Proceedings of the 2001 SIGPLAN
Conference on Programming Language
Design and Implementation, Snowbird,
Utah, June 2001.

A Unified Framework for Schedule and
Storage Optimization

William Thies!, Frédéric Vivien?, Jeffrey Sheldon®
and Saman Amarasinghe'*

L MIT Laboratory for Computer Science
{thies, jeffshel, saman}@lcs.mit.edu
2 Université Louis Pasteur, Strasbourg, France
vivien@Qicps.u-strasbg.fr

Abstract. We present a unified mathematical framework for
analyzing the tradeoffs between parallelism and storage alloca-
tion within a parallelizing compiler. Using this framework, we
show how to find a good storage mapping for a given sched-
ule, a good schedule for a given storage mapping, and a good
storage mapping that is valid for all legal schedules. We con-
sider storage mappings that collapse one dimension of a multi-
dimensional array, and programs that are in a single assign-
ment form with a one-dimensional schedule. Our technique
combines affine scheduling techniques with occupancy vector
analysis and incorporates general affine dependences across
statements and loop nests. We formulate the constraints im-
posed by the data dependences and storage mappings as a set
of linear inequalities, and apply numerical programming tech-
niques to efficiently solve for the shortest occupancy vector. We
consider our method to be a first step towards automating a
procedure that finds the optimal tradeoff between parallelism
and storage space.

1 Introduction

It remains an important and relevant problem in computer science to
automatically find an efficient mapping of a sequential program onto

* This research was done while Frédéric Vivien was a Visiting Professor
in the MIT Laboratory for Computer Science. More information on this
project can be found at http://compiler.lcs.mit.edu/aov.

354 William Thies, Frédéric Vivien, et al.

a parallel architecture. Though there are many heuristic algorithms in
practical systems and partial or suboptimal solutions in the literature,
a theoretical framework that can fully describe the entire problem and
find the optimal solution is still lacking. The difficulty stems from the
fact that multiple inter-related costs and constraints must be considered
simultaneously to obtain an efficient executable.

While exploiting the parallelism of a program is an important step
towards achieving efficiency, gains in parallelism are often overwhelmed
by other costs relating to data locality, synchronization, and communi-
cation. In particular, with the widening gap between clock speed and
memory latency, and with modern memory systems becoming increas-
ingly hierarchical, the amount of storage space required by a program
can have a drastic effect on its performance. Nonetheless, parallelizing
compilers often employ varying degrees of array expansion [9,5,1] to
eliminate element-level anti and output dependences, thereby adding
large amounts of storage that may or may not be justified by the re-
sulting gains in parallelism.

Thus, compilers must be able to analyze the tradeoffs between par-
allelism and storage requirements in order to arrive at an efficient exe-
cutable. In this paper, we introduce a unifying mathematical framework
that incorporates both schedule constraints (restricting when state-
ments can be executed) and storage constraints (restricting where their
results can be stored). We consider storage mappings that collapse one
dimension of a multi-dimensional array, and programs that are in a sin-
gle assignment form with a one-dimensional schedule. Our technique in-
corporates general affine dependences across statements and loop nests,
making it applicable to many scientific applications

Using this technique, we present solutions to three important schedul-
ing problems. Namely, we show how to determine 1) a good storage
mapping for a given schedule, 2) a good schedule for a given storage
mapping, and 3) a good storage mapping that is valid for all legal sched-
ules. Our method is precise and practical in that it reduces to a linear
program that can be efficiently solved with standard techniques. We
believe that these solutions represent the first step towards automat-
ing a procedure that finds the optimal compromise between parallelism
and storage space.

The rest of this paper is organized as follows. In Section 2 we mo-
tivate the problem abstractly, and in Section 3 we define it concretely.
Section 4 formulates the method abstractly, and Section 5 illustrates
the method with examples. Experiments are described in Section 6,
related work in Section 7, and we conclude in Section 8.

A Unified Framework for Schedule and Storage Optimization 355

2 Abstract problem

To motivate our approach, we consider simplified descriptions of the
scheduling problems faced by a parallelizing compiler. We are given a
directed acyclic graph G = (V, E). Each vertex v € V represents a
dynamic instance of an instruction; a value will be produced as a result
of executing v. Each edge (v1,vs) € E represents a dependence of vy on
the value produced by v;. Thus, each edge (v1, v2) imposes the schedule
constraint that v; be executed before v, and the storage constraint that
the value produced by v; be stored until the execution time of vs.

Our task is to output (©,m), where © is a function mapping each
operation v € V to its execution time, and m is the maximum number
of values that we need to store at a given time. Parallelism is expressed
implicitly by assigning the same execution time to multiple operations.
To simplify the problem, we ignore the question of how the values are
mapped to storage cells and assume that live values are stored in a fully
associative map of size m. How, then, might we go about choosing ©
and m?

2.1 Choosing a store given a schedule

The first problem is to find the optimal storage mapping for a given
schedule. That is, we are given @ and choose m such that 1) (©,m)
respects the storage constraints, and 2) m is as small as possible.

This problem is orthogonal to the traditional loop parallelization
problem. After selecting the instruction schedule by any of the existing
techniques, we are interested in identifying the best storage allocation.
That is, with schedule-specific storage optimization we can build upon
the performance gains of any one of the many scheduling techniques
available to the parallelizing compiler.

2.2 Choosing a schedule given a store

The second problem is to find an optimal schedule for a given size of the
store, if any valid schedule exists. That is, we are given m and choose ©
such that 1) (6, m) respects the schedule and storage constraints, and
2) © assigns the earliest possible execution time to each instruction.
Note that if m is too small, there might not exist a @ that respects the
constraints.

This is a very relevant problem in practice because of the stepwise,
non-linear effect of storage size on execution time. For example, when
the storage required cannot be accommodated within the register file

356 William Thies, Frédéric Vivien, et al.

A[I[] = new int[n] [m]
for j=1tom
for i =1 ton

Ali][3] = £(A[i-2][j-11, A[i][j-1], A[i+1]1[j-11)

Fig. 1. Original code for Example 1.

or the cache, and has to resort to the cache or the external DRAM,
respectively, the cost of storage increases dramatically. Further, since
there are only a few discrete storage spaces in the memory hierarchy,
and their size is known for a given architecture, the compiler can adopt
the strategy of trying to restrict the store to successively smaller spaces
until no valid schedule exists. Once the storage is at the lowest possible
level, the schedule could then be shortened, having a more continuous
and linear effect on efficiency than the storage optimization. In the
end, we end up with a near-optimal storage allocation and instruction
schedule.

2.3 Choosing a store for all schedules

The final problem is to find the optimal storage mapping that is valid
for all legal schedules. That is, we are given a (possibly infinite) set ¥ =
{61,604, ...}, where each © in ¥ respects the schedule constraints. We
choose m such that 1) VO € ¥, (O, m) respects the storage constraints,
and 2) m is as small as possible.

A solution to this problem allows us to have the minimum storage
requirements without sacrificing any flexibility of our scheduling. For
instance, we could first apply our storage mapping, and then arrange
the schedule to optimize for data locality, synchronization, or commu-
nication, without worrying about violating the storage constraints.

Such flexibility could be critical if, for example, we want to apply
loop tiling [10] in conjunction with storage optimization. If we optimize
storage too much, tiling could become illegal; however, we sacrifice
efficiency if we don’t optimize storage at all. Thus, we optimize storage
as much as we can without invalidating a schedule that was valid under
the original storage mapping.

More generally, if our analysis indicates that certain schedules are
undesirable by any measure, we could add edges to the dependence
graph and solve again for the smallest m sufficient for all the remaining
candidate schedules. In this way, m provides the best storage option
that is legal across the entire set of schedules under consideration.

A Unified Framework for Schedule and Storage Optimization 357

A[] = new int[n]
for j=1tom
for ALL i =1 ton
Ali] = £(A[i-2], A[i], A[i+1])
Fig. 2. Transformed code for Example 1. The occupancy vector is (0,1).
J

A 0---0---0---0----6---0---0

Fig. 3. Iteration space diagram for Example 1. Given the schedule where
each row is executed in parallel, our method identifies (0,1) as the shortest
valid occupancy vector.

3 Concrete problem

Unfortunately, the domain of real programs does not lend itself to the
simple DAG representation as presented above. Primarily, loop bounds
in programs are often specified by symbolic expressions instead of con-
stants, thereby yielding a parameterized and infinite dependence graph.
Furthermore, even when the constants are known, the problem sizes
are too large for schedule and storage analysis on a DAG, and the ex-
ecutable grows to an infeasible size if a static instruction is generated
for every node in the DAG.

Accordingly, we make two sets of simplifying assumptions to make
our analysis tractable. The first concerns the nature of the dependence
graph G and the scheduling function @. Instead of allowing arbitrary
edge relationships and execution orderings, we restrict our attention to
affine dependences and affine schedules. The second assumption con-
cerns our approach to the optimized storage mapping. Instead of allow-
ing a fully associative map of size m, as above, we employ the occupancy
vector as a mechanism of storage reuse. In the following sections, we
discuss these assumptions in the context of an example.

3.1 Program domain

Primarily, we require an affine description of the dependences of the
program. This formulation gives an accurate description of the depen-

358 William Thies, Frédéric Vivien, et al.

Fig. 4. Iteration space diagram for Example 1. Given an occupancy vector of
(0,2), our method identifies the range of valid schedules. An affine schedule
will sweep across the space, executing a line of iterations at once. If this line
falls within the gray region (as on the left), then the schedule is valid for the
occupancy vector of (0,2). If this line falls within the striped region (as on
the right) then the schedule is valid for some occupancy vector other than
(0,2). The schedule at right is invalid because the operation at the tip of the
occupancy vector (0,2) overwrites a value before the operation at (2,1) can
consume it.

dences of programs with static control flow and affine index expressions
[6] and can be estimated conservatively for others. As will become clear
below, restricting our attention to affine dependences allows us to model
the infinite dependence graph as a finite set of parameters, which is cen-
tral to the method.

In this paper, we further assume a single-assignment form where
the iteration space of each statement exactly corresponds with the data
space of the array written by that statement. That is, for array refer-
ences appearing on the left hand side of a statement, the expression
indexing the i’th dimension of the array is the index variable of the
i’th enclosing loop (this is formalized below). While techniques such
as array expansion [5] can be used to convert programs with affine
dependences into this form, our analysis will be most useful in cases
where an expanded form was obtained for other reasons (e.g., to detect
parallelism) and one now seeks to reduce storage requirements.

We will refer to the example in Figure 1, borrowed from [17]. It
clearly falls within our input domain, as the dependences have constant
distance, and iteration (i, j) assigns to A[i][j]. This example represents
a computation where a one-dimensional array A[i] is being updated
over a time dimension j, and the intermediate results are being stored.
We assume that only the element A[n][m] is used outside the loop; the
other values are only temporary.

A Unified Framework for Schedule and Storage Optimization 359

3.2 Occupancy vectors

To arrive at a simple model of storage reuse, we borrow the notion of
an occupancy vector from Strout et al. [17]. The strategy is to reduce
storage requirements by defining equivalence classes over the locations
of an array. Following a storage transformation, all members of a given
equivalence class in the original array will be mapped to the same
location in the new array. The equivalence relation is:

R'U :{(l17l2) | ElkEZSt ll :l2—|—kv}

and we refer to v as the occupancy vector. We say that A’ is the result
of transforming A under the occupancy vector v if, for all pairs of
locations (I1,12) in A:

Ry(l1,13) <= 11 and l3 are stored in same location in A’

We say that an occupancy vector v is valid for an array A with respect
to a given schedule © if transforming A under v everywhere in the
program does not change the semantics when the program is executed
according to 6.

Given an occupancy vector, we implement the storage transforma-
tion using the technique of [17] in which the original data space is
projected onto the hyperplane perpendicular to the occupancy vector.
If an occupancy vector intersects multiple (integral) points of the data
space, then modulation must be used to distinguish these points in the
transformed array.

Occupancy vector transformations are useful for reducing storage re-
quirements when many of the values stored in the array are temporary.
Generally, shorter occupancy vectors lead to smaller storage require-
ments because more elements of the original array are coalesced into
the same storage location. However, the shape of the array also has the
potential to influence the transformed storage requirements. Through-
out this paper, we assume that the shapes of arrays have second-order
effects on storage requirements, and we refer to the “best” occupancy
vector as that which is the shortest.

We are now in a position to consider our occupancy vector analysis
as applied to Example 1. First, assume that we have chosen to execute
each row in parallel so as to have the shortest schedule. What is the best
storage mapping for this schedule? Our method can identify (0,1) as
the shortest occupancy vector for this schedule (see Figure 3), yielding
the code in Figure 2.

Secondly, consider the case where we become interested in adding
some flexibility to our scheduling. If we lengthen the occupancy vector

360 William Thies, Frédéric Vivien, et al.

|

Fig. 5. [teration space diagram for Example 1. Here the hollow arrow denotes
an Affine Occupancy Vector that is valid for all legal affine schedules. The
gray region indicates the slopes at which a legal affine schedule can sweep
across the iteration domain.

A[] = new int[2*n+m]

for j=1tom
for i =1 ton
A[2*%i-j+m] = f(A[2%x(i-2)-(j-1)+m],
A[2%i-(j-1)+m],
A[2%(i+1)-(j-1)+m])

Fig. 6. Transformed code for Example 1. The AOV is (1,2).

to (0,2), what is the range of schedules that we can consider? As il-
lustrated in Figure 4, our method can identify all legal affine schedules
for the occupancy vector of (0,2). We could then use affine scheduling
techniques [7] to choose amongst these schedules according to other
criteria.

3.3 Affine occupancy vectors

Finally, we might inquire as to the shortest occupancy vector that is
valid for all affine schedules in Example 1. An affine schedule is one
where each dynamic instance of a statement is executed at a time that
is an affine expression of the loop indices, loop bounds, and compile-
time constants. To address the problem, then, we need the notion of
an Affine Occupancy Vector:

Definition 1 An occupancy vector v for array A is an Affine Occu-
pancy Vector (AOV) if it is valid with respect to every affine schedule
O that respects the schedule constraints of the original program.

Note that, in contrast to the Universal Occupancy Vector of [17], an
AOV need not be valid for all schedules; rather, it only must be valid

A Unified Framework for Schedule and Storage Optimization 361

for affine ones. Almost all the instruction schedules found in practice
are affine, since any FOR loop with constant increment and bounds
defines a schedule that is affine in its loop indices. (This is independent
of the array references found in practice, which are sometimes non-
affine.) In this paper, we further relax the definition of an AOV to
those occupancy vectors which are valid for all one-dimensional® affine
schedules.

We also observe that, if tiling is legal in the original program, then
tiling is legal after transforming each array in the program under one
of its AOV’s. This follows from the fact that two loops are tilable if and
only if they can be permuted without affecting the semantics of the pro-
gram [10]. Since each permutation of the loops corresponds to a given
affine schedule and the AOV is valid with respect to both schedules,
the AOV transformation is also valid with respect to a tiled schedule.

Returning to our example, we find using our method that (1,2) is
a valid AOV (see Figure 5). Any affine one-dimensional schedule that
respects the dependences in the original code will give the same result
when executed with the transformed storage.

4 The Method

4.1 Notation

We adopt the following notation:

— An iteration vector 7 contains the values of surrounding loop indices
at a given point in the execution of the program.

— The structural parameters n, of domain N, represent loop bounds
and other parameters that are unknown at compile time, but that
are fixed for any given execution of the program.

— There are ng statements S;S,, in the program. Each statement
S has an associated polyhedral domain Dg, such that Vi € Dg,
there is a dynamic instance S(¢) of statement S at iteration ¢ during
the execution of the program.

— With each statement S is associated a scheduling function g which
maps the instance of S on iteration ¢ to a scalar execution time. By
assumption, g is an affine function of the iteration vector and the

1 A one-dimensional affine schedule assigns a scalar execution time to each
operation as an affine function of the enclosing loop indices and sym-
bolic constants. Multi-dimensional schedules assign vector-valued execu-
tion times, which are ordered lexicographically; certain programs require
multi-dimensional schedules. See [7, 8, 4] for details.

362 William Thies, Frédéric Vivien, et al.

structural parameters: 0g(¢,n) = ag -4+ bg - n + cg. The schedule
for the entire program is denoted by © € &, where £ is the space of
all the scheduling parameters (as, , bs,, cs,), ..., (as,_.bs,_,cs,.)-

— There are n, dependences P; ... F,, in the program. Each depen-
dence P; is a 4-tuple (R;,T},Pj, h;) where R; and T are state-
ments, h; is a vector-valued affine function, and P; C Dg; is a
polyhedron such that:

Vi € Pj, R;(2) depends on Tj(h;(i,n)) (1)

The dependences P; are determined using an array dataflow anal-
ysis, e.g., [6] or the Omega test [15].

— There are n, arrays Aj ... A, in the program, and A(S) denotes
the array assigned to by statement S. Our assumption that the
data space corresponds with the iteration space implies that for all
statements S, S(2) writes to location ¢ of A(S), and S is the only
statement writing to A. However, each array A may still appear on
the right hand side of any number of statements, where its indices
can be arbitrary affine expressions of ¢ and n.

— With each array A we will associate an occupancy vector v 4 that
specifies the storage reuse within A. The locations I; and Il in the
original data space of A will be stored in the same location following
our storage transform if and only if I; = los+k+*v 4, for some integer
k. Given our assumption about the data space, we can equivalently
state that the values produced by iterations ¢; and 25 will be stored
in the same location following our storage transform if and only if
i1 = o + k x v 4, for some integer k.

4.2 Schedule constraints

According to dependence P; (Equation (1)), for any value of ¢ in P,
operation R;(%) depends on the execution of operation T;(h;(z,n)).
Therefore, in order to preserve the semantics of the original program,
in any new order of the computations, T;(h;(%,n)) must be scheduled
at a time strictly earlier than R;(%), for all 4 € P;. We express this
constraint in terms of the scheduling function. We must have, for each
dependence P}, j € [1,n,]:

Vn e N,Vi € P;,0g,(i,n) — 0r,(h;(i,n),n) —1>0 (2)

These dependence constraints can be solved using Farkas’ lemma as
shown by Feautrier [7,8,4]. The result can be expressed as a polyhe-
dron R: the set of all the legal schedules @ in the space of scheduling

A Unified Framework for Schedule and Storage Optimization 363

parameters £. Note that Equation (2) does not always have a solution

[7]. In such a case, one needs to use multidimensional schedules [8].

However, in this paper, we assume that Equation (2) has a solution.
Refer to Section 5.1 for an example of the schedule constraints.

4.3 Storage constraints

The occupancy vectors induce some storage constraints. We consider
any array A. Because we assume that the data space corresponds with
the iteration space, and by definition of the occupancy vectors, the val-
ues computed by iterations ¢ and ¢ + v are both stored in the same
location I. For an occupancy vector v4 to be valid for a given data
object A, every operation depending on the value stored at location I
by iteration ¢ must execute no later than iteration ¢ 4 v 4 stores a new
value at location . Otherwise, following our storage transformation, a
consumer expecting to reference the contents of I produced by iteration
2 could reference the contents of [written by iteration ¢ 4+ v 4 instead,
thereby changing the semantics of the program. We assume that, at a
given time step, all the reads precede the writes, such that an operation
consuming a value can be scheduled for the same execution time as an
operation overwriting the value. (This choice is arbitrary and unimpor-
tant to the method; under the opposite assumption, we would instead
require that the consumer execute at least one step before its value is
overwritten.)

Let us consider a dependence P = (R,T,h,P). Then operation
T'(h(%,n)) produces a value which will be later on read by R(%). This
value will be overwritten by T'(h(%,m) +v (). The storage constraint
imposes that T'(h(¢,m) + v4(7)) is scheduled no earlier than R(%).
Therefore, any schedule © and any occupancy vector v 47y respects
the dependence P if:

VTLEN,V'I:EZ,GT(h(i,n)—F'DA(T),n)—HR(’L',TL)ZO (3)

where Z represents the domain over which the storage constraint ap-
plies. That is, the storage constraint applies for all iterations ¢ where 2 is
in the domain of the dependence, and where h (4, n)-+v 4(7) is in the do-
main of statement 7'. Formally, Z = {¢ | i € PAh(i,n)+v) € Dr}.
This definition of Z is not problematic, since the intersection of two
polyhedra is defined simply by the union of the affine inequalities de-
scribing each, which obviously is a polyhedron. Note, however, that Z
is parameterized by both v 4(7) and n, and not simply by n.
Equation (3) expresses the constraint on an occupancy vector for
a given dependence and a given schedule. For an occupancy vector to

364 William Thies, Frédéric Vivien, et al.

be an AOV, however, it must respect all dependences across all legal
schedules. Thus, the following constraint defines a valid AOV v, for
each object A in the program:

VO € R,Vn € N,Vj € [1,n,],Vi € Z;,
Or; (h;(i,m) +vacry),n) — Or;(i,n) =1 >0 (4)

See Section 5.1 for an illustration of the storage constraints.

4.4 Linearizing the constraints

Equations (3) and (4) represent a possibly infinite set of constraints,
because of the parameters. Therefore, we need to rewrite them so as to
obtain an equivalent but finite set of affine equations and inequalities,
which we can easily solve. Meanwhile, we seek to express the schedule
(2) and storage (4) constraints in forms affine in the scheduling param-
eters ©. This step is essential for constructing a linear program that
minimizes the length of the AOV’s.

Section 5.2 contains an illustrative example of the constraint lin-
earization.

Reduction using the vertices of polyhedra Any nonempty poly-
hedron is fully defined by its vertices, rays and lines [16], which can be
computed even in the case of parameterized polyhedra [13]. The fol-
lowing theorem explains how we can use these vertices, rays and lines
to reduce the size of our sets of constraints.

Theorem 1. Let D be a nonempty polyhedron. D can be written D =
P+ C, where P is a polytope (bounded polyhedron) and C is a cone.
Then any affine function h defined over D is nonnegative on D if and
only if 1) h is nonnegative on each of the vertices of P and 2) the linear
part of h is nonnegative (resp. null) on the rays (resp. lines) of C.

Although the domain of structural parameters N is an input of
this analysis and may be unbounded, all the polyhedra produced by
the dependence analysis of programs are in fact polytopes, or bounded
polyhedra. Therefore, in order to simplify the equations, we now as-
sume that all the polyhedra we manipulate are polytopes, except when
stated otherwise. Then, according to Theorem 1, an affine function is
nonnegative on a polyhedron if and only if it is nonnegative on the ver-
tices of this polyhedron. We successively use this theorem to eliminate
the iteration vector and the structural parameters from Equation (3).

A Unified Framework for Schedule and Storage Optimization 365

Eliminating the tteration vector Let us consider any fixed values
of © in R and n in V. Then, for all j € [1,n,], v4(p,) must satisfy:

Vi € Zj,HTj (hj(z,n) + I}A(Tj),n) — HR]. (Z,’I’L) —-1>0 (5)

which is an affine inequality in ¢ (as hj, 07,, and fr, are affine func-
tions). Thus, according to Theorem 1, it takes its extremal values on
the vertices of the polytope Z;, denoted by 21 ;, ..., zn_,;. Note that Z;
is parameterized by n and v 4(7,). Therefore, the number of its vertices
might change depending on the domain of values of n and v4(7;). In
this case we decompose the domains of n and v 4(7;) into subdomains
over which the number and definition of the vertices do not change [13],
we solve our problem on each of these domains, and we take the “best”
solution.

Thus, we evaluate (5) at the extreme points of Z;, yielding the
following:

Vk € [1, TLZ], 9Tj (hj(zk,j(vA(Tj),n),n) + ’UA(Tj),’I’L)

(6)

=0, (zk,j(va(ry),n),mn) —120
According to Theorem 1, Equations (5) and (6) are equivalent. How-
ever, we have replaced the iteration vector ¢ with the vectors 2y ;, each
of which is an affine form in n and v o(7;).

Eliminating the structural parameters Suppose N is also a bound-
ed polyhedron. We eliminate the structural parameters the same way
we eliminated the iteration vector: by only considering the extremal
vertices of their domain N. Thus, for any fixed value of © in R, j in
[1,n,], and k in [1,n,] we must have:

Vn EN, HTJ. (hj(zk,j(vA(Tj),n),n) —|—'vA(Tj),n) (7)

_QRJ (zk:j (UA(Tj)v n)v n) -]. 2 0

Denoting the vertices of N' by (wj,...,w,,), the above equation is
equivalent to:

Vi € [1,ny], 01, (hj(zk,j (Var,), wi), w1) + va(T;), W) ®)

—0r, (zk,j(Va(T)), w1),w;) =1 >0

Case of unbounded domain of parameters. It might also be the case
that A is not a polytope but an unbounded polyhedron, perhaps cor-
responding to a parameter that is input from the user and can be

366 William Thies, Frédéric Vivien, et al.

arbitrarily large. In this case, we use the general form of Theorem 1.
Let r1,...,7,, be the rays defining the unbounded portion of N (a line
being coded by two opposite rays). We must ensure that the linear part
of Equation (8) is nonnegative on these rays. For example, given a sin-
gle structural parameter n; € [5,00), we have the following constraint
for the vertex ny = 5:

O, (hj(zk,;(va(T;),5),5) + va(r,),5)
—0r,(zk,j(va(T;),5),5) =120
and the following constraint for the positive ray of value 1:
O, (hj (21,3 (Vacry), 1), 1) + vacry), 1)
—0r, (2K, (va(ry), 1), 1)
=01, (hj(zk,j(va(T;),0),0) +vAT;),0)
+0r, (zkj(va(r,),0),0) > 0

(9)

Though this equation may look complicated, in practice it leads to
simple formulas since all the constant parts of Equation (7) are going
away. We assume in the rest of this paper that A is a polytope. This
changes nothing in our method, but greatly improves the readability of
the upcoming systems of constraints!

4.5 Finding a solution

After removing the structural parameters, we are left with the following
set of storage constraints:

Vi e [1,n,],Vk € [1,n.],V] € [1,n,)],
Or; (hj(zk,5(Va(T,), W), Wi) + VA1), W) (10)
—0r; (zk,j(Va(T)), W), w;) =1 >0

which is a set of affine inequalities in the coordinates of the schedule O,
with the occupancy vectors v 4(7;) as unknowns. Note that the vertices
zy,; of the iteration domain, the vertices w; of the structural parame-
ters, and the components h; of the affine functions, all have fixed and
known values.

Similarly, we can linearize the schedule constraints to arrive at the

following equations:
Vj € [1,np], Yk € [1,ny],VI € [1,n4),
Or; (Yr,j(wi), wr) — O, (hj(yr,;(w;), wr), w;) =1 >0

(11)

Where 41,5, .. .,Yn,,; denote the vertices of P;.

A Unified Framework for Schedule and Storage Optimization 367

Finding an occupancy vector given a schedule At this point we
have all we need to determine which occupancy vectors (if any) are
valid for a given schedule ©: we simply substitute into the simplified
storage constraints (10) the value of the given schedule. Then we obtain
a set of affine inequalities where the only unknowns are the components
of the occupancy vector. This system of constraints fully and exactly
defines the set of the occupancy vectors valid for the given schedule.
We can search this space for solutions with any Linear Programming
solver.

To find the shortest occupancy vectors, we can use as our objec-
tive function the sum of the lengths? of the components of the occu-
pancy vector. This metric minimizes the “Manhattan” length of each
occupancy vector instead of minimizing the Fuclidean length. However,
minimizing the Euclidean length would require a non-linear objective
function.

We improve our heuristic slightly by minimizing the difference be-
tween the lengths of the occupancy vector components as a second-
order term in the objective function. That is, the objective function
is

dim(v) dim(v) dim(v)
obj(w)=kx D ful+ Y D lvi— vyl
i—1 =1 j=1

where k is large enough that the first term dominates, thereby select-
ing our vector first by the length of its components and then by the
distribution of those lengths across its dimensions (a more “even” distri-
bution having a shorter Euclidean distance.) It has been our experience
that this linear objective function also finds the occupancy vector of
the shortest Euclidean distance.

For an example of this procedure, refer to Section 5.1.

Finding a schedule given an occupancy vector At this point, we
also have all we need to determine which schedules (if any) exist for
a given set of occupancy vectors. Given an occupancy vector v, for
each array A in the program, we substitute into the linearized storage
constraints (10) to obtain a set of inequalities where the only unknowns
are the scheduling parameters. These inequalities, in combination with
the linearized schedule constraints (11) completely define the space of
valid affine schedules valid for the given occupancy vectors. Once again,

2 To minimize |z|, set £ = w — z, w > 0, z > 0, and then minimize w + 2.
Either w or z will be zero in the optimum, leaving w + z = |z|.

368 William Thies, Frédéric Vivien, et al.

ATl 0D
BL1[1

= new int[n] [m]
= new int[n] [m]
for i=1¢ton
for j =1 tom
A[i1[3] = £@BIi-110jD) (s1)
BLil[j] = g(Alil[j-11) (s2)

Fig. 7. Original code for Example 2.

:

o0

;

o/'

s

»| @s2
O st

coe—O0O@e—0e—06e

@:ﬁ

Fig. 8. Dependence diagram for Example 2.

we can search this space for solutions with any Linear Programming
solver, selecting the “best” schedule as in [7].
See Section 5.1 for an example.

Finding the AOV’s Solving for the AOV’s is more involved (follow
Section 5.1 for an example.) To find a set of AOV’s, we need to satisfy
the storage constraints (10) for any value of the schedule © within the
polyhedron R defined by the schedule constraints. To do this, we apply
the Affine Form of Farkas’ Lemma [16,7,4].

Theorem 2. (Affine Form of Farkas’ Lemma) Let D be a nonempty
polyhedron defined by p affine inequalities

a;-x+b; >0, je[l,p],

in a vector space . Then an affine form ¥ is nonnegative everywhere in
D if and only if it is an affine combination of the affine forms defining
D:

Vo e &, U(x >\0+Z i 4b), Ao-. Ay >0

The nonnegative constants A\; are referred to as Farkas multipliers.

A Unified Framework for Schedule and Storage Optimization 369

A[] = new int[m+n]
B[] = new int[m+n]
for i =1 ton
for j =1 tom
A[i-j+m] = £(B[(i-1)-j+m]) (s1)
Bli-j+m] = g(A[i-(j-1)+m]) (s2)

Fig. 9. Transformed code for Example 2. Each array has an AOV of (1,1).

To apply the lemma, we note that the storage constraints are affine in-
equalities in © which are nonnegative over the polyhedron R. Thus, we
can express each storage constraint as a nonnegative affine combination
of the schedule constraints defining R.

To simplify our notation, let STORAGE be the set of expressions
that are constrained to be nonnegative by the linearized storage con-
straints (10). That is, STORAGE contains the left hand side of each
inequality in (10). Naively, [STORAGE| = ny X n, X (ny + ny); how-
ever, several of these expressions might be equivalent, thereby reducing
the size of STORAGE in practice.

Similarly, let SCHEDULE be the set of expressions that are con-
strained to be nonnegative by the linearized schedule constraints (11).
The size of SCHEDULE is at most n, X ny X (N +).

Then, the application of Farkas’ Lemma yields these identities across
the vector space £ of scheduling parameters in which @ lives:

|SCHEDULE]|
STORAGE;(z) =Xio+ »_, (M- SCHEDULE;(x))
=1

)\@j >0, Vexe&,Vie [1, |STORAGE|]

These equations are valid over the whole vector space £. Therefore,
we can collect the terms for each of the components of z, as well as the

constant terms, setting equal the respective coefficients of these terms
from opposite sides of a given equation (cf. [7,4] for full details). We
are left with [STORAGE| x (3 x ns + 1) linear equations where the
only variables are the A’s and the occupancy vectors v 4.

The set of valid AOV’s is completely and exactly determined by this
set of equations and inequalities. To find the shortest AOV, we proceed
as in Section 4.5.

5 Examples

We present four examples to illustrate applications of the method de-
scribed above.

370 William Thies, Frédéric Vivien, et al.

5.1 Example 1: Simple Stencil

First we derive the solutions presented earlier for the 3-point stencil in
Example 1.

Constraints Let 6 denote the scheduling function for the statement
writing to array A. We assume that 6 is an affine form as follows:

0(i,j,n,m)=axi+bxj+cxn+dxm+e

There are three dependences in the stencil, each from the statement

unto itself. The access functions describing the dependences are h1 (i, j,n, m) =
(i—2,5—1), ha(i,j,n,m) = (i,j— 1), and hs(i,j,n,m) = (i+1,5—1).
Because these dependences are uniform—that is, they do not depend on

the iteration vector—we can simplify our analysis by considering the de-
pendence domains to be across all values of ¢ and j. Thus, the schedule
constraints are:

0(i,j,m,m) —0(i—2,j—1L,n,m)—1>0
9(7'7.]7n5m) —9(2,]—1,n,m)—1 >0
9(7'7.]7n5m)_9(7’+1)j_1an’7m)_120

However, substituting the definition of € into these equations, we find
that 4, j, n, and m are eliminated. This is because the constraints are
uniform. Thus, we obtain the following simplified schedule constraints,
which are affine in the scheduling parameters:

2xa+b—1>0
b—1>0
—a+b—-1>0

Now let v4 = (v;,v;) denote the AOV that we are seeking for array A.
Then the storage constraints are as follows:

(i —2+v;,j—14+wv;,n,m)—0(,j,n,m)>0
0@ +vi,j—1+v;,n,m)—00,jnm)>0
0(i+1+vi7j_1+Uj7nam)_0(i7janvm) ZO

Simplifying the storage constraints as we did the schedule constraints,
we obtain the linearized storage constraints:

a*xv;+bxv;—2xa—b>0
a*xv;+bxv;—b>0
a*xv;+b*xvj+a—b>0

A Unified Framework for Schedule and Storage Optimization 371

imax = a.length
jmax = b.length
kmax = c.length
D[I[]1[] = new int[imax] [jmax] [kmax]

for i = 1 to imax
for j = 1 to jmax
for k = 1 to kmax
if (i==1) or (j==1) or (k==1) then

D[i1[j1[k] = £(i,j,k) (s1)
else
D[] [j]1[x] = (82)

min(D[i-1][j-1]1 [k-1] + w(al[il,b[j],clk]),
D[i][j-1][k-1] + w(GAP,b[j],c[k]),
D[i-11[j1[k-1]1 + w(alil,GAP,c[k]1),
D[i-11[j-11[k] + w(alil,b[j]1,GAP),
D[i-11[j1[k] + w(alil,GAP,GAP),
D[i][j-1][k] + w(GAP,b[j],GAP),
D[i][j][k-1] + w(GAP,GAP,c[k]))

Fig. 10. Original code for Example 3, for multiple sequence alignment. Here
f computes the initial gap penalty and w computes the pairwise alignment
cost.

Finding an occupancy vector To find the shortest occupancy vec-
tor for the schedule that executes the rows in parallel, we substitute
0(i,j,n,m) = j into the linearized schedule and storage constraints.
Minimizing |v; + v;| with respect to these constraints gives the occu-
pancy vector of (0,1) (see Figure 3).

Finding a schedule To find the set of schedules that are valid for the
occupancy vector of (0,2), we substitute v; = 0 and v; = 2 into the
linearized schedule and storage constraints. Simplifying the resulting
constraints yields:

b>1—-2xa
b>1+a
b>2x*a

Inspection of these inequalities reveals that the ratio a/b has a minimum
value of —1/2 and a maximum value that asymptotically approaches
1/2, thus corresponding to the set of legal affine schedules depicted in
Figure 5 (note that in the frame of the figure, however, the schedule’s
slope is —a/b.)

Finding an AOV To find an AOV for A, we apply Farkas’ Lemma
to rewrite each of the linearized storage constraints as a non-negative

372 William Thies, Frédéric Vivien, et al.

imax = a.length
jmax = b.length
kmax = c.length

D[I[] = new int[imax+jmax] [imax+kmax]

for i = 1 to imax
for j = 1 to jmax
for k = 1 to kmax
if (i==1) or (j==1) or (k==1) then

D[jmax+i-j] [kmax+i-k] = £(i,j,k) (s1)
else
D[jmax+i-j] [kmax+i-k] = (82)

min(D[jmax+(i-1)-(j-1)] [kmax+(i-1)-(k-1)] + w(alil,b[j],c[k]),
D[jmax+i-(j-1)] [kmax+i-(k-1)] + w(GAP,b[j],c[k]),
D[jmax+(i-1)-j] [kmax+(i-1)-(k-1)] + w(a[il,GAP,c[k]),
D[jmax+(i-1)-(j-1)] [kmax+(i-1)-k] + w(al[il,b[j],GAP),
D[jmax+(i-1)-j] [kmax+(i-1)-k] + w(a[il,GAP,GAP),
D[jmax+i-(j-1) [kmax+i-k] + w(GAP,b[j],GAP),
D[jmax+i-j] [kmax+i-(k-1)] + w(GAP,GAP,c[k]))

Fig. 11. Transformed code for Example 3, using the AOV of (1,1,1). The new
array has dimension [imax+jmax][imax-+kmax]|, with each reference to [i][j][k]
mapped to [jmax+i-j][kmax-+i-k].

affine combination of the linearized schedule constraints:

a*v;+b*xvj—2%xa—>b
axv; +bxv;—b =
a*xv;+bxv;j+a—1>b

1
A1 A2 Az Ara
, ; ' ’ 2 b—1
A2,1 A2,2 A2;3 Ao g ' C;L)—_i— 1
A3,1 A3.2 A3;3 Aga Cadtb—1

Aijj >0, Vie[1,3],V5 € [1,4]

Minimizing |v;+v;| subject to these constraints yields an AOV (v;, v;) =
(1,2), which is smaller than the shortest UOV of (0,3) [17].

To transform the data space of array A according to this AOV v,
we follow the approach of [17] and project the original data space onto
the line perpendicular to v. Choosing v; = (2,—1) so that v-v; =0,
we transform the original indices of (i,7j) into vy - (i,7) = 2 i — j.
Finally, to ensure that all data accesses are non-negative, we add m
to the new index, such that the final transformation is from A[i][j] to
A[2%1— j+m]. Thus, we have reduced storage requirements from n*m
to 2xn+m. The modified code corresponding to this mapping is shown
in Figure 6.

A Unified Framework for Schedule and Storage Optimization 373

A[J[] = new int[n] [m]
B[] = new int[n]
for i =1 ton
for j =1 ton
A[i][3] = B[i-11+j 1
B[i] = A[i] [n-i] (s2)

Fig. 12. Original code for Example 4.

5.2 Example 2: Two-statement stencil

We now consider an example adapted from [12] where there is a uni-
form dependence between statements in a loop (see Figures 7 and 8).
Letting 6; and 65 denote the scheduling functions for statements 1 and
2, respectively, we have following schedule constraints:

01(,j,n,m) —02(i — 1,4,n,m) —1>0
02(7;,']',77/,77’1) _01(17]_ 1an7m) -1 > 0

and the following storage constraints:

92(Z -1 + UB,ivj + UB,janvm) -

el(ivjan7m) Z O
01t +vas,j—1+va;,nm)—6

2 (i, j,m,m) > 0

We now demonstrate how to linearize the schedule constraints. We
observe that the polyhedral domain of the iteration parameters (,j)
has vertices at (1,1), (n,1),(1,m), (n,m), so we evaluate the schedule
constraints at these points to eliminate (4, j):

01(1,1,n,m) — 62(0,1,n,m) —1 >0
02(1,1,n,m) — 61(1,0,n,m) —1 >0
01(n,1,n,m) —63(n—1,1,n,m)—1>0
f2(n,1,n,m) —61(n,0,n,m)—1>0
01(1,m,n,m)—0x(1—1,m,n,m)—1>0
O2(1,m,n,m) —6:(1,m—1,n,m)—1>0
O1(n,m,n,m) —62(n—1,m,n,m)—1>0
O2(n,m,n,m) —61(n,m—1,n,m)—1>0

Next, we eliminate the structural parameters (n,m). Assuming n
and m are positive but arbitrarily large, the domain of these parameters
is an unbounded polyhedron:

(n,m) = (1,1) + j = (0,1) + k = (1,0), for positive integers j and k.
We must evaluate the above constraints at the vertex (1,1), as well as
the linear part of the constraints for the rays (1,0) and (0,1). Doing

374 William Thies, Frédéric Vivien, et al.

® s2
O si

Fig. 13. Dependence diagram for Example 4.

A[] = new int[n]
B = new int
for i =1 ton
for j =1 ton
A[i] = B+j (s1)
B = A[il (s2)

Fig. 14. Transformed code for Example 4. The AOV’s for A and B are (1,0)
and 1, respectively.

so yields 24 equations, of which we show the first 3 (which result from
substituting into the first of the equations above):

01(1,1,1,1) — 65(0,1,1,1) =1 >0
01(1,1,1,0) — 65(0,1,1,0) — 61(1,1,0,0) + 62(0,1,0,0) > 0
01(1,1.0.1) — 620, 1,0,1) — 01(1,1.0,0) + 62(0,1,0,0) > 0

Expanding the scheduling functions as 6,.(i, j,n,m) = az + by *i + ¢y *
j+d. *n+ ez xm, the entire set of 24 equations can be simplified to:
dy = do
€1 = €9
a1+b1+cl—a2—02+(b1—b2)n—120
a1 +2bi+c1—ax—by—co—12>0
az+ba+2c2—a1—b1—c1—-12>0
as+2co—ar—c1+(ba—b1)n—1>0

These equations constitute the linearized schedule constraints. In a
similar fashion, we could linearize the storage constraints, and then

apply Farkas’ lemma to find the shortest AOV’s of v4 = vp = (1,1).
Due to space limitations, we do not derive the entire solution here.
The code that results after transformation by these AOV’s is shown in
Figure 9.

A Unified Framework for Schedule and Storage Optimization 375

5.3 Example 3: Multiple sequence alignment

We now consider a version of the Needleman-Wunch sequence align-
ment algorithm [14] to determine the cost of the optimal global align-
ment of three strings (see Figure 10). The algorithm utilizes dynamic
programming to determine the minimum-cost alignment according to
a cost function w that specifies the cost of aligning three characters,
some of which might represent gaps in the alignment.

Using 07 and 65 to represent the scheduling functions for statements
1 and 2, respectively, we have the following schedule constraints (we
enumerate only three constraints for each pair of statements since the
other dependences follow by transitivity):

Hg(i,j7k,x,y,z)—91(i— 1’j7k7x7y72)_ 1 > 0
fO?"Z': 27] € [27y]vk€ [272]
92(iaj7k7x7yaz)_01(ivj_ 1,]6,.13,:1],2) -1 Z 0
forie2,z],j =2,k € [2,2]
92(iaj7k7x7yaz)_01(ivj7k_ 1a$,y72’)— 1> 0
forie[2,z],5 €[2,y],k=2
Hg(i,j7k,x,y,z)—92(i— 1’j7k7x7y72)_ 1 > 0
forie[3,z],5€[2,9],k€[2,z]
92(iaj7k7x7yaz)_02(ivj_ 1,]6,.13,:1],2) -1 Z 0
forie2,z],j €[3,y],k € [22]

02(i, 4, k,x,y,2) —02(i,j,k — L, z,y,2) =1 >0
fori€2,z],j €2,y],k € [3,2]

Note that each constraint is restricted to the subset of the iteration
domain under which it applies. That is, Sy depends on S; only when

i, j, or k is equal to 2; otherwise, S depends on itself. This exam-
ple illustrates the precision of our technique for general dependence
domains.

The storage constraints are as follows:

O2(i — 1+ v, 5+ v, k+ vk, x,y,2) — 0204, j, k,z,y,2) > 0
forie[3,z],j €2,y],k € [2,2]
O2(i +vi,j — 1+ v, k+ vk, x,y,2) — 0204, j, k,z,y,2) > 0
forie€[2,z],j €[3,y],k € [2,2]
O2(t +vi, j + v,k — 14w, z,y,2) — 02,5, k,z,y,2) > 0
forie[2,z],5 € [2,y],k € [3,2]

There is no storage constraint corresponding to the dependence of
So on S; because the domain Z of the constraint is empty for occu-

pancy vectors with positive components, and occupancy vectors with
a non-positive component do not satisfy the above constraints. That

376 William Thies, Frédéric Vivien, et al.

is, for the first dependence of Sy on S, the dependence domain is
P = {(2,43,k) | j € [2,y) Nk € [2,2]} while the existence domain
of Sy is Dg, = {(4,5,k) | i € [L,z]Aj € Ly Ak € [1,2] A (i =
1Vj=1Vk=1)} Then, the domain of the first storage constraint
is Z = {(i,5,k) | (i,j,k) € PA (i —1,j,k) +va € Dg, }. Now, Z is
empty given that v4 has positive components, because if (i, j,k) € P
then ¢ = 2, but if (¢ — 1,5,k) + va € Dg, then i —14+v4,; = 1, or
equivalently i +v4,; = 2. Thus for Z to be non-empty, we would have
24 v4,; = 2, which contradicts the positivity assumption on v4 ;. The
argument is analogous for other dependences of Ss on S;.

Applying our method for this example yields an AOV of (1,1,1).
The transformed code under this occupancy vector is just like the orig-
inal, except that the array is of dimension [imax+jmax][imax+kmax]
and element [i][j][k] is mapped to [jmax-+i-j][kmax—+i-k].

5.4 Example 4: Non-uniform dependences

Our final example is constructed to demonstrate the application of
our method to non-uniform dependences (see Figures 12 and 13). Let
#, and 65 denote the scheduling functions for statements S; and S,
respectively. Then we have the following schedule constraints:

01(i,j,n) — Oa(i — 1,n) —1 > 0
02(i,n) —01(i,m—i,n) —1>0

and the following storage constraints:

O2(i — 1 +wvp,n) —61(i,5,n) >0
01(i +vas,n—i+va;,n) —62(i,n) >0

Applying our method to these constraints yields the AOV’sva = (1,0)
and vg = 1. The transformed code is shown in Figure 14.

6 Experiments

We performed preliminary experiments that validate our technique as
applied to two of our examples. The tests were carried out on an SGI
Origin 2000, which uses MIPS R10000 processors with 4MB L2 caches.

For Example 2, the computation was divided into diagonal strips.
Since there are no data dependences between strips, the strips can
be assigned to processors without requiring any synchronization [12].
Figure 15 shows the speedup gained on varying numbers of processors
using both the original and the transformed array. Both versions show

A Unified Framework for Schedule and Storage Optimization 377

Example 2 Speedup
40

Transformed —— ‘ ‘
Original —=—

alf
/

20

Speedup

0
0 10 20 30 40 50 60 70

Processors

Fig. 15. Speedup vs. number of processors for Example 2.

Example 3 Speedup

Transformed —e— ‘ ‘ /
18 Original —&—

" -~ VA

. e
) =

et

.
0 2 4 6 8 10 12 14 16
Processors

Fig. 16. Speedup vs. number of processors for Example 3.

the same trend and do not significantly improve past 16 processors, but
the transformed code has an advantage by a sizable constant factor.

Example 3 was parallelized by blocking the computation, and as-
signing rows of blocks to each processor. As shown in Figure 16, the
transformed code again performs substantially better than the original
code. With the reduced working set of data in the transformed code,
the speedup is super-linear in the number of processors due to improved
caching.

378 William Thies, Frédéric Vivien, et al.

7 Related work

The work most closely related to ours is that of [17], which consid-
ers schedule-independent storage mappings using the Universal Occu-
pancy Vector (UOV). While an AOV is valid only for affine schedules,
a UOV is valid for any legal execution ordering. Consequently, some-
times there exist AOV’s that are shorter than any UOV since the AOV
must be valid for a smaller range of schedules. While the analysis of
[17] is limited to a stencil of dependences involving only one statement
within a perfectly nested loop, our method applies to general affine
dependences across statements and loop nests. Moreover, our frame-
work goes beyond AOV’s to unify the notion of occupancy vectors with
known affine scheduling techniques.

Another related approach to storage management for parallel pro-
grams is that of [3,2,11]. Given an affine schedule, [11] optimizes stor-
age first by restricting the size of each array dimension and then by
combining distinct arrays via renaming. This work is extended in [3, 2]
to consider storage mappings for a set of schedules, towards the end of
capturing the tradeoff between parallelism and storage.

However, these techniques utilize a storage mapping where, in an
assignment, each array dimension is indexed by a loop counter and is
modulated independently (e.g. A[i mod n][j mod m]). This is distinct
from the occupancy vector mapping, where the data space of the array
is projected onto a hyperplane before modulation (if any) is introduced.
The former mapping—when applied to all valid affine schedules—does
not enable any storage reuse in Examples 2 and 3, where the AOV did.
However, with a single occupancy vector we can only reduce the dimen-
sionality of an array by one, whereas the other mapping can introduce
constant bounds in several dimensions. In the future, we hope to ex-
tend our method to find multiple occupancy vectors, thereby enabling
storage reuse along multiple array dimensions.

Memory reuse in the context of the polyhedral model is also con-
sidered in [18]. This approach uses yet another storage mapping, which
utilizes array transformations on the data space to achieve the effect of
multiple occupancy vectors applied at once. However, the mapping does
not have any modulation, so it could not duplicate the effect of an oc-
cupancy vector that intersects multiple integral points of the iteration
space. Also, the technique assumes that the schedule is given.

A Unified Framework for Schedule and Storage Optimization 379
8 Conclusion

We have presented a mathematical framework that unifies the tech-
niques of affine scheduling and occupancy vector analysis. Within this
framework, we showed how to determine a good storage mapping for
a given schedule, a good schedule for a given storage mapping, and a
good storage mapping that is valid for all legal schedules. Our technique
is general and precise, allowing inter-statement affine dependences and
efficiently solving for the shortest occupancy vector using standard nu-
merical programming methods.

We consider this research to be the first step towards automating
a procedure that finds the optimal tradeoff between parallelism and
storage space. This question is very relevant in the context of array
expansion, where the cost of extra array dimensions must be weighed
against the scheduling freedom that they provide. Additionally, our
framework could be applied to single-assignment functional languages
where all storage reuse must be orchestrated by the compiler. In both
of these applications, and even for compiling to uniprocessor systems,
understanding the interplay between scheduling and storage is crucial
for achieving good performance.

However, since finding an exact solution for the “best” occupancy
vector is a very complex problem, our method relies on several assump-
tions to make the problem tractable. We ignore the shape of the data
space and assume that the shortest occupancy vector is the best; fur-
ther, we minimize the Manhattan length of the vector, since minimizing
the Euclidean length is nonlinear. Also, we restrict the input domain to
programs where 1) the data space matches the iteration space, 2) only
one statement writes to each array, 3) the schedule is one-dimensional
and affine, and 4) there is an affine description of the dependences. It
is with these qualifications that our method finds the “best” solution.

In future work, we aim to relax some of the assumptions about the
input domain. Perhaps most relevant is the case of arbitrary affine ref-
erences on the left hand side, since it would not only widen the input
domain, but would allow the reduction of multiple array dimensions
via application of successive occupancy vectors. Many of these exten-
sions are difficult because, in their straightforward formulations, the
constraints become nonlinear. We consider it to be an open question to
formulate these extensions as linear programming problems.

It will also be valuable to consider more general storage mappings.
The occupancy vector method as it stands now can only decrease the
dimensionality of an array by one, and the irregular shape of the re-
sulting data space could be hard to embed in a rectilinear array in a

380 William Thies, Frédéric Vivien, et al.

storage-efficient way. However, other storage mappings [11, 18] we dis-
cussed also have their limitations. The perfect storage mapping would
allow variations in the number of array dimensions, while still capturing
the directional and modular reuse of the occupancy vector and having
an efficient implementation; it should also lend itself to efficient storage
reuse between distinct arrays.

9 Acknowledgements

We would like to thank Kath Knobe for her helpful comments and
suggestions. We appreciate the support of the MARINER project at
Boston University for giving us access to its Scientific Computing Fa-
cilities. This work was partly supported by NSF Grant CCR0073510,
DARPA grant DBT63-96-C-0036, and a graduate fellowship from Siebel
Systems.

References

1. D. Barthou, A. Cohen, and J.F. Collard. Maximal static expansion. In
Principles of Programming Languages, pages 98-106, San Diego, CA,
January 1998.

2. A. Cohen. Parallelization via constrained storage mapping optimization.
Lecture Notes in Computer Science, 1615:83-94, 1999.

3. A. Cohen and V. Lefebvre. Optimization of storage mappings for parallel
programs. Technical Report 1998/46, PRiSM, U. of Versailles, 1988.

4. Alain Darte, Yves Robert, and Frédéric Vivien. Scheduling and Auto-
matic Parallelization. Birkhauser Boston, 2000.

5. Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing,
pages 429-441, 1988.

6. Paul Feautrier. Dataflow analysis of array and scalar references. Int. J.
of Parallel Programming, 20(1):23-51, 1991.

7. Paul Feautrier. Some efficient solutions to the affine scheduling problem.
part I. one-dimensional time. Int. J. of Parallel Programming, 21(5):313~
347, October 1992.

8. Paul Feautrier. Some efficient solutions to the affine scheduling prob-
lem. part II. multidimensional time. Int. J. of Parallel Programming,
21(6):389-420, December 1992.

9. Paul Feautrier, Jean-Franois Collard, Michel Barreteau, Denis Barthou,
Albert Cohen, and Vincent Lefebvre. The interplay of expansion and
scheduling in paf. Technical Report 1998/6, PRiSM, U. of Versailles,
1988.

10. Franois Irigoin and Rémy Triolet. Supernode partitioning. In Proc. 15th
Annual ACM Symp. Principles of Prog. Languages, pages 319-329, San
Diego, CA, January 1988.

11.

12.

13.

14.

15.

16.

17.

18.

A Unified Framework for Schedule and Storage Optimization 381

Vincent Lefebvre and Paul Feautrier. Automatic storage management
for parallel programs. Parallel Computing, 24(3-4):649-671, May 1998.
A. Lim and M. Lam. Maximizing parallelism and minimizing synchro-
nization with affine transforms. In Proceedings of the 24th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Prog. Languages, January
1997.

Vincent Loechner and Doran K. Wilde. Parameterized polyhedra and
their vertices. Int. J. of Parallel Programming, 25(6):525-549, December
1997.

S. B. Needleman and C. D. Wunsch. A general method applicable to the
search of similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48:443-453, 1970.

William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM, 8:102—
114, August 1992.

Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley and Sons, New York, 1986.

Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Beth Simon.
Schedule-independent storage mapping for loops. In Architectural Sup-
port for Programming Languages and Operating Systems, pages 24-33,
1998.

D. Wilde and S. Rajopadhye. Memory reuse analysis in the polyhedral
model. Parallel Processing Letters, 7(2):203-215, June 1997.

