geronimo, in which
SPKI/SDSI was integrated into Apache and Netscape, and used to pro-
vide client access control over the web. Project Geronimo is described
in two Master’s theses [3, 14].

4.2 Protocol

The protocol implemented by the client and server proxies consists of
four messages. This protocol is outlined in Figure 4, and following is
its description:
5 For examples of SPKI/SDSI ACLs and certificates, see [7] or [3].

Proxy-Based Security Protocols 311

1. The client proxy sends a request, unauthenticated and unautho-
rized, to the server proxy.

2. If the client requests access to a protected resource, the server re-
sponds with the ACL protecting the resource6 and the tag formed
from the client’s request. A tag is a SPKI/SDSI data structure
which represents a set of requests. There are examples of tags in
the SPKI/SDSI IETF drafts [7]. If there is no ACL protecting the
requested resource, the request is immediately honored.

3. (a) The client proxy generates a chain of certificates using the
SPKI/SDSI certificate chain discovery algorithm [4, 3]. This
certificate chain provides a proof of authorization that the user’s
key is authorized to perform its request.
The certificate chain discovery algorithm takes as input the
ACL and tag from the server, the user’s public key (principal),
the user’s set of certificates, and a timestamp. If it exists, the
algorithm returns a chain of user certificates which provides
proof that the user’s public key is authorized to perform the
operation(s) specified in the tag, at the time specified in the
timestamp.
If the algorithm is unable to generate a chain because the user
does not have the necessary certificates,7 or if the user’s key is
directly on the ACL, the algorithm returns an empty certificate
chain. The client generates the timestamp using its local clock.

(b) The client creates a SPKI/SDSI sequence [7] consisting of the
tag and the timestamp. It signs this sequence with the user’s
private key, and includes copy of the user’s public key in the
SPKI/SDSI signature. The client then sends the tag-timestamp
sequence, the signature, and the certificate chain generated in
step 3a to the server.

4. The server verifies the request by:

6 The ACL itself could be a protected resource, protected by another ACL.
In this case, the server will return the latter ACL. The client will need
to demonstrate that the user’s key is on this ACL, either directly or via
certificates, before gaining access to the ACL protecting the object to
which access was originally requested.

7 If the user does not have the necessary certificates, the client could imme-
diately return an error. In our design, however, we choose not to return
an error at this point; instead, we let the client send an empty certificate
chain to the server. This way, when the request does not verify, the client
can possibly be sent some error information by the server which lets the
user know where he should go to get valid certificates.

312 Matthew Burnside, Dwaine Clarke, et al.

(a) Checking the timestamp in the tag-timestamp sequence against
the time on the server’s local clock to ensure that the request
was made recently.8

(b) Recreating the tag from the client’s request and checking that
it is the same as the tag in the tag-timestamp sequence.

(c) Extracting the public key from the signature.
(d) Verifying the signature on the tag-timestamp sequence using

this key.
(e) Validating the certificates in the certificate chain.
(f) Verifying that there is a chain of authorization from an entry

on the ACL to the key from the signature, via the certificate
chain presented. The authorization chain must authorize the
client to perform the requested operation.

If the request verifies, it is honored. If it does not verify, it is denied
and the server proxy returns an error to the client proxy. This error
is returned whenever the client presents an authenticated request
that is denied.

The protocol can be viewed as a typical challenge-response protocol.
The server reply in step 2 of the protocol is a challenge the server issues
the client, saying, “You are trying to access a protected file. Prove to
me that you have the credentials to perform the operation you are
requesting on the resource protected by this ACL.” The client uses
the ACL to help it produce a certificate chain, using the SPKI/SDSI
certificate chain discovery algorithm. It then sends the certificate chain
and signed request in a second request to the server proxy. The signed
request provides proof of authenticity, and the certificate chain provides
proof of authorization. The server attempts to verify the second request,
and if it succeeds, it honors the request.

The timestamp in the tag-timestamp sequence helps to protect
against certain types of replay attacks. For example, suppose the server
logs requests and suppose that this log is not disposed of properly. If an
adversary gains access to the logs, the timestamp prevents him from
replaying requests found in the log and gaining access to protected
resources.9

8 In our prototype implementation, the server checks that the timestamp in
the client’s tag-timestamp sequence is within five minutes of the server’s
local time.

9 In order to use timestamps, the client’s clock and server’s clock need to
be fairly synchronized; SPKI/SDSI already makes an assumption about
fairly synchronized clocks when validity time periods are specified in cer-
tificates. An alternative approach to using timestamps is to use nonces in
the protocol.

Proxy-Based Security Protocols 313

4. Server verifies request. If the request is
verified, it is honored. If the request does not
verify, it is denied and an error is returned.

2. Server verification fails. ACL and tag are
returned.

chain. Client signs request. Client sends
signed request with certificates.

3. Client uses ACL and tag to generate certificate

Client Proxy Server Proxy
({tag, timestamp} , certificate chain)

(requested resource / error)

(ACL, tag)

1. Initial unauthenticated, unauthorized request

Ku

(request)

Fig. 4. SPKI/SDSI Proxy to Proxy Access Control Protocol

Additional security considerations The SPKI/SDSI protocol, as
described, addresses the issue of providing client access control. The
protocol does not ensure confidentiality, authenticate servers, or provide
protection against replay attacks from the network.

The Secure Sockets Layer (SSL) protocol is the most widely used
security protocol today. The Transport Layer Security (TLS) protocol
is the successor to SSL. Principal goals of SSL/TLS [19] include pro-
viding confidentiality and data integrity of traffic between the client
and server, and providing authentication of the server. There is sup-
port for client authentication, but client authentication is optional. The
SPKI/SDSI Access Control protocol can be layered over a key-exchange
protocol like TLS/SSL to provide additional security. TLS/SSL cur-
rently uses the X.509 PKI to authenticate servers, but it could just as
well use SPKI/SDSI in a similar manner. In addition to the features al-
ready stated, SSL/TLS also provides protection against replay attacks
from the network, and protection against person-in-the-middle attacks.
With these considerations, the layering of the protocols is shown in
Figure 5. In the figure, ‘Application Protocol’ refers to the standard
communication protocol between the client and server proxies, without
security.

SSL/TLS authenticates the server proxy. However, it does not in-
dicate whether the server proxy is authorized to accept the client’s
request. For example, it may be the case that the client proxy is re-

314 Matthew Burnside, Dwaine Clarke, et al.

SPKI/SDSI Access Control Protocol

Application Protocol

Key-Exchange Protocol with Server
Authentication

TCP/IP

Fig. 5. Example Layering of Protocols

questing to print a ‘top secret’ document, say, and only certain printers
should be used to print ‘top secret’ documents. With SSL/TLS and the
SPKI/SDSI Client Access Control Protocol we have described so far,
the client proxy will know that the public key of the proxy with which it
is communicating is bound to a particular address, and the server proxy
will know that the client proxy is authorized to print to it. However,
the client proxy still will not know if the server proxy is authorized to
print ‘top secret’ documents. If it sends the ‘top secret’ document to be
printed, the server proxy will accept the document and print it, even
though the document should not have been sent to it in the first place.

To approach this problem, we propose extending the SPKI/SDSI
protocol so that the client requests authorization from the server and
the server proves to the client that it is authorized to handle the client’s
request (before the client sends the document off to be printed). To
extend the protocol, the SPKI/SDSI protocol described in Section 4.2
is run from the client proxy to the server proxy, and then run in the
reverse direction, from the server proxy to the client proxy. Thus, the
client proxy will present a SPKI/SDSI certificate chain proving that it
is authorized to perform its request, and the server proxy will present
a SPKI/SDSI certificate chain proving that it is authorized to accept
and perform the client’s request. Again, if additional security is needed,
the extended protocol can be layered over SSL/TLS.

Note that the SPKI/SDSI Access Control Protocol is an example
of the end-to-end argument [23]. The access control decisions are made
in the uppermost layer, involving only the client and the server.

Proxy-Based Security Protocols 315

5 Related Work

5.1 Device to proxy communication

The Resurrecting Duckling is a security model for ad-hoc wireless net-
works [25, 24]. In this model, when devices begin their lives, they must
be “imprinted” before they can be used. A master (the mother duck)
imprints a device (the duckling) by being the first one to communicate
with it. After imprinting, a device only listens to its master. During the
process of imprinting, the master is placed in physical contact with the
device and they share a secret key that is then used for symmetric-key
authentication and encryption. The master can also delegate the con-
trol of a device to other devices so that control is not always limited to
just the master. A device can be “killed” by its master then resurrected
by a new one in order for it to swap masters.

5.2 Proxy to proxy communication

Jini [26] network technology from Sun Microsystems centers around the
idea of federation building. Jini avoids the use of proxies by assuming
that all devices and services in the system will run the Java Virtual
Machine. The SIESTA project [8] at the Helsinki University of Tech-
nology has succeeded in building a framework for integrating Jini and
SPKI/SDSI. Their implementation has some latency concerns, however,
when new authorizations are granted. UC Berkeley’s Ninja project [27]
uses the Service Discovery Service [5] to securely perform resource dis-
covery in a wide-area network. Other related projects include Hewlett-
Packard’s CoolTown [9], IBM’s TSpaces [11] and University of Wash-
ington’s Portolano [29].

5.3 Other projects using SPKI/SDSI

Other projects using SPKI/SDSI include Hewlett-Packard’s e-Speak
product [10], Intel’s CDSA release [12], and Berkeley’s OceanStore
project [28]. HP’s eSpeak uses SPKI/SDSI certificates for specifying
and delegating authorizations. Intel’s CDSA release, which is open-
source, includes a SPKI/SDSI service provider for building certificates,
and a module (AuthCompute) for performing authorization computa-
tions. OceanStore uses SPKI/SDSI names in their naming architecture.

316 Matthew Burnside, Dwaine Clarke, et al.

6 Evaluation

6.1 Hardware design

Details on the the design of a board that can act as the core of a
lightweight device, or as a wearable communicator, are given in [15].

6.2 Device-to-proxy protocol

In this section we evaluate the device-to-proxy protocol described in
Section 3 in terms of its memory and processing requirements.

Component Code Size Data Size
(KB) (bytes)

Device Functionality 2.0 191
RF Code 1.1 153
HMAC-MD5 4.6 386
RC5 3.2 256
Miscellaneous 1.0 0

Total 11.9 986
Table 1. Code and data size on the Atmel processor

Memory requirements Table 1 breaks down the memory require-
ments for various software components. The code size represents mem-
ory used in Flash, and data size represents memory used in RAM.
The device functionality component includes the packet and location
processing routines. The RF code component includes the RF trans-
mit and receive routines as well as the Cricket listener routines. The
miscellaneous component is code that is common to all of the other
components.

The device code requires approximately 12KB of code space and
1KB of data space. The security algorithms, HMAC-MD5 and RC5,
take up most of the code space. Both of these algorithms were optimized
in assembly, which reduced their code size by more than half. The code
could be better optimized, but this gives a general idea of how much
memory is required. The code size we have attained is small enough
that it can be incorporated into virtually any device.

Proxy-Based Security Protocols 317

Function Time (ms) Clock Cycles

RC5 encrypt/
decrypt (n bytes) 0.163n + 0.552 652n + 2208

HMAC-MD5
up to 56 bytes 11.48 45,920

Table 2. Performance of encryption and authentication code

Processing requirements The security algorithms put the most de-
mand on the device. Table 2 breaks down the approximate time for
each algorithm. The RC5 processing time varies linearly with the num-
ber of bytes being encrypted or decrypted. The HMAC-MD5 routine,
on the other hand, takes a constant amount of time up to 56 bytes.
This is because HMAC-MD5 is designed to work on blocks of data, so
anything less than 56 bytes is padded. Since we limit the RF packet size
to 50 bytes, we only analyze the HMAC-MD5 running time for packets
of size less than or equal to 50 bytes.

We now examine how long it takes the device to receive a packet,
process it, and send a response. In this analysis, we assume the device
is receiving a packet that has 10 data bytes, making the total packet
size 27 bytes, since each packet contains 17 header bytes made up of
a 9-byte address field and an 8-byte message authentication field. The
device broadcasts at 19.2 Kbps and we encode 8 bits into 12 bits for
DC balance. To receive the packet it takes:

packet size + RF header
bandwidth

=
12 · (27 + 4)

19200
= 19.38ms

The device then takes 11.48ms to authenticate the packet and 0.163·
10 + 0.552 = 2.18ms to decrypt it. Thus, the time for the device to re-
ceive a packet and process it is 19.38 + 11.48 + 2.18 = 33.04ms. The
device always sends back a response. In this analysis, we will assume the
device responds with a packet of the same size, so the device must en-
crypt, authenticate, and then transmit the response which will take an-
other 33.04ms. Thus, the device can handle approximately 1000

33.04·2 ≈ 15
transactions per second. We think that fifteen transactions per second
is sufficient for most purposes, with a simple device.

6.3 SPKI/SDSI evaluation

The protocol described in Section 4 is efficient. The first two steps of
the protocol are a standard request/response pair; no cryptography

318 Matthew Burnside, Dwaine Clarke, et al.

Protocol step Timing analysis Approx CPU time

Cert chain discovery The worst case is O(n3l),
where n = number of
certs, and l = length
of longest subject. How-
ever, the expected time is
O(nl).

330ms, with n = 2 and l = 2.

Chain validation The worst case is O(n),
where n = number of
certs.

200ms, with n = 2.

Table 3. Proxy-to-Proxy Protocol analysis.

is required. The significant steps in the protocol are step 3, in which
a certificate chain is formed, and step 4, where the chain is verified.
Table 3 shows analyses of these two steps. The paper on Certificate
Chain Discovery in SPKI/SDSI [4] should be referred to for a discussion
of the timing analyses. The CPU times are approximate times measured
on a Sun Microsystems Ultra-1 running SunOS 5.7.

7 Conclusions

We believe that the trends in pervasive computing are increasing the
diversity and heterogeneity of networks and their constituent devices.
Developing security protocols that can handle diverse, mobile devices
networked in various ways represents a major challenge. In this paper,
we have taken a first step toward meeting this challenge by observing
the need for multiple security protocols, each with different charac-
teristics and computational requirements. While we have described a
prototype system with two different protocols, other types of protocols
could be included if deemed necessary.

The two protocols we have described have vastly different charac-
teristics, because they apply to different scenarios. The device-to-proxy
protocol was designed to enable secure communication of data from
a lightweight device. The SPKI/SDSI-based proxy-to-proxy protocol
was designed to enable communication between sophisticated devices,
whose access control policies can change frequently. The proxy architec-
ture and the use of two different protocols has resulted, we believe, in
a secure, yet efficient, resource discovery and communication system.

References

1. William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremey
Lilley. The Design and Implementation of an Intentional Naming System.

Proxy-Based Security Protocols 319

Operating Systems Review, 34(5):186-301, December 1999.
2. Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson,

Jeremey Sussman, and Deborra Zukowski. Challenges: An Application
Model for Pervasive Computing. In Proc. ACM MOBICOM, August
2000.

3. Dwaine Clarke. SPKI/SDSI HTTP Server / Certificate Chain Discovery
in SPKI/SDSI. Master’s thesis, Massachusetts Institute of Technology,
2001.

4. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexan-
der Morcos, and Ronald L. Rivest. Certificate Chain Discovery in
SPKI/SDSI. Journal of Computer Security, 2001. To appear.

5. Steven Czerwinski, Ben Zhao, Todd Hodes, Anthony Joseph, and Randy
Katz. An Architecture for a Secure Service Discovery Service. In Proc.
MOBICOM, August 1999.

6. Michael Dertouzos. The Future of Computing. Scientific American,
August 1999.

7. Carl Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylo-
nen. Simple Public Key Certificate. The Internet Society, July 1999. See
http://world.std.com/∼cme/spki.txt.

8. Pasi Eronen and Pekka Nikander. Decentralized Jini Security. In Proc.
of the Network and Distributed System Security Symposium, February
2001.

9. Hewlett-Packard. CoolTown. See http://cooltown.hp.com.
10. Hewlett-Packard. e-Speak. See http://www.e-speak.hp.com.
11. IBM. TSpaces: Intelligent Connectionware. See

http://www.almaden.ibm.com/cs/TSpaces.
12. Intel. Intel Common Data Security Architecture. See

http://developer.intel.com/ial/security.
13. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for

Message Authentication. Internet Request for Comments RFC 2104,
February 1997.

14. Andrew Maywah. An Implementation of a Secure Web Client Using
SPKI/SDSI Certificates. Master’s thesis, Massachusetts Institute of
Technology, 2000.

15. Todd Mills. An Architecture and Implementation of Secure Device Com-
munication in Oxygen. Master’s thesis, Massachusetts Institute of Tech-
nology, 2001.

16. OpenSSL. The OpenSSL Project. http://www.openssl.org.
17. N. Priyantha. Providing Precise Indoor Location Information to Mobile

Devices. Master’s thesis, Massachusetts Institute of Technology, January
2001.

18. N. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket
Location-Support System. In Proc. ACM MOBICOM, August 2000.

19. Eric Rescola. SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, 2001.

20. Ronald Rivest. The MD5 Message-Digest Algorithm. Internet Request
for Comments RFC 1321, April 1992.

320 Matthew Burnside, Dwaine Clarke, et al.

21. Ronald Rivest. The RC5 Encryption Algorithm. In Proc. of the 1994
Leuven Workshop on Fast Software Encryption, 2001.

22. Ronald L. Rivest and Butler Lampson. SDSI - A Simple Distributed
Security Infrastructure. See http://theory.lcs.mit.edu/ rivest/sdsi10.ps.

23. J. H. Saltzer, D.P. Reed, and D. D. Clark. End-to-End Arguments in Sys-
tem Design. See http://www.mit.edu/∼Saltzer/publications/endtoend/.

24. Frank Stajano. The Resurrecting Duckling – What next? In Proc. of the
8th International Workshop on Security Protocols, April 2000.

25. Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks. In Proc. Security Protocols, 7th
International Workshop, 1999.

26. Sun Microsystems Inc. Jini Network Techonology.
http://www.sun.com/jini.

27. UC Berkeley. The Ninja Project: Enabling Internet-scale Services from
Arbitrarily Small Devices. See http://ninja.cs.berkeley.edu.

28. UC Berkeley. The OceanStore Project: Providing Global-Scale Persistent
Data. See http://oceanstore.cs.berkeley.edu.

29. University of Washington. Portolano: An Expedition into Invisible Com-
puting. See http://portolano.cs.washington.edu.

30. M. Weiner. Performance Comparison of Public-key Cryptosystems. RSA
Laboratories’ CryptoBytes, 4(1), 1998.

