
Proceedings of the 15th International
Conference on Supercomputing, 2001.

Analytical Cache Models with Applications

to Cache Partitioning

G. Edward Suh, Srinivas Devadas and Larry Rudolph

MIT Laboratory for Computer Science
{suh, devadas, rudolph}@mit.edu

Abstract. An accurate, tractable, analytic cache model for
time-shared systems is presented, which estimates the overall
cache miss-rate of a multiprocessing system with any cache
size and time quanta. The input to the model consists of the
isolated miss-rate curves for each process, the time quanta
for each of the executing processes, and the total cache size.
The output is the overall miss-rate. Trace-driven simulations
demonstrate that the estimated miss-rate is very accurate.
Since the model provides a fast and accurate way to estimate
the effect of context switching, it is useful for both understand-
ing the effect of context switching on caches and optimizing
cache performance for time-shared systems. A cache partition-
ing mechanism is also presented and is shown to improve the
cache miss-rate up to 25% over the normal LRU replacement
policy.

1 Introduction

This paper presents an analytical model for the behavior of a cache
in a multiprocessing system that can accurately estimate overall miss-
rate for any cache size and any time quantum. An evaluation method
for miss-rate is essential to optimize cache performance. Traditional
cache performance evaluation is done by simulations [25, 16, 12], which
provide accurate results, but simulation time is often long. Hardware
monitoring can dramatically speed up the process [26], however, it is
limited to the particular cache configuration. As a result, both simula-
tions and hardware monitoring can only be used to evaluate the effect of
context switches [14, 10]. Moreover, simulations and monitoring rarely
provide intuitive understanding making it difficult to improve cache

404 G. Edward Suh, Srinivas Devadas and Larry Rudolph

performance. To provide both performance prediction and insight into
improving performance, analytical cache models are required.

We use our model to determine the best cache partitioning so as to
improve performance. Partitioning is needed to mitigate the effects of
conflicts among concurrently executing processes, especially for large
caches. In the past, caches were small and it was best to let each pro-
cess consume the entire cache space, since process footprints were much
larger than the cache. In modern microprocessors, caches are much
larger; some Level 1 (L1) caches range up to one MB [5], and L2 caches
are up to several MB [2, 13]. Large caches allow potential performance
improvement by partitioning. Since each process may not need the en-
tire cache space, the effect of context switches can be mitigated by
keeping useful data in the cache over context switches. It is crucial for
modern microprocessors to minimize inter-process conflicts by proper
cache partitioning [21, 9] or scheduling [17, 23].

Our model requires information that is relatively easy to acquire.
The characteristics for each process are given by the miss-rate as a
function of cache size when the process is isolated, which can be easily
obtained either on-line or off-line. The time quantum for each process
and cache size are also given as inputs to the model. With this infor-
mation, the model estimates the overall miss-rate for a given cache size
when an arbitrary combination of processes is run. The model provides
good estimates for any cache size and any time quantum, and is eas-
ily applied to real problems since the input miss-rate curves are both
intuitive and easy to obtain in practice. Therefore, we believe that the
model is useful for any study related to the effect of context switches
on cache memory.

After describing related research in Section 2, Section 3 derives an
analytical cache model for time-shared systems. Section 4 discusses
cache partitioning based on the model and evaluates the model-based
partitioning method by simulations. Finally, Section 5 concludes the
paper.

2 Related work

Several early investigations of the effects of context switches use analyt-
ical models. Thiébaut and Stone [20] modeled the amount of additional
misses caused by context switches for set-associative caches. Agarwal,
Horowitz and Hennessy [1] also included the effect of conflicts between
processes in their analytical cache model and showed that inter-process
conflicts are noticeable for a mid-range of cache sizes that are large
enough to have a considerable number of conflicts but not large enough

Analytical Cache Models 405

to hold all the working sets. However, these models work only for long
enough time quanta, and require information that is hard to collect
on-line.

Mogul and Borg [14] studied the effect of context switches through
trace-driven simulations. Using a timesharing system simulator, their
research shows that system calls, page faults, and a scheduler are the
main sources of context switches. They also evaluated the effect of
context switches on cycles per instruction (CPI) as well as the cache
miss-rate. Depending on cache parameters, the cost of a context switch
appears to be in the thousands of cycles, or tens to hundreds of mi-
croseconds in their simulations.

Stone, Turek and Wolf [18] investigated the optimal allocation of
cache memory between two competing processes that minimizes the
overall miss-rate of a cache. Their study focuses on the partitioning of
instruction and data streams, which can be thought of as multitasking
with a very short time quantum. Their model for this case shows that
the optimal allocation occurs at a point where the miss-rate derivatives
of the competing processes are equal. The LRU replacement policy
appears to produce cache allocations very close to optimal for their
examples. They also describe a new replacement policy for longer time
quanta that only increases cache allocation based on time remaining in
the current time quantum and the marginal reduction in miss-rate due
to an increase in cache allocation. However, their policy simply assumes
the probability for a evicted block to be accessed in the next time
quantum as a constant, which is neither validated nor is it described
how this probability is obtained.

Thiébaut, Stone and Wolf applied their partitioning work [18] to
improve disk cache hit-ratios [21]. The model for tightly interleaved
streams is extended to be applicable for more than two processes. They
also describe the problems in applying the model in practice, such as ap-
proximating the miss-rate derivative, non-monotonic miss-rate deriva-
tives, and updating the partition. Trace-driven simulations for 32-MB
disk caches show that the partitioning improves the relative hit-ratios
in the range of 1% to 2% over the LRU policy.

Our analytical model and partitioning differ from previous efforts
that tend to focus on some specific cases of context switches. Our model
works for any specific time quanta, whereas the previous models focus
only on long time quanta. Also, our partitioning works for any time
quanta, whereas Thiébaut’s algorithms only works for very short time
quanta. Moreover, the inputs of our model (miss-rates) are much easier
to obtain compared to footprints or the number of unique cache blocks
that previous models require.

406 G. Edward Suh, Srinivas Devadas and Larry Rudolph

3 Analytical cache model

The analytical cache model estimates the overall cache miss-rate for a
multi-processing system. The cache size and the time quantum length
for each job is known. The cache size is given by the number of cache
blocks, and the time quantum is given by the number of memory refer-
ences. Both are assumed to be constants (See Figure 1 (a)). In addition,
associated with each job is its miss-rate curve, i.e., the number of cache
misses as a function of the cache size.

Time
Process 1 Process NProcess 2 ... Process 2Process 1 ...

T1 T2T1TNT2

(b)

miss-rate curves (mi(x))

time quanta (Ti)

cache size (C)

Cache Model overall miss-rate

(a)

Fig. 1. (a) The overview of an analytical cache model. (b) Round-robin sched-
ule.

This section explains the development of the model in several steps.
Heavy use is made of the individual, isolated miss-rate curve (iimr).
This curve is the miss-rate for a process as a function of cache size
assuming no other processes are running. There is much information
that can be gleaned from this equation. For example, we can compute
the miss rate of a process as a function of time (Section 3.2) from the
miss-rate of a process as a function of space.

Observe that as a process executes, it either references an item in
the cache, in which case its footprint size remains the same, or it gets
a cache miss thereby increasing its footprint size. In other words, we
know how much cache is allocated to a process as a function of time:
from the iimr curve, we compute the independent, isolated footprint as
a function of time (iifp) (Section 3.2).

If one knows how much cache is allocated to a process when it
begins executing its time quantum and how much more cache it will

Analytical Cache Models 407

need during the execution of that time quantum, we can compute how
much cache will be left for the next process that is about to begin its
time quantum execution. In other words, from the iifp curves of all the
concurrent processes, we compute the individual, dependent footprint
(dfp) as a function of time (Section 3.2).

At each time step, we know how much cache is allocated to the run-
ning process (from dfp(t)) and we know the miss rate for that size (from
iimr(S)) for the executing process and so we can get the dependent miss
rate as a function of time (dmr(t)) (Section 3.2).

Finally, integrating or summing the dmr(t) over time, gives the
overall average miss rate for a given cache size, given time quantum
sizes, and a given set of concurrent processes (Section 3.2).

The following subsection gives an overview of our assumptions. The
development of the cache model is then presented, following the outline
given above. Finally, this section ends with experimental verification of
the model.

The current �
process' data�

Other process' data�
/Empty

The cache at time t0

x(t
0
)�

Cache size�

M
is

s-
ra

te

m(x) �
for �
the current process

Pmiss(t0)

(a)�

Time

P
ro

ba
bi

lit
y

to
 m

is
s

T (The length of �
 a time quantum)

The number of misses

Integrate

(b)

Pmiss(t)

x(t
0
)�

Fig. 2. (a) The probability of a miss at time t0. (b) The number of misses
from Pmiss(t) curve.

3.1 Assumptions

The memory reference pattern of each process is assumed to be repre-
sented by a miss-rate curve that is a function of the cache size. More-
over, this miss-rate curve is assumed not to change over time. Although
real applications do have dynamically changing memory reference pat-
terns, our results show that, in practice, an average miss-rate function
works very well. For abrupt changes in the reference pattern, multiple
miss-rate curves can be used to estimate an overall miss-rate.

408 G. Edward Suh, Srinivas Devadas and Larry Rudolph

There is no shared address space among processes. This assumption
is true for common cases where each process has its own virtual address
space and the shared memory space is negligible compared to the entire
memory space that is used by a process.

Finally, a round-robin scheduling policy with a fixed time quantum
for each process is assumed (see Figure 1 (b)), an LRU replacement pol-
icy is used, and the cache is fully associative. Although most real caches
are set-associative, a model for fully-associative caches is very useful
for understanding the effect of context switches because the model is
simple. Moreover, cache partitioning experiments demonstrate that the
fully-associative model can also be applied to set-associative caches in
practice (Section 4). Elsewhere, we have extended the model to handle
set-associative caches [19]. A model assuming many other scheduling
methods and replacement policies can be similarly derived.

We make use of the following notations:

t the number of memory references from the beginning of a time quan-
tum.

x(t) the number of cache blocks that belong to a process after t memory
references.

m(x) the steady-state miss-rate for a process with cache size x.
T the number of memory references in a time quantum.

3.2 Cache model

The goal is to predict the average miss-rate for a multiprocess machine
with a given cache size and set of processes.

Miss rate as function of time Given the independent, isolated miss-
rate of a process as a function of cache size, we compute its miss-rate as
a function of time. Let time t start at the beginning of a time quantum,
not at the beginning of execution. Since all time quanta for a process
are identical by our assumptions, we consider only one time quantum
for each process.

Although the cache size is C, at certain times, it is possible that only
part of the cache is filled with the current process’ data (Figure 2 (a)
shows a snapshot of a cache at time t0). Therefore, the effective cache
size at time t0 can be thought of as the amount of the current process’
data x(t0) in the cache at that time. The probability of a cache miss in
the next memory reference is given by

Pmiss(t0) = m(x(t0)). (1)

Analytical Cache Models 409

Once we have Pmiss(t0), it is easy to estimate the miss-rate over
time during that time quantum. The number of misses for the process
over a time quantum can be expressed as a simple integral, Figure 2 (b),
where the miss-rate is expressed as the number of misses divided by the
number of memory references.

miss-rate =
1
T

∫ T

0

Pmiss(t)dt =
1
T

∫ T

0

m(x(t))dt (2)

Footprint as a function of time We now estimate x(t), the amount
of a process’ data, i.e. its footprint, in a cache as a function of time. Let
us begin with the assumption that a process starts executing during a
time quantum with an empty cache in order to estimate cache perfor-
mance for cases when a cache gets flushed for every context switch.
Virtual address caches without process ID are good examples of such a
case. We show later how to estimate x(t) when the cache is not empty
at the start of a time quantum.

Consider x∞(t) as the amount of the current process’ data at time
t for an infinite size cache. We assume that the process starts with an
empty cache at time 0. There are two possibilities for x∞(t) at time
t + 1. If the (t + 1)th memory reference results in a cache miss, a new
cache block is brought into the cache. As a result, the amount of the
process’s cache data increases by one block. Otherwise, the amount of
data remains the same. Therefore, the amount of the process’ data in
the cache at time t + 1 is given by

x∞(t + 1) =

{
x∞(t) + 1 (t + 1)th reference misses
x∞(t) otherwise.

(3)

Since the probability for the (t + 1)th memory reference to miss is
m(x∞(t)) from Equation 1, the expected value of x(t+1) can be written
by

E[x∞(t + 1)] = E[x∞(t) · (1 − m(x∞(t)))
+ (x∞(t) + 1) · m(x∞(t))]

= E[x∞(t) + 1 · m(x∞(t))]
= E[x∞(t)] + E[m(x∞(t))].

(4)

410 G. Edward Suh, Srinivas Devadas and Larry Rudolph

Assuming that m(x) is convex1, we can use Jensen’s inequality [3] and
rewrite the equation as a function of E[x∞(t)].

E[x∞(t + 1)] ≥ E[x∞(t)] + m(E[x∞(t)]). (5)

Usually, a miss-rate changes slowly. As a result, for a short interval such
as from x to x + 1, m(x) can be approximated as a straight line. Since
the equality in Jensen’s inequality holds if the function is a straight
line, we can approximate the amount of data at time t + 1 as

E[x∞(t + 1)] � E[x∞(t)] + m(E[x∞(t)]). (6)

We can calculate the expectation of x∞(t) more accurately by calcu-
lating the probability for every possible value at time t [19]. However,
calculating a set of probabilities is computationally expensive. Also,
our experiments show that the above approximation closely matches
simulation results.

If we further approximate the amount of data x∞(t) to be the ex-
pected value E[x∞(t)], x∞(t) can be expressed with a differential equa-
tion:

x∞(t + 1) − x∞(t) = m(x∞(t)), (7)

which can be easily calculated in a recursive manner.
To obtain a closed form solution, we can rewrite the discrete form

of the differential equation 7 to a continuous form:

dx∞

dt
= m(x∞). (8)

Solving the differential equation by separating variables, the differ-
ential equation becomes

t =
∫ x∞(t)

x∞(0)

1
m(x′)

dx′. (9)

We define a function M(x) as an integral of 1/m(x), which means that
dM(x)/dx = 1/m(x), and then x∞(t) can be written as a function of
t:

x∞(t) = M−1(t + M(x∞(0))) (10)

where M−1(x) represents the inverse function of M(x).
Finally, for a finite size cache, the amount of data in the cache is

limited by the size of the cache C. Therefore, xφ(t), the amount of a
process’ data starting from an empty cache, is written by

xφ(t) = MIN [x∞(t), C] = MIN [M−1(t + M(0)), C]. (11)
1 If a replacement policy is smart enough, the marginal gain of having one

more cache block monotonically decreases as we increase the cache size.

Analytical Cache Models 411

Individual, dependent footprint as a function of time We now
compute the amount of a process’ data at time t when the cache is
not flushed at a context switch, i.e., the dependent case. To distinguish
between the processes, a subscript i is used to represent Process i. For
example, xi(t) represents the amount of Process i’s data at time t.

The estimation of xi(t) is based on round-robin scheduling (See
Figure 1 (b)) and the LRU replacement policy. Process i runs for a
fixed length time quantum Ti. For simplicity, processes are assumed to
be of infinite length so that there is no change in the scheduling. Also,
the initial startup transient from an empty cache is ignored since it is
negligible compared to the steady state.

To estimate the amount of a process’ data at a given time, imagine
the snapshot of a cache after executing Process i for time t as shown
in Figure 3. Note that time is 0 at the beginning of the process’ time
quantum. In the figure, the blocks on the left side show recently used
data, and blocks on the right side show old data. Pj,k represents the
data of Process j, and subscript k specifies the most recent time quan-
tum when the data are referenced. From the figure, we can obtain xi(t)
once we know the size of all Pj,k blocks.

Pi,1 Pi,3Pi+1,2...Pi-1,2Pi,2Pi+1,1...Pi-1,1

MRU data LRU data
The snapshot of a cache

0
0

Time

C

A
m

ou
nt

 o
f D

at
a

in
 a

 C
ac

he

t t+Ti

x0i(t)

�

Fig. 3. The snapshot of a cache after running Process i for time t.

The size of each block can be estimated using the xφ
i (t) curve from

Equation 11, which is the amount of Process i’s data when the process
starts with an empty cache. Since xφ

i (t) can also be thought of as the
amount of data that are referenced from time 0 to time t, xφ

i (Ti) is the

412 G. Edward Suh, Srinivas Devadas and Larry Rudolph

amount of data that are referenced over one time quantum. Similarly,
we can estimate the amount of data that are referenced over k recent
time quanta to be xφ

i (k · Ti). As a result, the size of Block Pj,k can be
written as

Pj,k =

xφ
j (t + (k − 1) · Tj) − xφ

j (t + (k − 2) · Tj)
if j is executing

xφ
j (k · Tj) − xφ

j ((k − 1) · Tj)
otherwise

(12)

where we assume that xφ
j (t) = 0 if t < 0.

xi(t) is the sum of Pi,k blocks that are inside the cache of size C in
Figure 3. If we define li(t) as the maximum integer value that satisfies
the following inequality, then li(t)+ 1 represents how many Pi,k blocks
are in the cache.

li(t)∑
k=1

N∑
j=1

Pj,k = xφ
i (t + (li(t) − 1) · Ti) +

N∑
j=1,j �=i

xφ
j (li(t) · Tj) ≤ C (13)

where N is the number of processes. From li(t) and Figure 3, the esti-
mated value of xi(t) is

xi(t) =

xφ
i (t + li(t) · Ti) if xφ

i (t + li(t) · Ti)+
N∑

j=1,j �=i

xφ
j (li(t) · Tj) ≤ C

C −
N∑

j=1,j �=i

xφ
j (li(t) · Tj) otherwise

(14)

Figure 4 illustrates the relation between xφ
i (t) and xi(t). In the

figure li(t) is assumed to be 2. Unlike the cache flushing case, a process
can start with some of its data left in the cache. The amount of initial
data xi(0) is given by Equation 14. If the least recently used (LRU)
data in a cache does not belong to Process i, xi(t) increases the same
as xφ

i (t). However, if the LRU data belongs to Process i, xi(t) does not
increase on a cache miss since Process i’s block gets replaced.

Define tstart(j, k) as the time when the kth MRU block of Process j
(Pj,k) becomes the LRU part of a cache, and tend(j, k) as the time when
Pj,k gets completely replaced from the cache (See Figure 3). tstart(j, k)
and tend(j, k) specify the flat segments in Figure 4 and can be estimated

Analytical Cache Models 413

0
0

Time

xi(0)

C
xi(t)

tstart(i,2) tend(i,2)tend(i,3)tstart(i,3)

A
m

ou
nt

 o
f D

at
a

in
 a

 C
ac

he

xi(t)
0

Fig. 4. The relation between xφ
i (t) and xi(t). xi(0) is the amount of Process

i’s data in the cache when a time quantum starts.

from the following equations that are based on Equation 12.

xφ
j (tstart(j, k) + (k − 1) · Tj) +

N∑
p=1,p�=j

xφ
p ((k − 1) · Tp) = C. (15)

xφ
j (tend(j, k) + (k − 2) · Tj) +

N∑
p=1,p�=j

xφ
p ((k − 1) · Tp) = C. (16)

tstart(j, lj(t)+1) would be zero if Equation 15 is satisfied when tstart(j, lj(t)+
1) is negative, which means that the P (j, lj(t)+ 1) block is already the
LRU part of the cache at the beginning of a time quantum.

Overall miss-rate This section presents the overall miss-rate calcu-
lation. When a cache uses virtual address tags and gets flushed for ev-
ery context switch, each process starts a time quantum with an empty
cache. In this case, the miss-rate of a process can be estimated from the
results of Section 3.2 and 3.2. From Equation 2 and 11, the miss-rate
for Process i can be written by

miss-rateφ
i =

1
Ti

∫ Ti

0

mi(MIN [M−1
i (t + Mi(0)), C])dt. (17)

If a cache uses physical address tags or has a process’ ID with virtual
address tags, it does not have to be flushed at a context switch. In this

414 G. Edward Suh, Srinivas Devadas and Larry Rudolph

10
3

10
4

10
5

0.04

0.06

0.08

0.1

0.12

0.14

Time Quantum

M
is

s−
ra

te

simulation
model

10
3

10
4

10
5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Quantum

M
is

s−
ra

te

simulation
model

10
3

10
4

10
5

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Quantum

M
is

s−
ra

te

simulation
model

10
3

10
4

10
5

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Time Quantum

M
is

s−
ra

te

simulation
model

(a) vpr (b) vortex

(c) gcc (d) bzip2

Fig. 5. The result of the cache model for cache flushing cases. (a) vpr. (b)
vortex. (c) gcc. (d) bzip2.

Analytical Cache Models 415

case, the amount of data xi(t) is estimated in Section 3.2. The miss-rate
for Process i can be written by

miss-ratei =
1
Ti

∫ Ti

0

mi(xi(t))dt (18)

where xi(t) is given by Equation 14.
For actual calculation of the miss-rate, tstart(j, k) and tend(j, k)

from Equation 15 and 16 can be used. Since tstart(j, k) and tend(j, k)
specify the flat segments in Figure 4, the miss-rate of Process i can be
rewritten by

miss-ratei =
1
Ti

{
∫ T ′

i

0

mi(MIN [M−1
i (t + Mi(xi(0))), C])dt

+
li(t)+1∑
k=di

mi(x
φ
i (tstart(i, k) + (k − 1) · Ti))

· (MIN [tend(i, k), Ti] − tstart(i, k))}

(19)

where di is the minimum integer value that satisfies tstart(i, di) < Ti.
T ′

i is the time that Process i actually grows.

T ′
i = Ti −

li(t)+1∑
k=di

(MIN [tend(i, k), Ti] − tstart(i, k)). (20)

As shown above, calculating a miss-rate could be complicated if
we do not flush a cache at a context switch. If we assume that the
executing process’ data left in a cache is all in the most recently used
part of the cache, we can use the equation for estimating the amount
of data starting with an empty cache. Therefore, the calculation can be
much simplified as follows,

miss-ratei =
1
Ti

∫ Ti

0

mi(MIN [M−1
i (t + Mi(xi(0))), C])dt (21)

where xi(0) is estimated from Equation 14. The effect of this approxi-
mation is evaluated in the experiment section (cf. Section 3.3).

Once we calculate the miss-rate of each process, the overall miss-rate
is straightforwardly calculated from those miss-rates.

Overall miss-rate =
∑N

i=1 miss-ratei · Ti∑N
i=1 Ti

(22)

416 G. Edward Suh, Srinivas Devadas and Larry Rudolph

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

Time Quantum

M
is

s−
ra

te

model
simulation
approximation

0 1 2 3 4 5 6

x 10
4

0

100

200

300

400

500

600

700

800

Time Quantum

A
m

ou
nt

 o
f D

at
a

(b
lo

ck
s)

vpr
vortex

(a)

(b)

Fig. 6. The result of the cache model when two processes (vpr, vortex) are
sharing a cache (32 KB fully-associative). (a) the overall miss-rate. (b) the
initial amount of data xi(0).

Analytical Cache Models 417

3.3 Experimental verification

Our cache model can be validated by comparing estimated miss-rate
predictions with simulation results. Several combinations of bench-
marks are modeled and simulated for various time quanta. First, we
simulate cases when a cache gets flushed at every context switch, and
compare the results with the model’s estimation. Cases without cache
flushing are also tested. For the cases without cache flushing, both the
complete model (Equation 19) and the approximation (Equation 21)
are used to estimate the overall miss-rate. Based on the simulation
results, the error caused by the approximation is discussed.

Cache flushing case The results of the cache model and simulations
are shown in Figure 5 in cases when a process starts its time quantum
with an empty cache. Four benchmarks from SPEC CPU2000 [7], which
are vpr, vortex, gcc and bzip2, are tested. The cache is a 32-KB
fully-associative cache with 32-Byte blocks. The miss-rate of a process
is plotted as a function of the length of a time quantum, and shows
a good agreement between the model’s estimation and the simulation
result.

As inputs to the cache model, the average miss-rate of each process
has been obtained from simulations. Each process has been simulated
for 25 million memory references, and the miss-rates of the process for
various cache size have been recorded. The simulation results were also
obtained by simulating benchmarks for 25 million memory references
with flushing a cache every T memory references. As the result shows,
the average miss-rate works very well.

General case Figure 6 shows the result of the cache model when two
processes are sharing a cache. The two benchmarks are vpr and vortex
from SPEC CPU2000, and the cache is a 32-KB fully-associative cache
with 32-Byte blocks. The overall miss-rates are shown in Figure 6 (a).
As shown in the figure, the miss-rate estimated by the model shows a
good agreement with the results of the simulations.

The figure also shows an interesting fact that a certain range of time
quanta could be very problematic for cache performance. For short
time quanta, the overall miss-rate is relatively small. For very long
time quanta, context switches do not matter since a process spends
most of its time in the steady state. However, medium time quanta
could severely degrade cache miss-rates as shown in the figure. This
problem occurs when a time quantum is long enough to pollute the
cache but not long enough to compensate for the misses caused by

418 G. Edward Suh, Srinivas Devadas and Larry Rudolph

context switches. The problem becomes clear in Figure 6 (b). The figure
shows the amount of data left in the cache at the beginning of a time
quantum. Comparing Figure 6 (a) and (b), we can see that the problem
occurs when the initial amount of data rapidly decreases.

The error caused by our approximation (Equation 21) method can
be seen in Figure 6. In the approximation, we assume that the data
left in the cache at the beginning of a time quantum are all in the
MRU region of the cache. In reality, however, the data left in the cache
could be the LRU cache blocks and get replaced before other process’
blocks in the cache, although the current process’s data are likely to be
accessed in the time quantum. As a result, the approximated miss-rate
is lower than the simulation result when the initial amount of data is
not zero.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0.045

0.05

0.055

0.06

0.065

0.07

Time Quantum

M
is

s−
ra

te

model
approximation
simulation

Fig. 7. The overall miss-rate when four processes (vpr, vortex, gcc, bzip2)
are sharing a cache (32 KB, fully-associative).

A four-process case is also tested in Figure 7. Two more bench-
marks, gcc and bzip2, from SPEC CPU2000 [7] are added to vpr and
vortex, and the same cache configuration is used as the two process
case. The figure also shows a very close agreement between the miss-
rate estimated by the cache model and the miss-rate from simulations.
The problematic time quanta and the effect of the approximation have
changed. Since there are more processes polluting the cache as com-
pared to the two process case, a process experiences an empty cache

Analytical Cache Models 419

in shorter time quanta. As a result, the problematic time quanta be-
come shorter. On the other hand, the effect of the approximation is less
harmful in this case. This is because the error in one process’ miss-rate
becomes less important as we have more processes.

4 Cache partitioning

This section shows how the analytical cache model can be used to
dynamically partition the cache. A partitioned cache allocates cache
space to particular processes. This space is dedicated to the process and
cannot be used to satisfy cache misses by other processes. Using trace-
driven simulations, we compare partitioning with the normal LRU. The
partitioning is based on the fully-associative cache model. However,
simulation results demonstrate that this implementation works for both
fully-associative caches and set-associative caches.

4.1 Recording memory reference patterns

The miss-rate curves for each process are generated off-line. We record
the miss-rate curve for each process to represent its memory reference
pattern. For various cache sizes, a single process cache simulator is
applied to each process. This information can be reused for any com-
bination of processes as long as the cache configuration is the same2.

To incorporate the dynamically changing behavior of a process, a
set of miss-rate curves, one for each time period, are produced. At run-
time, the miss-rate curve is mapped to the appropriate time quantum.

4.2 The partitioning scheme

The overall flow of the partitioning scheme can be viewed as a set
of four modules: off-line recording, scheduler information, allocation,
and replacement (Figure 8). The scheduler provides the partition mod-
ule with the set of executing processes and their start/end times. The
partition module uses the miss-rate information for the processes to
calculate cache partitions at the end of each time quantum. Finally,
the replacement unit maps these partitions to the appropriate parts of
the cache.

The partition module decides the number of cache blocks that should
be dedicated to a process (Di). The Di most recently used cache blocks
of Process i are kept in the cache over other process’ time quanta, and
2 Note that for our fully-associative model, only the cache block size matters

420 G. Edward Suh, Srinivas Devadas and Larry Rudolph

Record Files Scheduler

Partition Module Replacement Unit

 Add/remove a process,�
 End of a time quantum,�
The Length of a time quantum

Miss-rate �
 Curves

{X1,X2,...,XN}

{D1,D2,...,DN}

Fig. 8. The implementation of on-line cache partitioning.

Process i starts its time quantum with those cache blocks in the cache.
During its own time quantum, Process i can use all cache blocks that
are not reserved for other processes (S = C − ∑N

j=1,j �=i Dj).
In addition to LRU information, our replacement decision depends

on the number of cache blocks that currently belong to each process
(Xi), that is, the number of cache lines in the cache that currently
contain memory of that process. The LRU cache block of an active
process (i) is chosen if its actually allocation (Xi) is larger than or
equal to the desired one (Di + S ≤ Xi). Otherwise, the LRU cache
block of a dormant overallocated process is chosen. For set-associative
caches, there may be no cache block of the desired process in the set.
In this case, the LRU cache block of the set is replaced.

For set-associative caches, the fully-associative replacement policy
may result in replacing recently used data to keep useless data. Imagine
the case when a process starts to heavily access two or more addresses
that happen to be mapped to the same set. If the process already has
many cache blocks in other sets, our partitioning will allocate only a few
cache blocks in the accessed set for the process, causing lots of conflict
misses. To solve this problem, we can use better mapping functions [22,
6] or a victim cache [8].

When a Process i first starts, Di is set to zero since there is no cache
block that belongs to the process. At the end of Process i’s time quan-
tum, the partition module updates the information such as the miss-
rate curve(mi(x)) and the time quantum(Ti). If there is any change,
Di is also updated based on the cache model.

A cache partition specifies the amount of data in the cache at the
beginning of a process’ time quantum (Di), and the maximum cache

Analytical Cache Models 421

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (million memory references)

M
is

s−
ra

te

bzip2
swim
gcc
mesa

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (million memory references)

M
is

s−
ra

te

vpr
iu
vortex
twolf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Cache Size (blocks)

M
is

s−
ra

te

swim
bzip2
mesa
gcc

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (blocks)

M
is

s−
ra

te

vpr
iu
vortex
twolf

(a)

(b)

Fig. 9. The characteristics of the benchmarks. (a) The change of a miss-rate
over time. (b) The miss-rate as a function of the cache size.

422 G. Edward Suh, Srinivas Devadas and Larry Rudolph

space the process can use (C − ∑N
j=1,j �=i Dj). Therefore, the number

of misses for a process over one time quantum can be estimated from
Equation 21:

missi =
∫ Ti

0

mi(MIN [M−1
i (t + Mi(Di)), C −

N∑
j=1,j �=i

Dj])dt (23)

where C is cache size, and N is the number of processes sharing the
cache.

The new value of Di is the integer, in the range [0, Xi], that mini-
mizes the total number of misses that is given by the following quantity:

N∑
p=1

∫ Tp

0

mp(MIN [M−1
p (t + Mp(Dp)), C −

N∑
q=1,q �=p

Dq])dt. (24)

4.3 Experimental verification

The case of eight processes sharing a 32-KB cache is simulated to eval-
uate model-based partitioning. Seven benchmarks (bzip2, gcc, swim,
mesa, vortex, vpr, twolf) are from SPEC CPU2000 [7], and one (the
image understanding program (iu)) is from a data intensive systems
benchmark suite [15]. The overall miss-rate with partitioning is com-
pared to the miss-rate only using the normal LRU replacement policy.

The simulations are carried out for fifty million memory references
for each time quantum. Processes are scheduled in a round-robin fash-
ion with the fixed number of memory references per time quantum.
Also, the number of memory references per time quantum is assumed
to be the same for the all eight processes. Finally, two record cycles
(P), of ten million and one hundred thousand memory references, re-
spectively, are used for the model-based partitioning. The record cycle
represents how often the miss-rate curve is recorded for the off-line
profiling. Therefore, a shorter record cycle implies more detailed infor-
mation about a process’ memory reference pattern.

The characteristics of the benchmarks are illustrated in Figure 9.
Figure 9 (a) shows the change of a miss-rate over time. The x-axis
represents simulation time. The y-axis represents the average miss-rate
over one million memory references at a given time. As shown in the
figure, bzip2, gcc, swim and iu show abrupt changes in their miss-rate,
whereas other benchmarks have very uniform miss-rate characteristics
over time. Figure 9 (b) illustrates the miss-rate as a function of the
cache size. For a 32-KB fully-associative cache, benchmarks show miss-
rates between 1% and 5%.

Analytical Cache Models 423

Fully-associative result The results of cache partitioning for a fully-
associative cache are shown in Figure 10. In Figure 10 (a), the miss-
rates are averaged over 50 million memory references and shown for
various time quanta. As discussed in the cache model, the normal LRU
replacement policy is problematic for a certain range of time quanta. In
this case, the overall miss-rate increases dramatically for time quanta
between one thousand and ten thousand memory references. For this
problematic region, the model-based partitioning improves the cache
miss-rate by lowering it from 4.6% to 3.4%, which is about a 25% im-
provement. For short time quanta, the relative improvement is about
7%. For very long time quanta, the model-based partitioning shows the
exact same result as the normal LRU replacement policy. In general,
it is shown by the figure that the model-based partitioning always per-
forms at least as well as or better than the normal LRU replacement
policy. Also, the partitioning with a short record cycle performs better
than the partitioning with a long record cycle.

In our example of a 32-KB cache with eight processes (Figure 10),
the problematic time quanta are in the order of a thousand memory
references, which is very short for modern microprocessors. As a result,
only systems with very fast context switching, such as simultaneous
multi-threading machines [24, 11, 4], can be improved for this cache
size and workload. However, longer time quanta become problematic
if a cache is larger. Therefore, conventional time-shared systems with
very high clock frequency can also be improved by the same technique
if a cache is large.

Figure 10 (b) shows the change of a miss-rate over time rather than
an average miss-rate over the entire simulation. It is clear from the
figure how the short record cycle helps partitioning. In the figure, the
model-based partitioning with the long record cycle (P = 107) performs
worse than LRU at the beginning of a simulation, even though it out-
performs the normal LRU replacement policy overall. This is because
the model-based partitioning has only one average miss-rate curve for a
process. As shown in Figure 9, some benchmarks such as bzip2 and gcc
have a very different miss-rate at the beginning. Therefore, the average
miss-rate curves for those benchmarks do not work at the beginning
of the simulation, which results in worse performance than the nor-
mal LRU replacement policy. The model-based partitioning with the
short record cycle (P = 105), on the other hand, always outperforms
the normal LRU replacement policy. In this case, the model has cor-
rect miss-rate curves for all the time quanta, and partitions the cache
properly even for the beginning of processes.

424 G. Edward Suh, Srinivas Devadas and Larry Rudolph

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.02

0.025

0.03

0.035

0.04

0.045

0.05

References per Time Quantum

M
is

s−
ra

te
Normal LRU
Model, P=107

Model, P=105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
7

0.03

0.035

0.04

0.045

0.05

0.055

Time (million memory references)

M
is

s−
ra

te

Normal LRU
Model, P=107

Model, P=105

(a)

(b)

Fig. 10. The results of the model-based cache partitioning for a fully-
associative cache when eight processes (bzip2, gcc, swim, mesa, vortex, vpr,
twolf, iu) are sharing the cache (32 KB, fully associative). (a) the average
miss-rate for various time quanta. (b) the change of the miss-rate over time
with ten memory references per time quantum.

Analytical Cache Models 425

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Reference per Time Quantum

M
is

s−
ra

te

Normal LRU
Model, P=105

Fig. 11. The results of the model-based cache partitioning for a set-
associative cache when eight processes (bzip2, gcc, swim, mesa, vortex, vpr,
twolf, iu) are sharing the cache (32 KB, 8-way associative).

Set-associative result The result of cache partitioning for a set-
associative cache is shown in Figure 11. The same set of benchmarks
are simulated with a 32-KB 8-way set-associative cache, and the same
miss-rate curves generated for a 32-KB fully-associative cache are used.
In this case, a 16 entry victim cache is added. In the figure, the model-
based partitioning improves the miss-rate about 4% for short time
quanta and up to 15% for mid-range time quanta. The figure demon-
strates that the model-based partitioning mechanism works reasonably
well for set-associative caches.

5 Conclusion

An analytical cache model to estimate overall miss-rate when multiple
processes are sharing a cache has been presented. The model obtains the
information about each process from its miss-rate curve, and combines
it with parameters that define the cache configuration and schedule of
processes. Interference among processes under the LRU replacement
policy is quickly estimated for any cache size and any time quantum,
and the estimated miss-rate is very accurate. A more important result
is that the model provides not only the overall miss-rate but also a very
good understanding of the effect of context switching. For example, the
model clearly shows that the LRU replacement policy is problematic

426 G. Edward Suh, Srinivas Devadas and Larry Rudolph

for mid-range time quanta because the policy replaces the blocks of
least recently executed process that are more likely to be accessed in
the near future.

The analytical model has been applied to the cache partitioning
problem. A model-based partitioning method has been implemented
and verified by simulations. Miss-rate curves are recorded off-line and
partitioning is performed on-line according to the combination of pro-
cesses that are executing. Even though we have used an off-line profiling
method to obtain miss-rate curves, it should not be hard to approx-
imate the miss-rate curve on-line using a miss-rate monitoring tech-
nique. Therefore, a fully on-line cache partitioning method can be de-
veloped based on the model.

Only the cache partitioning problem has been studied in this paper.
However, as shown by the study of cache partitioning, our model can
be applied to any cache optimization problem that is related to the
problem of context switching. For example, it can be used to determine
the best combination of processes that can be run on each processor
of a multi-processor system. Also, the model is useful to identify areas
in which further research in improving cache performance would be
fruitful since it can easily provide the maximum improvement we can
expect in the area.

6 Acknowledgments

Funding for this work is provided in part by the Defense Advanced
Research Projects Agency under the Air Force Research Lab contract
F30602-99-2-0511, titled “Malleable Caches for Data-Intensive Com-
puting”. Thanks also to E. Peserico, D. Chiou, and D. Chen for their
comments on the cache model.

References

1. Anant Agarwal, Mark Horowitz, and John Hennessy. An analytical cache
model. ACM Transactions on Computer Systems, 7(2), May 1989.

2. Compaq. Compaq alphastation family.
3. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

Wiley, John & Sons, Incorporated, March 1991.
4. Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L.

Stamm, and Dean M. Tullsen. Simultaneous multithreading: A platform
for next-generation processors. IEEE Micro, 17(5), 1997.

5. Catherine Freeburn. The hewlett packard PA-RISC 8500 processor.
Technical report, Hewlett Packard Laboratories, October 1998.

Analytical Cache Models 427

6. Antonio González, Mateo Valero, Nigel Topham, and Joan M. Parcerisa.
Eliminating cache conflict misses through XOR-based placement func-
tions. In the 1997 international conference on Supercomputing, 1997.

7. John L. Henning. SPEC CPU2000: Measuring CPU performance in the
new millennium. IEEE Computer, July 2000.

8. N. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In the 17th Annual
International Symposium on Computer Architecture, 1990.

9. David B. Kirk. Process dependent static cache partitioning for real-time
systems. In Real-Time Systems Symposium, 1988.

10. Hantak Kwak, Ben Lee, Ali R. Hurson, Suk-Han Yoon, and Woo-Jong
Hahn. Effects of multithreading on cache performance. IEEE Transac-
tions on Computers, 48(2), February 1999.

11. Jack L. Lo, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm, Dean M.
Tullsen, and S. J. Eggers. Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithreading. ACM
Transactions on Computer Systems, 15, 1997.

12. Peter Magnusson and Bengt Werner. Efficient memory simulation in
SimICS. In 28th Annual Simulation Symposium, 1995.

13. MIPS Technologies, Inc. MIPS R10000 Microprocessor User’s Manual,
1996.

14. Jeffrey C. Mogul and Anita Borg. The effect of context switches on cache
performance. In the fourth international conference on Architectural sup-
port for programming languages and operating systems, 1991.

15. José Muoz. Data-Intensive Systems Benchmark Suite Analysis and Spec-
ification. http://www.aaec.com/projectweb/dis, June 1999.

16. Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop
Gupta. Complete computer system simulation: The SimOS approach.
IEEE Parallel & Distributed Technology, 1995.

17. Mark S. Squillante and Edward D. Lazowska. Using processor-cache
affinity information in shared-momory multiprocessor scheduling. IEEE
Transactions on Parallel and Distributed Systems, 4(2), February 1993.

18. Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning
of cache memory. IEEE Transactions on Computers, 41(9), September
1992.

19. Gookwon Edward Suh and Larry Rudolph. Set-associative cache mod-
els for time-shared systems. Technical Report CSG Memo 433, Mas-
sachusetts Institute of Technology, 2001.

20. Dominique Thiébaut and Harold S. Stone. Footprints in the cache. ACM
Transactions on Computer Systems, 5(4), November 1987.

21. Dominique Thiébaut, Harold S. Stone, and Joel L. Wolf. Improving
disk cache hit-ratios through cache partitioning. IEEE Transactions on
Computers, 41(6), June 1992.

22. Nigel Topham and Antonio González. Randomized cache placement for
eleminating conflicts. IEEE Transactions on Computers, 48(2), February
1999.

428 G. Edward Suh, Srinivas Devadas and Larry Rudolph

23. Josep Torrellas, Andrew Tucker, and Anoop Gupta. Benefits of cache-
affinity scheduling in shared-memory multiprocessors: A summary. In
the 1993 ACM SIGMETRICS conference on Measurement and modeling
of computer systems, 1993.

24. Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd Annual Inter-
national Symposium on Computer Architecture, 1995.

25. Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simula-
tion: A survey. ACM Computing Surveys, 29(2), June 1997.

26. Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Per-
formance analysis using the MIPS R1000. In Supercomputing’96, 1996.

