
Hybrid Systems: Computation and
Control: 4th International Workshop
(HSCC’01), Rome, Italy, in Lecture
Notes in Computer Science, Vol. 2034,
Springer-Verlag, pp. 403–417, 2001

Hybrid I/O Automata Revisited

Nancy Lynch,1 � Roberto Segala2�� and Frits Vaandrager3� � �

1 MIT Laboratory for Computer Science
lynch@theory.lcs.mit.edu

2 Dipartimento di Matematica, Università di Bologna
segala@cs.unibo.it

3 Computing Science Institute, University of Nijmegen
fvaan@cs.kun.nl

Abstract. In earlier work, we developed a mathematical hy-
brid I/O automaton (HIOA) modeling framework, capable of
describing both discrete and continuous behavior. This frame-
work has been used to analyze examples of automated trans-
portation systems, intelligent vehicle highway systems, air traf-
fic control systems, and consumer electronics applications. Here,
we reconsider the basic definitions of the HIOA framework, in
particular, the dual use of external variables for discrete and
continuous communication. We present a new HIOA model
that is simpler than the earlier model, due to a clearer separa-
tion between discrete and continuous activity.

1 Introduction

Recent years have seen a rapid growth of interest in hybrid systems—
systems that contain both discrete and continuous components, typi-
cally computers interacting with the physical world. Such systems are
used in many application domains, including automated transporta-
tion, avionics, automotive control, process control, robotics, and con-
sumer electronics. Motivated by a desire to describe and reason care-
fully about such applications, we are continuing our efforts to adapt
techniques from computer science to the setting of hybrid systems.
� Supported by AFOSR F49620-00-1-0097, F49620-97-1-0337; NTT

MIT9904-12; NSF ACI-9876931, CCR-9909114, CCR-9804665; PATH
1784-18454LD.

�� Supported by MURST project TOSCA.
� � � Supported by Esprit Project 26270, Verification of Hybrid Systems (VHS).



336 Nancy Lynch, Roberto Segala and Frits Vaandrager

In our previous work in this area, we developed a mathematical hy-
brid I/O automaton modeling framework [15, 16]. This framework sup-
ports description and analysis of hybrid systems using powerful meth-
ods of parallel composition and levels of abstraction. We also proved suf-
ficient conditions for hybrid I/O automata to be receptive, which means
that they allow time to advance to infinity independently of the input
provided by the environment. We and others have used this framework
to analyze examples of automated transportation systems [18, 13, 23,
22, 14, 10], intelligent vehicle highway systems [6, 12], air traffic control
systems [11, 9], and consumer electronics systems [4].

In this paper, we present a new hybrid I/O automaton model that
is considerably simpler than the earlier model, yet supports similar de-
scription and analysis methods and similar receptivity theorems. The
main simplification is a clearer separation between the notions of dis-
crete and continuous communication. We arrived at this separation as
a result of reconsidering the relationship between the computer science
notion of shared variable communication and the control theory notion
of continuous flow across component boundaries.

Levels of abstraction, compositionality, and receptiveness for hy-
brid systems have also been addressed by Alur and Henzinger [2, 3] in
their work on reactive modules. However, reactive modules communi-
cate only via shared variables, and not via shared actions. In [3], a
definition of receptiveness similar to the one in [15, 16] is proposed, and
is shown to be preserved by composition. However, in [3], no circu-
lar dependencies (“feedback loops”) are allowed among the continuous
variables of the components, a restriction that greatly simplifies the
analysis.

The rest of this paper is organized as follows. Section 2 defines
notions that are useful for describing the behavior of hybrid systems:
trajectories and hybrid sequences. Section 3 contains the theory for
the hybrid automaton (HA) model, which has all of the structure of
the HIOA model except for the division of external actions and vari-
ables into inputs and outputs. Section 4 introduces inputs and outputs,
and presents the basic theory for HIOAs. Section 5 presents the new
theory of receptiveness, including the main theorem, Theorem 7, stat-
ing that receptiveness is preserved by composition under certain com-
patibility conditions. Section 6 describes sufficient conditions for these
compatibility conditions to hold, and in particular, describes Lipschitz
automata.



Hybrid I/O Automata Revisited 337

2 Describing hybrid behavior

In this section, we give basic definitions that are useful for describing
discrete and continuous system behavior, including discrete and con-
tinuous state changes, and discrete and continuous flow of information
over component boundaries. Throughout this paper, we fix a time axis
T, which is a compact subgroup of (R, +), the real numbers with addi-
tion.

2.1 Static and dynamic types

We assume a universal set V of variables. A variable represents either
a location within the state of a system component, or a location where
information flows from one system component to another. For each
variable, we assume both a (static) type, which gives the set of values
it may assume, and a dynamic type, which gives the set of trajectories
it may follow. Our motivation for introducing dynamic types is that
this allows us to define input enabling for hybrid I/O automata: if v is
an input variable of HIOA A then, roughly speaking, we require that
A accepts each input signal on v, as long as it respects the dynamic
type of v. Since we are in a hybrid setting where discrete transitions
may change the state at any time, elements of a dynamic type may
contain (countably many) “discontinuities”. Formally, we assume for
each variable v:

– type(v), the (static) type of v. This is a set of values.
– dtype(v), the dynamic type of v. This is a set of functions from left-

closed intervals of T to type(v) that is closed under the following
operations:
1. (Time shift) For each f ∈ dtype(v) and t ∈ T, f + t ∈ dtype(v).

Here f + t is the function given by (f + t) (t′) = f(t′ − t).
2. (Subinterval) For each f ∈ dtype(v) and each left-closed inter-

val J ⊆ dom(f), f � J ∈ dtype(v). Here f � J is the function
obtained by restricting the domain of f to J .

3. (Pasting) For each sequence f0, f1, f2, . . . of functions in dtype(v)
such that (a) the domain of each fi, except possibly for the last
one, is right-closed, (b) for each nonfinal index i, max(dom(fi)) =
min(dom(fi+1)), the function f given by f(t) ∆= fi(t), where i
is the smallest index with t ∈ dom(fi), is in dtype(v).

Example 1. For any variable v, the set C of constant functions from
a left-closed interval to type(v) is closed under time shift and subin-
tervals. If the dynamic type of v is obtained by closing C under the



338 Nancy Lynch, Roberto Segala and Frits Vaandrager

pasting operation, then v is called a discrete variable, as in [19]. If we
take T = R and type(v) = R, then other examples of dynamic types
can be obtained by taking the pasting closure of the set of continuous
or smooth functions, the set of integrable functions, or the set of mea-
surable locally essentially bounded functions. The set of all functions
from left-closed intervals of R to R is also a dynamic type.

In practice, dynamic types are often defined via pasting closure of
a class of continuous functions. In these cases the elements of dynamic
types are continuous from the left. Elsewhere in the literature on hybrid
systems one often encounters functions that are continuous from the
right (see, e.g., [8]). To some extent, the choice of how to define function
values at discontinuities is arbitrary. An advantage of our choice is
a nice correspondence between concatenation and prefix ordering of
trajectories (see Lemma 2). In the rest of this paper, when we say that
the dynamic type of a variable v equals S, we actually mean that the
dynamic type of v is obtained by applying the above closure operations
to S.

2.2 Trajectories

In this subsection, we define the notion of a trajectory, define operations
on trajectories, and prove simple properties of trajectories and their
operations. A trajectory is used to model the evolution of a collection
of variables over an interval of time.

Basic definitions Let V be a set of variables, that is, a subset of V. A
valuation v for V is a function that associates to each variable v ∈ V
a value in type(v). We write val(V ) for the set of valuations for V . Let
J be a left-closed interval of T with left endpoint equal to 0. Then a
J-trajectory for V is a function τ : J → val(V ), such that for each
v ∈ V , τ ↓ v ∈ dtype(v). Here τ ↓ v is the function with domain J
defined by (τ ↓ v)(t) = τ(t)(v).

We say that a J-trajectory is finite if J is a finite interval, closed if
J is a (finite) closed interval, and full if J = T≥0. A trajectory for V
is a J-trajectory for V , for any J . We write trajs(V ) for the set of all
trajectories for V . For T a set of trajectories, finite(T ), closed(T ) and
full(T ) denote the subsets of finite, closed and full trajectories in T ,
respectively. A trajectory with domain [0, 0] is called a point trajectory.
If v is a valuation then ℘(v) denotes the point trajectory that maps 0
to v.



Hybrid I/O Automata Revisited 339

If τ is a trajectory then τ.ltime, the limit time of τ , is the supremum
of dom(τ). Similarly, we define τ.fval , the first valuation of τ , to be
τ(0), and if τ is closed, we define τ.lval , the last valuation of τ , to be
τ(τ.ltime). For τ a trajectory and t ∈ T≥0, we define τ � t

∆= τ � [0, t],
τ � t

∆= τ � [0, t), and τ � t
∆= (τ � [t,∞)) − t. Note that the result of

applying the above operations is always a trajectory, except when the
result is a function with an empty domain. By convention, τ � ∞ ∆= τ

and τ � ∞ ∆= τ .

Prefix ordering Trajectory τ is a prefix of trajectory υ, denoted by
τ ≤ υ, if τ can be obtained by restricting υ to a non-empty, downward
closed subset of its domain. Formally, τ ≤ υ iff τ = υ � dom(τ). For T
a set of trajectories for V , pref (T ) denotes the prefix closure of T . We
say that T is prefix closed if T = pref (T ).

The following lemma gives a simple domain theoretic characteri-
zation of the set of trajectories over a given set V . (See [7] for basic
definitions and results on complete partially ordered sets, (cpo’s)).

Lemma 1. Let V be a set of variables. Then the set trajs(V ) of tra-
jectories for V , together with the prefix ordering ≤, is an algebraic cpo
whose compact elements are the closed trajectories.

Concatenation The concatenation of two trajectories is obtained by
taking the union of the first trajectory and the function obtained by
shifting the domain of the second trajectory until the start time agrees
with the limit time of the first trajectory; the last valuation of the
first trajectory, which may not be the same as the first valuation of
the second trajectory, is the one that appears in the concatenation.
Formally, let τ, υ be trajectories, with τ closed. Then the concatenation
is the function given by τ � υ

∆= τ ∪ (υ � (0,∞) + τ.ltime). Using the
closure of dynamic types under time shift and pasting, it follows that
τ �υ is a trajectory. Observe that τ �υ is finite (resp. closed, full) iff υ is
finite (resp. closed, full). Observe also that concatenation is associative.

The following lemma, which is easy to prove, shows the close con-
nection between concatenation and the prefix ordering.

Lemma 2. Let τ, υ be trajectories with τ closed. Then τ ≤ υ iff there
exists a trajectory τ ′ such that τ � τ ′.

Note that if τ ≤ υ, then the trajectory τ ′ such that υ = τ � τ ′ is
unique except that it has an arbitrary value for τ ′.fval . Note also that
the “⇐” implication would not hold if the first valuation of the second



340 Nancy Lynch, Roberto Segala and Frits Vaandrager

argument, rather than the last valuation of the first argument, were
used in the concatenation.

Using a limit construction, we can generalize the definition of con-
catenation for any (finite or countably infinite) number of arguments.
Let τ0, τ1, τ2, . . . be a (finite or infinite) sequence of trajectories, such
that τi is closed for each nonfinal index i. Define trajectories τ ′

0, τ
′
1, τ

′
2, . . .

by τ ′
i

∆= τ0
� τ1

� · · · � τi. We define the concatenation τ0
� τ1

� τ2 . . .
to be limi→∞ τ ′

i . It is easy to prove that τ0
� τ1

� τ2 . . . is a trajectory.

2.3 Hybrid sequences

In this subsection, we introduce the notion of a hybrid sequence, which
is used to model a combination of changes that occur instantaneously
and changes that occur over intervals of time. Our definition is param-
eterized by a set A of actions, which are used to model instantaneous
changes and instantaneous synchronization with the environment, and
a set V of variables, which are used to model changes over intervals
and continuous interaction. We also define some special kinds of hybrid
sequences and operations on hybrid sequences.

Basic definitions An (A, V )-sequence is a finite or infinite alternating
sequence α = τ0 a1 τ1 a2 τ2 · · ·, where (1) each τi is a trajectory in
trajs(V ), (2) each ai is an action in A, (3) if α is a finite sequence then
it ends with a trajectory, and (4) if τi is not the last trajectory in α then
dom(τi) is closed. We define a hybrid sequence to be an (A, V )-sequence
for some A and V .

Since the trajectories in a hybrid sequence can be point trajectories,
our notion of hybrid sequence allows a sequence of discrete actions to
occur at the same real time, with corresponding changes of state.

If α is a hybrid sequence, with notation as above, then we define
the first valuation of α, α.fval , to be τ0.fval , and we define the limit
time of α, α.ltime, to be

∑
i τi.ltime. A hybrid sequence α is defined

to be:

– time-bounded if α.ltime is finite.
– admissible if α.ltime = ∞.
– closed if α is a finite sequence and the domain of its final trajectory

is a closed interval. In this case we define the last valuation of α,
α.lval , to be last(α).lval .

– Zeno if α is neither closed nor admissible, that is, if α is time-
bounded and is either an infinite sequence, or else a finite sequence
ending with a trajectory whose domain is right-open.



Hybrid I/O Automata Revisited 341

Prefix ordering We say that (A, V )-sequence α = τ0a1τ1 . . . is a prefix
of (A, V )-sequence α′ = τ ′

0 a′
1 τ ′

1 . . ., denoted by α ≤ α′, if either α = α′,
or α is a finite sequence ending in some τk; τi = τ ′

i , and ai+1 = a′
i+1

for every i, 0 ≤ i < k; and τk ≤ τ ′
k. Like the set of trajectories over V ,

the set of (A, V )-sequences is a cpo.

Lemma 3. The set of (A, V )-sequences together with the prefix order-
ing ≤ is an algebraic cpo with as compact elements the set of closed
(A, V )-sequences.

Restriction Let A, A′ be sets of actions and V, V ′ sets of variables.
The (A′, V ′)-restriction of an (A, V )-sequence is obtained by projecting
the trajectories on the variables in V ′, removing the actions not in A′,
and concatenating the adjacent trajectories.

Lemma 4. Restriction is a continuous operation with respect to prefix
ordering.

Concatenation Suppose α and α′ are (A, V )-sequences, with α closed.
Then the concatenation is the (A, V )-sequence given by

α � α′ ∆= init(α) (last(α) � head(α′)) tail(α′).

(If σ is a nonempty sequence then head(σ) denotes the first element of
σ and tail (σ) denotes σ with its first element removed; if σ is finite,
then last(σ) denotes the last element of σ and init(σ) denotes σ with
its last element removed.)

Lemma 5. Let α, α′ be (A, V )-sequences with α closed. Then α ≤ α′

iff there exists and (A, V )-sequence α′′ such that α′ = α � α′′.

Note that if α ≤ α′, then the (A, V )-sequence α′′ such that α′ = α� α′′

is unique except that it has an arbitrary value in val(V ) for α′′.fval .
Based on Lemma 5 and Lemma 3, we can extend concatenation to

infinitely many (A, V )-sequences as follows. Let α1, α2, . . . be an infi-
nite sequence of closed (A, V )-sequences. Then define the concatenation
α1

� α2
� · · · to be limi→∞ α′

i, where α′
i = α1

� α2
� · · · � αi.

3 Hybrid Automata

As a preliminary step toward defining hybrid I/O automata, we first de-
fine a slightly more general hybrid automaton model. Hybrid automata



342 Nancy Lynch, Roberto Segala and Frits Vaandrager

classify actions as external and internal, but do not further subdivide
the external actions into input and output actions. Likewise, they clas-
sify variables as external and internal. The input/output distinction
is added in Section 4. In addition to defining hybrid automata, we
here define an implementation relation between hybrid automata and
a composition operation.

3.1 Definition of Hybrid Automata

A hybrid automaton (HA) A = (W, X, Θ, E, H,D, T ) consists of:

– A set W of external variables and a set X of internal variables,
disjoint from each other. We call a valuation x for X a state, and
we refer to val (X) as the set of states of A. We write V

∆= W ∪X .
Given a valuation v for V , we denote by state(v) the state v � X .

– A nonempty set Θ ⊆ val (X) of start states .
– A set E of external actions and a set H of internal actions , disjoint

from each other. We write A
∆= E∪H and let a, b, . . . range over A.

– A set D ⊆ val (X) × A × val (X) of discrete transitions. We use
x a→A x′ as shorthand for (x, a,x′) ∈ D. We sometimes drop the
subscript, and write x a→ x′, when A should be clear from the
context.

– A set T of trajectories for V . Given a trajectory τ ∈ T we denote
τ.fval � X by τ.fstate, and, if τ is closed, τ.lval � X by τ.lstate. We
require that the following axioms hold:
T1 (Prefix closure) For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T .
T2 (Suffix closure) For every τ ∈ T and every t ∈ dom(τ), τ � t ∈

T .
T3 (Concatenation closure) Let τ0, τ1, τ2, . . . be a sequence of tra-

jectories in T such that, for each nonfinal index i, τi is closed
and τi.lstate = τi+1.fstate. Then τ0

� τ1
� τ2 . . . ∈ T .

Axioms T1-3 express some natural closure properties on the set of tra-
jectories that we need for our results about parallel composition. In a
composed system, any trajectory of any component may be interrupted
at any moment by a discrete transition of another component. Axiom
T1 ensures that the part of the trajectory up to the discrete transition
is a trajectory, and axiom T2 ensures the remainder is a trajectory.
Axiom T3 is required because the environment of a hybrid automaton,
as a result of internal discrete transitions, may change its continuous
dynamics repeatedly, and the automaton must be able to follow this
behavior. Even without performing discrete transitions itself, a hybrid



Hybrid I/O Automata Revisited 343

automaton must be able to follow this type of behavior of its environ-
ment. In the earlier definition of hybrid automata presented in [15, 16],
we used a special stuttering action e in place of axiom T3; this gave
rise to technical complications.

Another major difference between our new definition and the earlier
one is that the external variables are no longer considered to be part of
the state; thus, for instance, the discrete transitions do not depend on
the values of these variables. Analogous to the way in which external
actions can be used to model synchronization of discrete transitions
of different components, external variables allow us to model synchro-
nization of continuous activity (“flow”) between components. Because
the external actions and external variables are not part of the state, we
think of them as “ephemeral”.

We often denote the components of a HA A by WA, XA, ΘA, EA,
etc, and the components of a HA Ai by Wi, Xi, Θi, Ei, etc. We some-
times omit these subscripts, where no confusion seems likely.

3.2 Executions and traces

We now define execution fragments, executions, trace fragments, and
traces, which are used to describe automaton behavior.

An execution fragment of a HA A is an (A, V )-sequence
α = τ0 a1 τ1 a2 τ2 · · ·, where (1) each τi is a trajectory in T , and (2) if
τi is not the last trajectory in α then τi.lstate

ai+1→ τi+1.fstate. An ex-
ecution fragment records all the instantaneous, discrete state changes
that occur during a specific evolution of a system, as well as the state
changes and external variable changes that occur while time advances.
We write fragsA for the set of all execution fragments of A.

If α is an execution fragment, with notation as above, then we
define the first state of α, α.fstate, to be state(α.fval ), or equivalently,
τ0.fstate. An execution fragment α is defined to be an execution if
α.fstate is a start state, that is, is in Θ. We write execsA for the set of
all executions of A.

If α is a closed execution fragment then we define the last state of
α, α.lstate, to be state(α.lval ), or equivalently, last(α).lstate . A state
of A is reachable if it is the last state of some closed execution of A.

Lemma 6. Let α and α′ be execution fragments of A with α closed,
and such that α.lstate = α′.fstate. Then α�α′ is an execution fragment
of A.

Lemma 7. Let α and α′ be execution fragments of A with α closed.
Then α ≤ α′ iff there is an execution fragment α′′ such that α′ = α�α′′.



344 Nancy Lynch, Roberto Segala and Frits Vaandrager

The trace of an execution fragment records the external actions
and the evolution of external variables. Formally, if α is an execution
fragment, then the trace of α, denoted by trace(α), is the (E, W )-
restriction of α. A trace fragment of a hybrid automaton A from a state
x of A is a trace that arises from an execution fragment of A whose
first state is x. We write tracefragsA(x) for the set of trace fragments
of A from x. Also, we define a trace of A to be a trace fragment from
an initial state, that is, a trace that arises from an execution of A, and
write tracesA for the set of traces of A.

Hybrid automata A1 and A2 are comparable if they have the same
external actions and variables, that is, if W1 = W2 and E1 = E2. If A1

and A2 are comparable then we say that A1 implements A2, denoted
by A1 ≤ A2, if the traces of A1 are included among those of A2, that
is, if tracesA1 ⊆ tracesA2 .

3.3 Simulation relations

Let A and B be comparable HAs. A simulation from A to B is a relation
R ⊆ val(XA) × val(XB) satisfying the following conditions, for all
states xA and xB of A and B, respectively:

1. If xA ∈ ΘA then there exists a state xB ∈ ΘB such that xA R xB .
2. If xA R xB , xA

a→A x′
A and τ = trace(℘(xA) a ℘(x′

A)), then B
has a closed execution fragment α with α.fstate = xB , trace(α) =
trace(τ), and x′

A R α.lstate.
3. If xA R xB and τ is a closed trajectory of A with xA = τ.fstate

and x′
A = τ.lstate, then B has a closed execution fragment α with

α.fstate = xB, trace(α) = trace(τ), and x′
A R α.lstate.

Lemma 8. Let A and B be comparable HAs, and let R be a simulation
from A to B. Let xA and xB be states of A and B, respectively, such
that xA R xB . Then tracefragsA(xA) ⊆ tracefragsB(xB).

Theorem 1. Let A and B be comparable HAs, and let R be a simula-
tion from A to B. Then tracesA ⊆ tracesB.

3.4 Composition

We now introduce the operation of composition for hybrid automata,
which allows an automaton representing a complex system to be con-
structed by composing automata representing individual system com-
ponents. We prove that the composition operation respects our imple-
mentation relationship (inclusion of sets of traces). Our composition



Hybrid I/O Automata Revisited 345

operation identifies actions and variables with the same name in differ-
ent component automata. When any component automaton performs a
step involving an action a, so do all component automata that have a in
their signatures. Common variables are shared among the components.

We define composition as a partial, binary operation on hybrid au-
tomata. Since internal actions of an automaton A1 are intended to be
unobservable by any other automaton A2, we do not allow A1 to be
composed with A2 unless the internal actions of A1 are disjoint from
the actions of A2. Also, we require disjointness of the internal variables
of A1 and the variables of A2. Formally, we say that hybrid automata
A1 and A2 are compatible if for i 
= j, Xi ∩ Vj = Hi ∩ Aj = ∅. If A1

and A2 are compatible then their composition A1‖A2 is defined to be
the structure A = (W, X, Θ, E, H,D, T ) where

– W = W1 ∪ W2, X = X1 ∪ X2, E = E1 ∪ E2, H = H1 ∪ H2.
– Θ = {x ∈ val(X) | x � X1 ∈ Θ1 ∧ x � X2 ∈ Θ2}.
– For each x,x′ ∈ val (X) and each a ∈ A, x a→A x′ iff for i = 1, 2,

either (1) a ∈ Ai and x � Xi
a→i x′ � Xi, or (2) a 
∈ Ai and

x � Xi = x′ � Xi.
– T ⊆ trajs(V ) is given by τ ∈ T ⇔ τ ↓ V1 ∈ T1 ∧ τ ↓ V2 ∈ T2.

Proposition 1. A1‖A2 is a hybrid automaton.

Theorem 2. Suppose A1,A2 and B are HAs with A1 ≤ A2, and sup-
pose that each of A1 and A2 is compatible with B. Then A1‖B ≤ A2‖B.

In the full version of this paper, we define two natural hiding op-
erations on HAs, which hide external actions and external variables,
respectively, and prove that these operations also respect the imple-
mentation preorder.

4 Hybrid I/O Automata

In this section we specialize the hybrid automaton model of Section 3
by adding a distinction between input and output.

4.1 Definition of Hyybrid I/O Automata

A hybrid I/O automaton (HIOA) A is a tuple (H, U, Y, I, O) where

– H = (W, X, Θ, E, H,D, T ) is a hybrid automaton.
– U and Y partition W into input and output variables, respectively.

Variables in Z
∆= X ∪ Y are called locally controlled ; as before we

write V
∆= W ∪ X .



346 Nancy Lynch, Roberto Segala and Frits Vaandrager

– I and O partition E into input and output actions , respectively.
Actions in L

∆= H ∪ O are called locally controlled ; as before we
write A

∆= E ∪ H .
– The following additional axioms are satisfied:

E1 (Input action enabling)
For all x ∈ val(X) and all a ∈ I there exists x′ such that
x a→ x′.

E2 (Input flow enabling)
For all x ∈ val (X) and υ ∈ trajs(U ), there exists τ ∈ T such
that τ.fstate = x, τ ↓ U ≤ υ, and either
1. τ ↓ U = υ, or
2. there exist t ∈ dom(τ) and l ∈ L such that l is enabled

from τ(t).

Input action enabling is the input enabling condition of ordinary I/O
automata. Input flow enabling is a new corresponding condition for
continuous interaction. It says that an HIOA should be able to accept
any continuous input flow, either by letting time advance for the entire
duration of the input flow, or by reacting with a locally controlled
action after some part of the input flow has occurred.

An execution of an HIOA A is an execution of HA. Similarly, a
trace of A is a trace of HA. Two HIOAs A1 and A2 are comparable
if their inputs and outputs coincide, that is, if I1 = I2, O1 = O2,
U1 = U2, and Y1 = Y2. If A1 and A2 are comparable, then A1 ≤ A2 is
defined to mean that the traces of A1 are included among those of A2:
A1 ≤ A2

∆= tracesA1 ⊆ tracesA2 . If A1 and A2 are comparable HIOAs
then H1 and H2 are comparable and A1 ≤ A2 iff H1 ≤ H2.

The definition of simulation for HIOAs is the same as for HAs, and
the soundness result carries over immediately to the enriched setting.

4.2 Composition

The definition of composition for HIOAs builds on the corresponding
definition for HAs, but also takes the input/output structure into ac-
count. Just as in the definition of compatibility for HAs, we do not
allow an HIOA A1 to be composed with an HIOA A2 unless the in-
ternal actions and variables of A1 are disjoint from the actions and
variables, respectively, of A2. In addition, in order that the composi-
tion operation might satisfy nice properties (such as Theorem 7), we
require that at most one component automaton “controls” any given
action or variable; that is, we do not allow A1 and A2 to be composed
unless the sets of output actions of A1 and A2 are disjoint and the sets
of output variables of A1 and A2 are disjoint.



Hybrid I/O Automata Revisited 347

If A1 and A2 are compatible then their composition A1‖A2 is de-
fined to be the tuple A = (H, U, Y, I, O) where H = H1‖H2, U =
(U1 ∪ U2) − (Y1 ∪ Y2), Y = Y1 ∪ Y2, I = (I1 ∪ I2) − (O1 ∪ O2), and
O = O1 ∪ O2.

The definition of compatibility given above is not quite strong enough
to imply that the composition of two HIOAs is actually an HIOA. Thus,
we define a stronger notion and say that compatible HIOAs A1 and A2

are strongly compatible if A1‖A2 satisfies axiom E2. Strong compatibil-
ity implies that the reaction of the composed automaton to any input
flow υ must be the result of a deliberate reaction by either A1 or A2.
That is, either both A1 and A2 accept υ in its entirety, or one of the two
reacts with a locally controlled action. No “time deadlock” is allowed
due to incompatible reactions of A1 and A2.

Proposition 2. The composition of two strongly compatible HIOAs is
an HIOA.

Theorem 3. Suppose A1,A2 and B are HIOAs with A1 ≤ A2, and
each of A1 and A2 is strongly compatible with B. Then A1‖B ≤ A2‖B.

5 Receptive Hybrid I/O Automata

In this section we adapt the notion of receptiveness [20] to our new
framework. Informally speaking, a system is receptive provided that it
admits a strategy for resolving its nondeterministic choices that never
generates infinitely many locally controlled actions in finite time. An
important consequence of this definition is that a receptive HIOA has
some response defined for any sequence of discrete and continuous in-
put. We show that receptiveness is closed under composition. Because
of the improvements in our new model, the treatment of receptiveness
in this paper is simpler than that in [20]; however, we only address
admissibility here, and not general liveness properties as in [20].

An execution fragment of an HIOA is locally-Zeno if it is Zeno
and contains infinitely many locally controlled actions. An HIOA A is
locally-Zeno if it has at least one locally-Zeno execution fragment. In
the rest of the paper we will be interested mainly in non-locally-Zeno
HIOAs, that is, HIOAs that are not locally-Zeno. We use non-locally-
Zeno HIOAs as the basis for defining receptiveness.

Theorem 4. Let A1, A2 be strongly compatible non-locally-Zeno HIOAs.
Then A1‖A2 is also non-locally-Zeno.



348 Nancy Lynch, Roberto Segala and Frits Vaandrager

Theorem 5. Let A be a non-locally-Zeno HIOA. Then, for each (I, U)-
sequence β and each state x, there is an execution fragment α of A such
that (1) α.fstate = x, (2) α � (I, U) = β.

The property stated in Theorem 5 is known in the literature as I/O
feasibility [17]; it implies that any finite execution can be extended to
an admissible execution, no matter what the environment does.

A strategy for an HIOA A is an HIOA A′ that differs from A only in
that D′ ⊆ D and T ′ ⊆ T . A strategy A′ for an HIOA A can be viewed
as a nondeterministic memoryless strategy in the sense of [5, 20] that
chooses some of the evolutions that are possible from each of the states
of A. The fact that the states of A and A′ are the same ensures that
A′ chooses evolutions for every state x of A.

We say that an HIOA is receptive if it has a non-locally-Zeno strat-
egy.

Theorem 6. A receptive HIOA is I/O feasible.

Theorem 7. Let A1 and A2 be two compatible receptive HIOAs with
two strongly compatible non-locally-Zeno strategies A′

1 and A′
2, respec-

tively. Then A1‖A2 is a receptive HIOA with non-locally-Zeno strategy
A′

1‖A′
2.

6 Sufficient conditions for strong compatibility

In order to apply Theorem 7, one has to establish that two strategies are
strongly compatible. This is difficult in general since it requires check-
ing compatibility between the continuous dynamics of two systems.
However, for certain restricted classes of HIOAs, strong compatibility
follows directly from compatibility.

6.1 HIOAs with restrictions on input variables

Our first example is the class of HIOAs without input variables. It is
routine to verify that two HIOAs without input variables are strongly
compatible iff they are compatible. From the perspective of classical
control theory a system without input variables is uninteresting be-
cause it cannot be controlled; in a hybrid setting, however, a system
without input variables can still interact with its environment via dis-
crete input actions. Linear hybrid automata [1], for instance, have no
input variables.

Another example is the class of autistic HIOAs—those for which
the values of output variables do not depend on the values of input



Hybrid I/O Automata Revisited 349

variables. Formally, an HIOA A is called autistic if for all τ ∈ T and
all υ ∈ trajs(U ) such that dom(τ) = dom(υ) there exists τ ′ ∈ T such
that τ ′ ↓ U = υ and τ ′ ↓ Y = τ ↓ Y .

6.2 Lipschitz HIOAs

In this section, we define Lipschitz HIOAs, based on systems of dif-
ferential equations using Lipschitz functions. We give examples of con-
ditions on classes of Lipschitz HIOAs that imply strong compatibility.
The ideas are derived from methods in the literature on control theory
[21]. In control theory, continuous system behavior is typically defined
using differential equations of the form:

D
∆=

{ .
x = f(x, u)
y = g(x)

where u, y, and x are the vectors of input, output, and state variables,
respectively, together with a starting condition of the form x(0) = x0.

To ensure that the system’s behavior is defined, the differential
equations must admit a solution for each possible starting condition.
The following theorem from calculus gives sufficient conditions for a
solution to exist.

Theorem 8 (Local existence). If f is globally Lipschitz and u is C1,
then for each starting condition x(0) = x0 there is a unique solution to
the equations of D, defined on a maximal neighborhood of 0, such that
x(0) = x0.

Observe that, since the set of globally Lipschitz functions is closed
under composition, the local existence theorem is valid also when the
variables u are the result of a globally Lipschitz function applied to a
C1 function.

Suppose two interacting systems are described by sets of equations
D1 and D2 of the form given above. Then their combined behavior can
be described by the union of the sets of equations D1 and D2. It is
easy to show that, if the functions occurring in D1 and D2 are globally
Lipschitz, and D1 and D2 do not have any common output and state
variables, then the union of these two sets of equations is expressible in
the same form with functions that are globally Lipschitz. Thus, in this
case no additional machinery is needed to prove that the behavior of
the interacting systems is well defined. We define a set D of equations
to be Lipschitz if functions f and g are globally Lipschitz.

To extend the above ideas to the hybrid case we define the notion
of a Lipschitz HIOA. An HIOA A is Lipschitz if there is a subset M of
its state variables (we call these the mode variables) such that:



350 Nancy Lynch, Roberto Segala and Frits Vaandrager

L1 The dynamic type of each variable in M is piecewise constant.
L2 The dynamic type of each variable not in M is a subset of the set

of real-valued functions defined on left-closed intervals of the reals
that can be expressed in the form h(c(·)) where h is a globally
Lipschitz function and c is a C1 function, closed under pasting.

L3 The values of the M variables are constant in each trajectory of T .
L4 For each valuation m of M there is a Lipschitz system of equations

Dm with input variables U , output variables Y , and state variables
X − M such that the following holds: If trajectory τ of T starts
from a state x with x � M = m, then τ � V − M is expressible as
the concatenation of countably many trajectories τ0, τ1, . . ., where
each τi is a solution to Dm.

Define a Lipschitz HIOA to be input bounded if for each input vari-
able u there exists a positive real value B such that every function in
the dynamic type of u has range in [−B, B].

Lemma 9. Compatible input-bounded Lipschitz HIOAs are strongly
compatible.

Theorem 9. The composition of two compatible input-bounded Lips-
chitz HIOAs is a Lipschitz HIOA.

Theorem 10. Let A1 and A2 be compatible receptive HIOAs with non-
locally-Zeno, input-bounded, Lipschitz strategies. Then A1‖A2 is a re-
ceptive HIOA with a non-locally-Zeno input-bounded Lipschitz strategy.

Theorem 11. The composition of two compatible receptive input-bounded
Lipschitz HIOAs is a receptive input-bounded Lipschitz HIOA.

The conclusion that we derive from Theorem 11 is that compatibil-
ity implies strong compatibility if we describe the continuous behaviors
of HIOAs by means of differential equations of the form of D with func-
tions f and g globally Lipschitz. In general, any choice of conditions on
f, g, and u that guarantees local existence of unique solutions, continu-
ity of solutions, and that is preserved by interaction between systems,
can be used to define a class of automata for which strong compatibility
follows from compatibility.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.



Hybrid I/O Automata Revisited 351

2. R. Alur and T.A. Henzinger. Reactive modules. In Proc. LICS’96, pages
207–218, 1996.

3. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems.
In Proc. of CONCUR’97, pages 74–88. LNCS 1243, 1997.

4. D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Verification of an audio
control protocol. In Proc. of FTRTFT’94, pages 170–192. LNCS 863,
1994.

5. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press,
1988.

6. E. Dolginova and N.A. Lynch. Safety verification for automated platoon
maneuvers: A case study. In Proc. of HART’97, pages 154–170. LNCS
1201, 1997.

7. C.A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, Cambridge, Massachusetts, 1992.

8. A. Kapur, T.A. Henzinger, Z. Manna, and A. Pnueli. Proving safety
properties of hybrid systems. In Proc. of FTRTFT’94, pages 431–454.
LNCS 863, 1994.

9. C. Livadas, J. Lygeros, and N.A. Lynch. High-level modelling and anal-
ysis of tcas. In Proc. of RTSS’99, 1999.

10. C. Livadas and N.A. Lynch. Formal verification of safety-critical hybrid
systems. In Proc. of HSCC’98, pages 253–272. LNCS 1386, 1998.

11. J. Lygeros and N.A. Lynch. On the formal verification of the tcas conflict
resolution algorithms. In Proc. of 36th IEEE Conference on Decision and
Control, pages 1829–1834, 1997. Extended Abstract.

12. J. Lygeros and N.A. Lynch. Strings of vehicles: Modeling and safety
conditions. In Proc. of HSCC’98, pages 273–288. LNCS 1066, 1998.

13. N.A. Lynch. Modelling and verification of automated transit systems,
using timed automata, invariants and simulations. In Hybrid Systems
III. LNCS 1066, 1996.

14. N.A. Lynch. A three-level analysis of a simple acceleration maneuver,
with uncertainties. In Proc. of 3rd AMAST Workshop on Real-Time
Systems, pages 1–22, 1996.

15. N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid
i/o automata. In Hybrid Systems III, pages 496–510. LNCS 1066, 1996.

16. N.A. Lynch, R. Segala, F.W. Vaandrager, and H.B. Weinberg. Hybrid i/o
automata. Technical Report CSI-R9907, Computing Science Institute,
University of Nijmegan, 1999.

17. N.A. Lynch and F.W. Vaandrager. Action transducers and timed au-
tomata. Formal Aspects of Computing, 8(5):499–538, 1996.

18. N.A. Lynch and H.B. Weinberg. Proving correctness of a vehicle ma-
neuver: Deceleration. In Proc. of 2nd European Workshop on Real-Time
and Hybrid Systems, 1995.

19. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In
Proc. of REX Workshop on Real-Time: Theory in Practice, pages 447–
484. LNCS 600, 1992.



352 Nancy Lynch, Roberto Segala and Frits Vaandrager

20. R. Segala, R. Gawlick, J.F. Søgaard-Andersen, and N.A. Lynch. Live-
ness in timed and untimed systems. Information and Computation,
141(2):119–171, March 1998.

21. E.D. Sontag. Mathematical Control Theory — Deterministic Finite Di-
mensional Systems, volume 6 of Texts in Applied Mathematics. Springer-
Verlag, 1990.

22. H.B. Weinberg and N.A. Lynch. Correctness of vehicle control systems:
A case study. In Proc. of RTSS’96, pages 62–72, 1996.

23. H.B. Weinberg, N.A. Lynch, and N. Delisle. Verification of automated
vehicle protection systems. In Hybrid Systems III, pages 101–113. LNCS
1066, 1996.


