
Proceedings of the 2nd International
Workshop of Central and Eastern
Europe on Multi-Agent Systems
(CEEMAS’01), Krakow, Poland, 2001.

Rascal - A Resource Manager for Multi
Agent Systems in Smart Spaces

Krzysztof Gajos�

MIT Artificial Intelligence Laboratory
kgajos@ai.mit.edu

Abstract. Multi Agent Systems (MAS) are often used as a
software substrate in creating smart spaces. Many of the solu-
tions already developed within the MAS community are appli-
cable in the domain of smart spaces. Others, however, need to
be modified or re-developed. In particular, it has to be noted
that many agents acting in a physical space domain are re-
stricted in number and capability by the scarce physical hard-
ware available. Those limitations need to be taken into account
when coordinating agent activities in a MAS in a smart space.
In this paper we present Rascal, a high-level resource manage-
ment system for the Intelligent Room Project, that addresses
physical resource scarcities. Rascal performs the service map-
ping and arbitration functions for the system. Rascal is an im-
plemented tool and has been partially deployed for day-to-day
use.

1 Introduction

Building smart spaces requires distributing computation across a num-
ber of computers. The software components of a smart space need to
cooperate robustly and the system must be able to cope with compo-
nents being added and removed dynamically. For that reason a number
� This work was supported in part by the Advanced Research Project

Agency of the Department of Defense under contract number F30602–
92–C0204, monitored through Rome Laboratory, and in part by Acer
Inc., Delta Electronics Inc., HP Corp., NTT Inc., Nokia Research Cen-
ter, and Philips Research under the MIT Project Oxygen partnership, and
by DARPA through the Office of Naval Research under contract number
N66001-99-2-891702.



324 Krzysztof Gajos

of research groups have adopted an approach in which a multi-agent
system (MAS) is the software substrate connecting all of the computa-
tional components of a smart space [9, 5, 8].

Agents in smart spaces have to deal with many of the same issues as
agents in other MAS. At the same time, physical spaces are a domain
with their own features and constraints that affect how the agents deal
with certain situations.

Agents in a smart space are heavily resource-bounded because they
are embedded in a physical world where all physical resources are
scarce. This makes the coordination of multiple agent in a smart space
all the more difficult because these physical constraints have to be taken
into account. For that reason, an explicit resource management system
is required in a smart space.

In this paper we present Rascal, a resource manager for the Metaglue
agent platform. Metaglue [5] is a MAS developed at the MIT AI Lab
for the Intelligent Room project. Rascal provides service mapping and
resource access arbitration mechanisms for Metaglue agents. Rascal has
been implemented and partially deployed for every-day use. Some of its
advanced features are still being tested and optimized for speed.

1.1 Definitions

What is a resource manager for a smart space We believe a
resource manager should be capable of performing two fundamental
tasks: resource mapping and arbitration.

Resource mapping (i.e. match-making) is the process of deciding
what resources can be used to satisfy a specific request.

Arbitration is ensuring that, at a minimum, resources are not being
used beyond their capacities. Ideally, arbitration ensures optimal, or
nearly optimal, use of scarce resources via appropriate allocation of
resources to requests.

This paper is concerned with the management of high-level re-
sources. As opposed to OS level management (memory, files, etc.) and
load-balancing computationally intensive agents over multiple machines,
these high-level resources include physical devices and large software
components, for example, projectors, multiplexors, wires, displays, modems,
user attention, software programs, screen real estate, sound input and
output devices, CD players, drapes, and lamps.

For clarity, we define some potentially ambiguous terms that are
used throughout the remainder of this paper:

Metaglue Metaglue [5, 10, 11] is the MAS forming the software base
for all work at the Intelligent Room Project. Unlike most MAS,



A Resource Manager for Smart Spaces 325

Metaglue provides infrastructure for close-coupling of agents (that
is, it facilitates direct method calls) in addition to a message passing
mechanism in order to enable faster communication among agents.
Metaglue is intended for use in environments where most agents
are physically close and thus good network connectivity can be as-
sumed. Metaglue makes it easy to coordinate the startup and run-
ning of agents on any number of machines with different operating
systems.
Metaglue agents are collected into “societies” which are distinct
name-spaces for multiple users and spaces. A new communication
and discovery model is currently being developed for inter-society
communication.

Agent Agents are distinct object instances capable of providing ser-
vices and making requests of the resource manager. This means
agents themselves are considered to be a type of resource because
they provide services (see below).

Device A physical or logical device is something akin to a projec-
tor, screen, or user-attention; devices are often, but not necessarily,
represented by agents. Devices provide services and therefore are
resources.

Service Services are provided by agents and devices; a single agent or
device can provide more than one service and any kind of service
can be provided by a number of agents or devices. For example, the
ShortTextOutput service can be provided by the on-wall display,
scrolling LED sign or a text-to-speech program. An A/V receiver
is a provider of a number of services, such as an amplifier, an audio
multiplexor and a radio receiver.

Resource A resource is a provider of a service. Both agents and phys-
ical devices are resources. For example, a physical LED sign is a
resource (providing the LED sign hardware service) obtained and
used by the LEDSignTextAgent, which is in turn a resource (provid-
ing TextOuput service and LEDSign service) that can be obtained
and used by any other agent needing those services.

2 Summary of design requirements

This section summarizes the essential requirements for designing a high-
level resource management system for a smart space. Space permits
only a brief overview; potential design issues are discussed in more
detail in [7]. In particular, the needs for on-demand agent startup and
“smart re-allocations” are motivated more extensively in [7].



326 Krzysztof Gajos

2.1 Closed system assumption

We assume that Rascal will work in a closed system, i.e. one where all
agents can be assumed to be trusted (but where agents can appear or
leave dynamically). We can make this assumption without reducing the
scalability of the system by dividing agents into societies . An agent
society is a collection of agents that act on behalf of a single entity,
such as a physical space, a person, a group of people, an institution,
an information store, etc. Rascal’s job is to coordinate use of resources
within a society.

In cases where agents from one society need to access resources
owned by a different society, a resource manager of one society can
make requests of the resource manager from the other one. The re-
source manager from the society that owns the resource is the sole
owner of the resource and can decide to take it back at any moment
if necessary. The negotiation for resources among a number of soci-
eties is a somewhat different problem from managing resources within
a society. For one thing, this is now an open system and access control
mechanisms need to be put in place to ensure that all requesters act
within their authority.

Extending our resource management system to a world with multi-
ple societies requires having an access control system in place (see [7]
for discussion) and is not covered here because this work is still in a
preliminary phase.

A most common kind of situation where one society needs to make
resource request of another is one in which agents acting on behalf
of the user need resources to communicate information to the user.
Agents acting on behalf of the user belong to one society and those
controlling the space, belong to another (as in Figure 1). User’s society
usually will not contain physical devices and thus if, for example, an
email alert agent acting on my behalf needs to tell me that a new mail
has arrived for me, it will need resources (such as speech output or a
display) from my office to pass the message on to me. In such situation,
the email alert agent will still make a resource request of the resource
manager in my society. My resource manager, seeing that it has no
good resources on its own, will make a request of the resource manager
of my office’s society. My office will then decide whether to fulfill the
request and if so, how.

2.2 Self-interested agents

Although we assume that all agents are trusted, we also assume that
they are self-interested. All agents admitted to a society are assumed to



A Resource Manager for Smart Spaces 327

Society Agent Society Agent

Resource
Manager

Resource
Manager

VCR Agent

Secretary
Agent

Secretary
Agent

Email Alert
Agent

Projector
Agent

society of my office my society

<=======>
inter-society

communication

Fig. 1. Our view of the world: a society is viewed as a closed system. All
agents within a society are trusted yet self-interested. A world composed of
many societies is, on the other hand, viewed as an open system where, to an
extent, every society can be viewed as a single agent providing a number of
capabilities.

be truthful in that they do not misrepresent their needs and capabilities.
They are, however, concerned solely with performing the task or tasks
they were built for. For example, an agent that controls the flow of a
presentation is only concerned with ensuring that slides are visible on
an appropriate display; it has no knowledge of how its actions affect the
abilities of other agents to perform their tasks. The assumpiton that
agents have no knowledge of their peers allows a more modular design
of the system.

2.3 Tightly tied to external physical resources

A special characteristic of a MAS based in a smart space, as noted be-
fore, is that it is very tightly coupled to the physical resources within
that space. At the simplest level, the number of physical displays in the
space is a limiting factor that determines how many visual activities
(such as web browsing, sketching, watching movies, writing email) can
be performed simultaneously. At a deeper level, the layout of physical
connections among devices also limits their use. For example, the out-
put of a VCR may be connected to only one projector and a TV, while
computers can be dynamically connected – via a multiplexor – to any
of the available displays in the space. A resource management system,
such as Rascal, is necessary to keep track of available resources and
arbitrate among conflicting requests for those resources.



328 Krzysztof Gajos

2.4 Reasoning about absent agents

In smart spaces components can be added or removed at any moment.
More often than not, however, components that are available one day,
are also available the next. We believe that our system should not only
be able to cope with dynamic changes of configuration, but also that the
stability and predictability of the physical environment should be used
to the system’s advantage. One consequence of a predictable enviroment
is the plausibility of reasoning about agents even before they have been
started. In other words, in smart spaces, agents can be started when
needed using the resources that at a given moment can be spared. For
example, when one of the users within a space needs to make a slide
presentation, an appropriate agent will be started on an available com-
puter that has the appropriate presentation software, available screen
space, and can be connected to an on-wall display device (such as a
projector). If another presentation is started at the same time, another
available computer and display device will be chosen. On-demand agent
startup allows the system to adapt to the current set of available re-
sources and prevents the system designer from having to predict all
possible configurations that might be required in a space (such as the
unusual case where two presentations need to run simultaneously).

2.5 Need for smrrt Re-allocations

In our system, it happens frequently that a new request can only be
satisfied by taking a resource away from a previously satisfied request.
But that previous request does not have to be left resource-less – there
is often an alternative resource that can be used to fill it. Suppose,
for example, that I request to watch the news in an office equipped
with an on-wall projector and a TV set (see Figure 2). The projector is
assigned to the job because it produces the largest image and has the
best resolution. Then, while watching the news, I decide to also access
my email agent. This agent must use the projector because it is the
only display that can be used by a computer. Therefore, the projector
is taken away from the news agent; ideally, instead of stopping the news
agent, Rascal moves it to the TV set.

3 Building Rascal

3.1 Centralized vs. distributed

Conceptually, Rascal is a centralized system. This decision was not
made lightly, but we believe the advantages of a centralized system
outweight its drawbacks (such as, e.g., being a single point of failure).



A Resource Manager for Smart Spaces 329

Fig. 2. Sample interaction. (a) user requests to see the news – on-wall pro-
jected display is allocated as the best resource for the task. (b) user accesses
email; the only possible display for email is the on-wall projector previously
allocated to the news agent. Instead of being stopped, the news agent is
moved to a TV set.

Rascal was built as a separate centralized system primarily because
it had to reason about absent agents. If we instead chose a distributed
solution involving direct negotiation, all agents would have to be “alive”
to be considered as candidates for a request. Also, a resource manager
in an smart interactive, space has to be efficient. Rascal must make
its decisions within a couple of seconds or less. A lot of inter-agent
communication would make this goal nearly impossible.

Despite centralization, Rascal is actually not a single point of failure
in the system. This is because two features of Metaglue make any agent
nearly “invincible:” automatic restarting of agents ([11]) and persistent
storage ([5]). If any agent dies, it will be restarted the next time any
other agent tries to make a call to it. The dead agent will be restarted
on any available computer, so even if the original computer hosting
the agent fails, the agent will be restarted somewhere else. The per-
sistent storage mechanism allows agents to save changes to their state
whenever such changes occur. Consequently, if the agent dies and gets
restarted, it can retrieve its state from before the failure and continue
as if nothing had happened.

3.2 Structure

Rascal performs two major functions: service mapping and arbitration
among requests for services (as defined in Section 1.1) and it is com-
posed of three major parts: the knowledge base, the constraint satis-
faction engine, and the framework for interacting with other Metaglue
agents.



330 Krzysztof Gajos

Service mapping is performed entirely by the knowledge-based com-
ponent of Rascal. Arbitration begins in the knowledge-based part (where
relative cost and utility of various resources are determined) but most
of the work on arbitration is done by the constraint satisfaction engine.

The components for interacting with the rest of the Metaglue agents
facilitate communication with service providers and requesters, and en-
able enforcement of Rascal’s decision (i.e., taking previously allocated
services away from requesters).

In the following sections, we present these major components of the
system.

Representation and the knowledge base Upon startup, informa-
tion about all available resources is loaded into Rascal’s knowledge
base (if more resources become available later on, they can be added
dynamically). It is important to reiterate here that Rascal relies on all
resources having descriptions of their needs and capabilities separate
from the actual code. Those external descriptions contain a list of ser-
vices that the resource can provide. Agents who provide services may in
addition specify what other resources they will need in order to provide
that service. For example, the MessengerAgent that provides a message
delivery service will need one or more resources capable of providing
text output service. Agents may also specify their startup needs, i.e. a
list of requests that need to be fulfilled for the agent to exist. For exam-
ple, an agent providing speech recognition service will need a computer,
with appropriate speech recognition software installed, in order to be
able to start and configure itself properly.

When Rascal considers candidates for a request, it not only makes
sure that those candidate services are adequate and available – it also
makes sure that the needs of those candidates can be satisfied, and
so on recursively. The final selection of candidates for requests is per-
formed by the constraint satisfaction engine. Therefore, the knowledge-
based part evaluates all possible candidates for all possible requests.
This request chaining proves to be extremely valuable: when the email
alert agent, for example, requests a text output service, several differ-
ent agents may be considered, including the LED sign and the speech
output agents. The email alert agent may have its own preference as to
what kind of rendition of the text output service it prefers. However, if
the communication link with the actual LED sign is broken, the needs
of the agent controlling the LED sign will not be satisfied and so it will
not be assigned to the request.

Rascal’s knowledge base is implemented in a rule-based system
(JESS [6]) written in Java. The role of this component of the system



A Resource Manager for Smart Spaces 331

is to find all plausible candidates for all requests. In addition, for each
request-candidate pair, a measure of utility has to be calculated (see
the next section).

In terms of representation, services provided by agents are described
by the names of the Java interfaces that can be used to access them.
For services provided by entities other than agents, similar hierarchical
names are used (e.g. hardware.Computer for a computer). In addition,
attribute-value pairs are used to describe services in more detail and
to refine requests.

Cost-benefit analysis When resources are scarce, part of the arbi-
tration process is deciding which requests are more important. This
could be done with self-assigned priorities or economic models may be
involved (e.g. [3]). In Rascal, self-assigned need levels are used in con-
junction with the concept of utility of a service to the requester and
its cost to others. This is a very simple and arbitrary scheme. It could
easily be replaced by a different system should there be a need for that.
This simple model is sufficient for the current implementation of Ras-
cal, because of our assumption that all agents within a society can be
trusted.

The basic assumption of this schema is that, given a request, each
candidate resource has some utility to the requester. This utility de-
pends on how badly the requester needs a particular request r fulfilled
and on how well the resource s matches the request (Equation 1). A
variety of monotonically increasing functions can be used as fu.

utility(r, s) = fu(need(r), match(r, s)) (1)

The same method is used to calculate the utility of the already
allocated resources. When a resource is taken from its current user, the
system as a whole incurs cost equal to the utility of that resource to
that user. Also, when a resource si, currently allocated to fulfill request
r, is replaced with a different resource sj , a cost is incurred. This cost is
a sum of a fixed “change penalty” and the difference in utilities between
the new allocation and the old one (if this difference is negative, it is
set to zero) as shown in Equation 2.

cost(r, si, sj) = changePenalty(r)+max{0, utility(r, si)−utility(r, sj)}
(2)

The arbiter has to make sure that whenever it awards a resource to
a new request, the cost of doing so should never exceed the utility of
the awarded resources to the new requester.



332 Krzysztof Gajos

Rascal provides a number of methods for calculating utilities and
evaluating matches between requests and resources. Each resource or
request description can also be accompanied by its own custom tools
for performing those calculations.

Finding the right solution – The constraint satisfaction engine
When the knowledge-based subsystem selects and rates all candidates
for requests, a constraint satisfaction engine (CSE) is invoked to find
an optimal or nearly optimal configuration that fulfills the new request
without breaking any of the previous assignments.

Rascal uses a Java-based CSE (JSolver [4]) in order to enable close
coupling with its other components. In order to find the right solution,
a number of constraints and heuristics are involved:

– respecting limits – there are limits on how many requests can share
a service.

– only some requests need to be satisfied – CSE needs to find services
only for some of the requests that it knows about: the newly made
request, the needs of the services assigned to satisfy this new request
and all the previously satisfied requests.

– preference to local solutions – As explained in Section 2.5, it is
sometimes necessary to change the assignment to a previously sat-
isfied request. However, it is necessary to minimize such changes to
the absolute minimum. Rascal’s CSE has been set up in such a way
that changes to old requests are only made as a last resort and have
to be limited in scope. That is, it should not be possible for a new
request to cause changes to a large number of other assignments.
For that reason, Rascal’s CSE uses following heuristics:
• the first service considered for any previously satisfied request

is the service previously allocated to the request;
• if a different service has to be assigned, the cost of service substi-

tution is calculated and added to the overall cost of the current
new request – if the cost exceeds a preset limit, CSE backtracks;

• the CSE is run several times, each time with a different limit
to the overall cost: the first time CSE runs, the limit is set to
zero in hope that a solution can be found that does not disturb
any of the previously assigned requests. If this fails, the CSE
is run again with a higher limit. The process is repeated until
a solution is found or until the CSE is ran with a limit equal
to the need of this request. In Rascal, the cost of satisfying a
request cannot exceed the need to have it satisfied.



A Resource Manager for Smart Spaces 333

Rascal-Metaglue connection There are two major components to
the Rascal-Metaglue connection mechanism: the RascalAgent and the
ManagedAgent. The former makes Rascal’s methods available to the
rest of the Metaglue agents. The latter is a simple implementation of a
Metaglue agent that all other “managed” agents inherit from. That is,
all agents that want to make their services available through Rascal, or
that wish to make requests through it.

4 Related work

The Facilitator Agent in Open Agent Architecture (OAA) [8] performs
task not resource management. Implicit in the OAA design is the as-
sumption that each agent has sole control over all of the resources it
might need.

Applications in Hive [9] agent platform are created by explicitly
connecting various components together. Thus resource conflicts are
diminished because connections among agents are long-lived and pre-
designed, contrary to the on-demand configurations created within Rascal-
enhanced Metaglue.

Jini [2] is a framework with a number of discovery and descrip-
tion tools but no arbitration capabilities. The arbitration component
is supposed to be provided by the user.

Intentional Naming System (INS) [1] provides an extensive naming
mechanism and a mechanism for choosing the best available service but
it does not provide explicit arbitration mechanisms or tools for smart
re-allocations.

5 Contributions

Multi-Agent Systems constitute a very powerful programming paradigm.
Applying MAS to new domains often poses a number of challenges. This
paper shows how the MAS approach can be applied in the domain of
smart spaces, where agent coordination is constrained by the availabil-
ity of physical resources. Rascal—an implememnted and tested tool for
managing such resources—is presented.

6 Acknowledgments

Luke Weisman did most of the fundamental work on the Rascal-Metaglue
interface. He has also done a lot of research on other approaches to re-
source management in Metaglue-based MAS. Dr. Howard Shrobe has



334 Krzysztof Gajos

provided invaluable advice throughout the duration of the project. Fi-
nally, the author would like to thank Mark Foltz for his thorough and
insightful comments on this paper.

References

1. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The de-
sign and implementation of an intentional naming system. In 17th ACM
Symposium on Operating Systems Principles (SOSP), Kiawah Island,
SC, December 1999.

2. Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann
Wollrath. The Jini Specification. Addison-Wesley, Reading, MA, 1999.

3. Jonathan Bredin, David Kotz, Daniela Rus, Rajiv T. Maheswaran, agri
Imer, and Tamer Basar. A market-based model for resource allocation
in agent systems. In Franco Zambonelli, editor, Coordination of Internet
Agents. Springer-Verlag, 2000.

4. Hon Wai Chun. Constraint programming in java with jsolver. In First
International Conference and Exhibition on The Practical Application of
Constraint Technologies and Logic Programming, London, April 1999.

5. Michael Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman,
Stephen Peters, and Peter Finin. Meeting the computational needs
of intelligent environments: The metaglue system. In Proceedings of
MANSE’99, Dublin, Ireland, 1999.

6. Ernest J. Friedman-Hill. Jess, the java expert system shell. Technical
Report Technical Report SAND98-8206, Sandia National Laboratories,
1997.

7. Krzysztof Gajos, Luke Weisman, and Howard Shrobe. Design principles
for resource management systems for intelligent spaces. In Proceedings
of The Second International Workshop on Self-Adaptive Software, Bu-
dapest, Hungary, 2001. To appear.

8. David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The open
agent architecture: A framework for building distributed software sys-
tems. Applied Artificial Intelligence, 13(1-2):91–128, January-March
1999.

9. Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, and Pattie
Maes. Hive: Distributed agents for networking things. In Proceedings
of ASA/MA’99, the First International Symposium on Agent Systems
and Applications and Third International Symposium on Mobile Agents,
August 199.

10. Brenton Phillips. Metaglue: A programming language for multi agent
systems. Master’s thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, 1999.

11. Nimrod Warshawsky. Extending the metaglue multi agent system. Mas-
ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA,
1999.


