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Abstract. We develop a new metric for job scheduling that in-
cludes the effects of memory contention amongst simultaneously-
executing jobs that share a given level of memory. Rather than
assuming each job or process has a fixed, static memory re-
quirement, we consider a general scenario wherein a process’
performance monotonically increases as a function of allocated
memory, as defined by a miss-rate versus memory size curve.
Given a schedule of jobs in a shared-memory multiprocessor
(SMP), and an isolated miss-rate versus memory size curve for
each job, we use an analytical memory model to estimate the
overall memory miss-rate for the schedule. This, in turn, can
be used to estimate overall performance. We develop a heuris-
tic algorithm to find a good schedule of jobs on a SMP that
minimizes memory contention, thereby improving memory and
overall performance.

1 Introduction

High performance computing is more than just raw FLOPS; it is also
about managing the memory among parallel threads so as to keep the
operands flowing into the arithmetic units. Hence, some high perfor-
mance job schedulers are beginning to consider the memory require-
ments of a job in addition to the traditional CPU requirements. But
memory is spread across a hierarchy, it is difficult to know the real re-
quirements of each job, and underallocation of space to one job can ad-
versely affect the performance of other jobs. Allocating a fixed amount
of space to a job regardless of the needs of the other concurrently ex-
ecuting jobs can result in suboptimal performance. We argue that a
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scheduler must compare the marginal utility or marginal gain accrued
by a job to the gains accrued by other jobs, when giving more memory
to a job.

Shared-memory multiprocessors (SMPs) [2, 8, 9], have become a ba-
sic building block for modern high performance computer systems, and
in the near future, other layers of the memory hierarchy will be shared
as well, with multiple processors (MPC) on a chip [3] and simultaneous
multithreading (SMT) systems [13, 10, 4]. So, in nearly all high per-
formance systems, there will be either threads, processes, or jobs that
execute simultaneously and share parts of the memory system. But how
many jobs should execute simultaneously? There is no magic number,
rather it depends on the individual memory requirements of the jobs.
Sometimes, it is even beneficial to let some processors remain idle so
as to improve the overall performance.

Although most research on job scheduling for high performance par-
allel processing is concerned only with the allocation of processors in
order to maximize processor utilization [5, 6], scheduling with memory
considerations is not new. Parsons [11] studied bounds on the achievable
system throughput considering memory demand of parallel jobs. Batat
[1] improved gang scheduling by imposing admission control based on
the memory requirement of a new job and the available memory of
a system. The modified gang scheduler estimates the memory require-
ment for each job, and assigns a job into a time slice only if the memory
is large enough for all jobs in the time slice. Although these works have
pointed out the importance of considering memory in job scheduling
problems, they did not provide a way of scheduling jobs to optimize
the memory performance.

Rather than assuming each job or process has a fixed, static memory
requirement, this paper considers a general scenario wherein a process’
performance monotonically increases as a function of allocated mem-
ory. The characteristics of each process’ memory usage are given by the
miss-rate as a function of memory size when the process is executed
in isolation (which can be easily obtained either in an on-line or off-
line manner). With this information, an analytical memory model for
time-shared systems [12] can be used to estimate the memory miss-rate
for each job and the processor idle time for a given schedule. There-
fore, our approach provides a good memory performance metric for job
scheduling problems.

The new approach based on the miss-rate curves and the analyti-
cal model can be used to evaluate a schedule including the effects of
memory performance. If multiple processors share the same memory,
our method can effectively schedule a given set of processes to minimize
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memory contention. Finally, the length of time slices can be determined
for time-shared systems so as to minimize pollution effects.

The paper is organized as follows. In Section 2, we present a case
study of scheduling SPEC CPU2000 benchmarks, which demonstrates
the importance and challenges of job scheduling with memory consid-
erations. Section 3 motivates isolated miss-rate curves, and describes
how an analytical memory model evaluates the effect of a given schedule
on the memory performance. Section 4 discusses new challenges that
memory considerations impose on parallel job scheduling, and suggests
possible solutions using the miss-rate curves and the model. Finally,
Section 5 concludes the paper.

2 Case Study: SPEC CPU2000

This section discusses the results of trace-driven simulations that es-
timate the miss-rate of main memory when six jobs execute on a shared-
memory multiprocessor system with three processors. The results demon-
strate the importance of memory-aware scheduling and the problem of
naive approaches based on footprint sizes.

Name Description Footprint (MB)

bzip2 Compression 6.2

gcc C Programming Language Compiler 22.3

gzip Compression 76.2

mcf Image Combinatorial Optimization 9.9

vortex Object-oriented Database 83.0

vpr FPGA Circuit Placement and Routing 1.6

Table 1. The descriptions and Footprints of benchmarks used for the simu-
lations. All benchmarks are from SPEC CPU2000 [7] benchmark suite.

Six jobs, which have various footprint sizes, are selected from SPEC
CPU2000 benchmark suite [7] (See Table 1). Here, footprint size repre-
sents the memory size that a benchmark needs to achieve the minimum
possible miss-rate. Benchmarks in the SPEC CPU2000 suite are not
parallel jobs, however, the insights obtained from the experiments are
also valid for parallel processing of multi-threaded jobs since all threads
(or processes) from a job can be considered as one large process from
the main memory standpoint.
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Concurrent execution of six jobs by three processors requires time-
sharing. We assume that there are two time slices long enough to render
context switching overhead negligible. In the first time slice, three out
of the six jobs execute sharing the main memory and in the second time
slice the three remaining jobs execute. Processors are assumed to have
4-way 16-KB L1 instruction and data caches and a 8-way 256-KB L2
cache, and 4-KB pages are assumed for the main memory.

Memory Average of Worst Case Best Case
Size (MB) All Cases

8 Miss-Rate(%) 1.379 2.506 1.019
Schedule (ADE,BCF) (ACD,BEF)

16 Miss-Rate(%) 0.471 0.701 0.333
Schedule (ADE,BCF) (ADF,BCE)

32 Miss-Rate(%) 0.187 0.245 0.148
Schedule (ADE,BCF) (ACD,BEF)

64 Miss-Rate(%) 0.072 0.085 0.063
Schedule (ABF,CDE) (ACD,BEF)

128 Miss-Rate(%) 0.037 0.052 0.029
Schedule (ABF,CDE) (ACD,BEF)

256 Miss-Rate(%) 0.030 0.032 0.029
Schedule (ABF,CDE) (ACD,BEF)

Table 2. The miss-rates for various job schedules. A schedule is represented
by two sets of letters. Each set represents a time slice, and each letter repre-
sents a job: A-bzip2, B-gcc, C-gzip, D-mcf, E-vortex, F-vpr.

All possible schedules are simulated for various memory sizes. We
compare the average miss-rate of all possible schedules with the miss-
rates of the worst and the best schedule. The miss-rate only considers
accesses to main memory, not accesses that hit on either L1 or L2
caches. The simulation results are summarized in Table 2 and Figure 1.
In the table, a corresponding schedule for each case is also shown. In
the 128-MB and 256-MB cases, many schedules result in the same miss-
rate. A schedule is represented by two sets of letters. Each set represents
a time slice, and each letter represents a job: A-bzip2, B-gcc, C-gzip,
D-mcf, E-vortex, F-vpr. In the figure, the miss-rates are normalized
to the average miss-rate.
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Fig. 1. The comparison of miss-rates for various schedules: the worst case,
the best case, and the average of all possible schedules. The miss-rates are
normalized to the average miss-rate of all possible schedules for each memory
size. Notice that even when the memory is large enough to hold all the
footprints of the executing jobs, the set of jobs that execute together has an
effect on the miss-rate.

The results demonstrate that job scheduling can have significant
effects on the memory performance, and thus the overall system per-
formance. For 16-MB memory, the best case miss-rate is about 30%
better than the average case, and about 53% better than the worst case.
Given a very long page fault penalty, performance can be significantly
improved due to this large reduction in miss-rate. As the memory size
increases, scheduling becomes less important since the entire workload
fits into the memory. However, the smart schedule can still improve the
memory performance significantly even for the 128-MB case (over 20%
better than the average case, and 40% better than the worst case).

Memory traces used in this experiment have footprints smaller than
100 MB. As a result, scheduling of simultaneously executing processes
is relevant to the main memory performance only for the memory up to
256 MB. However, many parallel applications have very large footprints
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often larger than main memory. For these applications, the memory size
where scheduling matters should scale up.

An intuitive way of scheduling with memory considerations is to use
footprint sizes. Since the footprint size of each job indicates its memory
space needs, one can try to balance the total footprint size for each
time slice. It also seems to be reasonable to be conservative and keep
the total footprint size smaller than available physical memory. The
experimental results show that these naive approaches do not work.

Balancing the total footprint size for each time slice may not work
for memory smaller than the entire footprint. The footprint size of each
benchmark only provides the memory size that the benchmark needs to
achieve the best performance, however, it does not say anything about
having less memory space. For example, in our experiments, executing
gcc, gzip and vpr together and the others in the next time slice seems
to be reasonable since it balances the total footprint size for each time
slice. However, this schedule is actually the worst schedule for memory
smaller than 128-MB, and results in a miss-rate that is over 50% worse
than the optimal schedule.

If the replacement policy is not ideal, even being conservative and
having larger physical memory than the total footprint may not be
enough to guarantee the best memory performance. Smart scheduling
can still improve the miss-rate by about 10% over the worst case even
for 256-MB memory that is larger than the total footprint size of any
three jobs from Table 1. This happens because the LRU replacement
policy does not allocate the memory properly. (For a certain job, the
LRU policy may allocate memory larger than the footprint of the job).

3 New approach based on miss-rate curves

The previous section pointed out that the conventional scheduling ap-
proaches based on static footprints are very limited. This section pro-
poses a new approach based on the isolated miss-rate curve, mi(x).
After defining the isolated miss-rate curve, an analytical model is de-
veloped that incorporates the effect of time-sharing and memory con-
tention based on the miss-rate curves. Using these curves and the
model, we show how to evaluate a given schedule.

3.1 Miss-rate curves

The isolated miss-rate curve for process i, namely mi(x), is defined
as the miss-rate when process i is isolated without other competing
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processes using the memory of size x. Effectively, this miss-rate curve
represents the miss-rate when a process occupies only a part of the
entire memory.
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Fig. 2. (a) Miss-rate curve for process PA (gcc). (b) Miss-rate curve for pro-
cess PB (swim). (c) Miss-rate curve for process PC (bzip2). Clearly, process
PA’s miss-rate does not reduce very much after the point marked xA. Sim-
ilarly, for process PB after the point marked xB. If xA + xB is less than
the total memory size available, then it is likely that processes PA and PB

can both be run together, achieving good performance, especially if they are
restricted to occupy an appropriate portion of the cache. On the other hand,
process PC has a different type of miss-rate curve, and will likely not run
well with either PA or PB .

The advantage of having a miss-rate curve rather than static foot-
prints is clear for the problem of scheduling processes for shared-memory
systems. Consider the case of scheduling three processes, whose miss-
rate curves are shown in Figure 2, on a shared-memory system with
two processors. Which two processes should run together? This ques-
tion cannot be answered based on the static footprints since the memory
is smaller than the individual footprints. However, from the miss-rate
curves, it is clear that running both PA and PB simultaneously and PC

separately will result in a lower miss-rate than running PA or PB with
PC .
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3.2 Estimating the miss-rate curves

The miss-rate curves can be obtained either on-line or off-line. Here,
an on-line method to estimate a miss-rate curve mi(x) is described. We
use the LRU information of each page and count the number of hits
in the kth most recently used page for each process (counteri[k]). For
example, counteri[1] is the number of hits in the most recently used
page of process i, and counteri[2] is the number of hits in the second
most recently used page. If we count hits for one time slice, mj(x) and
counterj [k] have the following relation.

counteri[k] = (mi(k − 1) − mi(k)) · ri. (1)

where ri is the number of memory accesses for process i over one time
slice. Since mj(0) = 1, we can calculate the miss-rate curve recursively.

3.3 Modeling memory contention

Although isolated miss-rate curves provide much more information than
static footprints, the miss-rate curves alone are still not enough to pre-
dict the effects of memory contention under a non-ideal replacement
policy or under the effects of time-sharing. This subsection explains
how a previously developed analytical model can be extended to accu-
rately estimate the overall miss-rate incorporating both space-sharing
effects and time-sharing effects. First, the original uniprocessor model
of [12] is briefly summarized. Then, we discuss how this original model
can be applied to parallel jobs on shared-memory multiprocessor sys-
tems.

Uniprocessor model The cache model from [12] estimates the overall
miss-rate for a fully-associative cache when multiple processes time-
share the same cache (memory) on a uniprocessor system. There are
three inputs to the model: (1) the memory size (C) in terms of the
number of memory blocks (pages), (2) job sequences with the length
of each process’ time slice (Ti) in terms of the number of memory
references, and (3) the miss-rate curve for each process (mi(x)). The
model assumes that the least recently used (LRU) replacement policy
is used, and that there are no shared data structures among processes.

Let us consider a case when N processes execute with a given sched-
ule (sequences of processes) and fixed time quanta for each process
(Ti). First, the number of misses for each process’ time quantum is
estimated. Then, the overall miss-rate is obtained by combining the
number of misses for each process.
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Define the footprint of process i, xi(t), as the amount of process i’s
data in the memory at time t where time t is 0 at the beginning of the
process’ time quantum. Then, xi(t) is approximated by the following
recursive equation, once xi(0) is known 1;

xi(t + 1) = MIN [xi(t) + mi(xi(t)), C], (2)

where C is the size of memory in terms of the number of blocks.
The miss-rate curve, mi(x), can be considered as the probability to

miss when x valid blocks are in the memory. Therefore, the number of
misses that process i experiences over one time quantum is estimated
from the footprint of the process xi(t) as follows;

missi =
∫ Ti

0

mi(xi(t))dt. (3)

Once the number of misses for each process is estimated, the overall
miss-rate is straightforwardly calculated from those numbers.

miss-rateoverall =
∑N

i=1 missi∑N
i=1 Ti

(4)

Extension to multiprocessor cases The original model assumes
only one process executes at a time. Here, we describe how the original
model can be applied to multiprocessor systems where multiple pro-
cesses can execute simultaneously sharing the memory. Although the
model can be applied to more general cases, we consider the situation
where all processors context switch at the same time; more complicated
cases can be modeled in a similar manner.

No matter how many processes are executing simultaneously shar-
ing the memory, all processes in a time slice can be seen as one big
process from the standpoint of memory. Therefore, we take a two-step
approach to model shared-memory multiprocessor cases. First, define
a conceptual process for each time slice that includes memory accesses
from all processes in the time slice, which we call a combined process.
Then, the miss-rate for the combined process of each time slice is es-
timated using the original model. Finally, the uniprocessor model is
used again to incorporate the effects of time-sharing assuming only the
combined process executes for each time slice.
1 The estimation of xi(0) and more accurate xi(t) can be found in our pre-

vious work [12].
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What should be the miss-rate curve for the combined process of a
time slice? Since the original model for time-sharing needs isolated miss-
rate curves, the miss-rate curve of each time-slice s is defined as the
overall miss-rate of all processes in time slice s when they execute to-
gether without context switching on the memory of size x. We call
this miss-rate curve for a time slice as a combined miss-rate curve
mcombined,s(x). Next we explain how to obtain the combined miss-rate
curves.

The simultaneously executing processes within a time slice can be
modeled as time-shared processes with very short time quanta. There-
fore, the original model is used to obtain the combined miss-rate curves
by assuming the time quantum is refs,p/

∑P
i=1 refs,i for processor p in

time-slice s. refs,p is the number of memory accesses that processor
p makes over time slice s. The following paragraphs summarize this
derivation of the combined miss-rate curves. Here, we use ms,p to rep-
resent the isolated miss-rate curve for the process that executes on
processor p in time slice s.

Let xs,p(ks,p) be the number of memory blocks that processor p
brings into memory after ks,p memory references in time slice s. The
following equation estimates the value of xs,p(ks,p):

ks,p =
∫ xs,p(ks,p)

0

1
ms,p(x′)

dx′. (5)

Considering all P processors, the system reaches the steady-state after
Ks memory references where Ks satisfies the following equation.

P∑
p=1

xs,p(α(s, p) · Ks) = x. (6)

In the above equation, x is the number of memory blocks, and α(s, p) is
the length of a time slice for processor p, which is equal to refs,p/

∑P
i=1 refs,i.

In steady-state, the combined miss-rate curve is given by

mcombined,s(x) =
P∑

p=1

α(s, p) · ms,p(xp(α(s, p) · Ks)). (7)

Now we have the combined miss-rate curve for each time-slice. The
overall miss-rate is estimated by using the original model assuming
that only one process executes for a time slice whose miss-rate curve is
mcombined,s(x).
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Dealing with shared memory space The model described so far
assumes that there is no shared memory space among processes. How-
ever, processes from the same parallel job often communicate through
shared memory space. The analytical model can be modified to be used
in the case of parallel jobs synchronizing through shared memory space,
as described below.

The accesses to shared memory space can be excluded from the miss-
rate curve of each process, and considered as a separate process from the
viewpoint of memory. For example, if P processes are simultaneously
executing and share some memory space, the multiprocessor model
in the previous subsection can be used considering P + 1 conceptual
processes. The first P miss-rate curves are from the accesses of the
original P processes excluding the accesses to the shared memory space,
and the (P + 1)th miss-rate curve is from the accesses to the shared
memory space. Since the P +1 conceptual processes do not have shared
memory space, the original model can be applied.

3.4 Evaluating a schedule

A poor schedule has lots of idle processors, and a schedule can be better
evaluated in terms of a processor idle time rather than a miss-rate. A
processor is idle for a time slice if no job is assigned to it for that time
slice or it is idle if it is waiting for the data to be brought into the
memory due to a “miss” or page fault. Although modern superscalar
processors can tolerate some cache misses, it is reasonable to assume
that a processor stalls and therefore idles on every page fault.

Let the total processor idle time for a schedule be as follows:

Idle(%) = {
S∑

s=1

N(s)∑
p=1

miss(p, s) · l

+
S∑

s=1

(P − N(s) · T (s)}/{
S∑

s=1

T (s)}

= {(total misses) · l

+
S∑

s=1

(P − N(s)) · T (s)}/{
S∑

s=1

T (s)}

(8)

where miss(p, s) is the number of misses on processor p for time slice
s, l is the memory latency, T (s) is the length of time slice s, and N(s)
is the number of processes scheduled in time slice s.
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In Equation 8, the first term represents the processor idle time due
to page faults and the second term represents the idle time due to
processors with no job scheduled on. Since the number of idle processors
is given with a schedule, we can evaluate a given schedule once we know
the total number of misses, which can be estimated from the model in
the previous subsection.

4 The effects of memory performance on
scheduling

This section discusses new considerations that memory performance
imposes on parallel job scheduling and their solutions based on the
miss-rate curves and the analytical model. First, we discuss schedul-
ing problems to optimize memory performance for the space-shared
systems. Then, scheduling considerations for time-sharing the memory
are studied.

4.1 Processes to space-share memory

In shared-memory multiprocessor systems, processes in the same time
slice space-share the memory since they access the memory simulta-
neously. In this case, the amount of memory space allocated to each
process is determined by the other processes that are scheduled in the
same time slice. Therefore, the performance (execution time) of each
process can be significantly affected by which processes are scheduled
to space-share the memory (see Section 2). The main consideration of
memory-aware schedulers in space-shared systems is to group jobs in
a time slice properly so as to minimize the performance degradation
caused by the memory contention.

A schedule can be evaluated using the isolated miss-rate curves
and the analytical model. Effectively, the model provides a new cost
function of memory performance, and any scheduler can be modified
to incorporate memory considerations by adding this new cost func-
tion from the model. As an example, here we show how a simple gang
scheduler can be modified to consider the memory performance. The
modification of more complicated schedulers is left for future studies.

Consider the problem of scheduling J jobs on a Ptot processor sys-
tem, which consists of SMPs with Pnode processors. Gang scheduling
is assumed, i.e., all processes from one job are scheduled in the same
time slice, and context switch at the end of the time slice. All Ptot pro-
cessors are assumed to context switch at the same time. A processor
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does not context switch even on a page fault, but only when the time
slice expires. The problem is to determine the number of time slices
S to schedule all jobs, and assign each job to a time slice so that the
processor idle time is minimized. Also, each process should be mapped
to a SMP node considering memory contention.

The most obvious way of scheduling with memory consideration is
to use the analytical model detailed in Section 3. If the isolated miss-
rate curves are obtained either on-line or off-line, the model can easily
compare different schedules. The problem is to search for the optimal
schedule with the given evaluation method. For a small number of jobs,
an exhaustive search can be performed to find the best schedule. As
the number of jobs increases, however, the number of possible sched-
ules increases exponentially, which makes exhaustive search impracti-
cal. Unfortunately, there appears to be no polynomial-time algorithm
that guarantees an optimal solution.

A number of search algorithms can be developed to find a sub-
optimal schedule in polynomial time using the analytical model di-
rectly. Alternately, we can just utilize the miss-rate curves and incor-
porate better memory considerations into existing schedulers. Although
the analytical model is essential to accurately compare different sched-
ules and to find the best schedule, we found that a heuristic algorithm
based only on the miss-rate curves is often good enough for optimizing
memory performance for space-sharing cases. The following subsection
presents the heuristic search algorithm.

A heuristic algorithm For most applications, the miss rate curve
as a function of memory size has one prominent knee (See Figure 2).
That is, the miss rate quickly drops and then levels off. As a rough
approximation, this knee is considered as a relative footprint of the
process. Then, processes are scheduled to balance the total size of rela-
tive footprints for each node. Although this algorithm cannot consider
the complicated effects of memory contention, it is much cheaper than
computing the model and often results in a reasonable schedule.

The algorithm works in three steps; First, the relative footprints are
determined considering the number of processes and the size of memory.
At the same time, we decide the number of time slices S. Then, jobs
are assigned to a time slice to balance the total relative footprints for
each time slice. Finally, processes are assigned to a node to balance the
relative footprints for each node.

In the explanation of the algorithm, we make use of the following
notations:
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– Ptot: the total number of processors in the entire system.
– Pnode: the number of processors in a node.
– J : the total number of jobs to be scheduled.
– Q(j): the number of processors that job j requires.
– mj : the miss-rate curve for job j.
– rj : the number of memory references of job j for one time slice.
– S: the number of time slices to schedule all jobs.

The relative footprint for job j, fp(j) is defined as the number of
memory blocks allocated to the job when the memory with C · S ·
P/Pnode blocks is partitioned among all jobs so that the marginal gain
for all jobs is the same. Effectively, the relative footprint of a job rep-
resents the optimal amount of memory space for that job when all jobs
execute simultaneously sharing the entire memory resource over S time
slices.

To compute the relative footprints, the number of time slices S
should also be decided. First, make an initial, optimistic guess;

S = �∑J
j=1 Q(j)/P �.

Then, compute the relative footprints for that S and approximate
the processor idle time using Equation 8 assuming that each job ex-
periences mj(fp(j)) · rj misses over a time slice. Finally, increase the
number of time slices and try again until the resultant idle time in-
creases. For a given S, the following greedy algorithm determines the
relative footprints.

1. Compute the marginal gain gj(x) = (mj(x − 1)− mj(x)) · rj . This
function represents the number of additional hits for the job j, when
the allocated memory blocks increases from x − 1 to x.

2. Initialize fp(1) = fp(2) = ... = fp(J) = 0.
3. Assign a memory block to the job that has the maximum marginal

gain. For each job, compare the marginal gain gj(fp(j) + 1) and
find the job that has the maximum marginal gain jmax. Increase
the allocation for the job fpjmax by one.

4. Repeat step 3 until all memory blocks are assigned.

Once the relative footprints are computed, assigning jobs to time
slices is straightforward. In a greedy manner, the unscheduled job with
the largest relative footprint is assigned to a time slice with the smallest
total footprint at the time. After assigning jobs to time slices, we assume
that each process from job j has the relative footprint of fp(j)/Q(j).
Then, assign processes to nodes in the same manner.

Notice that the analytic model is not used by this algorithm. How-
ever, the model is needed to validate the heuristic. For jobs that have
significantly different miss-rate curves, new heuristics are needed and
the model will be required to validate those as well.
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Fig. 3. The performance of the model-based scheduling algorithm and the
heuristic scheduling algorithm. The miss-rates are normalized to the average
miss-rate of all possible schedules for each memory size.

Experimental validation The model-based algorithm and the heuris-
tic algorithm are applied to solve a scheduling problem in Section 2.
The problem is to schedule six SPEC CPU2000 benchmarks using three
processors and two time slices. Figure 3 compares the miss-rates of the
model-based algorithm and the heuristic algorithm with miss-rates of
the best schedule and the worst schedule, which are already shown
in Section 2. The best schedule and the worst schedule are found by
simulating all possible schedules and comparing their miss-rates. For
the model-based algorithm, the average isolated miss-rate curves over
the entire execution are obtained by trace-driven simulations. Then,
the schedule is found by an exhaustive search based on the analytical
model. The heuristic algorithm uses the same average isolated miss-rate
curves, but decides the schedule using the algorithm in the previous
subsection. Once the schedules are decided by either the model-based
algorithm or the heuristic algorithm, the actual miss-rates for those
schedules are obtained by trace-driven simulations.

The results demonstrate that our scheduling algorithms can effec-
tively find a good schedule. In fact, the model-based algorithm found



460 G. Edward Suh, Larry Rudolph and Srinivas Devadas

the best schedule except for the 16-MB and 64-MB cases. Even for
these cases, the model-based schedule found by the algorithm shows a
miss-rate very close to the best case.

The heuristic algorithm also results in good schedules in most cases
with significantly less computation than the model-based algorithm.
However, the heuristic algorithm shows worse performance than the
model-based algorithm because it cannot accurately estimate the effects
of the LRU replacement policy.

4.2 The length of time slices

When available processors are not enough to execute all jobs in par-
allel, processors should be time-shared amongst jobs. In conventional
batch processing, each job runs to completion before giving up the pro-
cessor(s). However, this approach may block short jobs from executing
and significantly degrade the response time. Batch processing may also
cause significant processor fragmentation. Therefore, many modern job
scheduling methods such as gang scheduling use time slices shorter than
the entire execution time to share processors.

Unfortunately, shorter time slices often degrade the memory per-
formance since each job should reload the evicted data every time it
restarts the execution. To amortize this context switching cost and
achieve reasonable performance in time-shared systems, schedulers should
ensure that time slices are long enough to reload data and reuse them.
Time slices should be long to reduce the context switch overhead, but
short to improve response time and processor fragmentation.

The proper length of time slices still remains as a question. Conven-
tionally, the length of time slices are determined empirically. However,
the proper length of time slices depends on the characteristics of con-
current jobs and changes as jobs and/or memory configuration vary.
For example, a certain length of time slice may be long enough for jobs
with a small working set, but not long enough for larger jobs. Since
the proposed analytical model can predict the miss-rate for a given
length of time slices, it can be used to determine the proper length
once another cost function such as response time or fragmentation is
given.

Figure 4 shows the overall miss-rate as a function of the length of
time slices when three SPEC CPU2000 benchmarks, gzip, vortex, and
vpr, are concurrently executing with a round-robin schedule. The solid
line represents the simulation results, and the dashed line represents
the miss-rates estimated by the model. The figure shows a very inter-
esting fact that a certain range of time slices can be very problematic
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Fig. 4. The overall miss-rate when three processes (gzip, vortex, vpr) are
sharing the memory (64 MB). The solid line represents the simulation results,
and the dashed line represents the miss-rates estimated by the analytical
model. The length of a time quantum is assumed to be the same for all three
processes.

for memory performance. Conventional wisdom assumes that the miss-
rate will monotonically decrease as the length of time slices increase.
However, the miss-rate may increase for some cases since more data of
processes that will run next are evicted as the length of time slices in-
crease. The problem occurs when a time slice is long enough to pollute
the memory but not long enough to compensate for the misses caused
by context switches.

It is clear that time slices should always be long enough to avoid the
problematic bump. Fortunately, the analytical model can estimate the
miss-rate very close to the simulation results. Therefore, we can easily
evaluate time slices and choose ones that are long enough.

5 Conclusion

Modern multiprocessor systems commonly share the same physical
memory at some levels of memory hierarchy. Sharing memory provides
fast synchronization and communication amongst processors. Sharing
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memory also enables flexible management of the memory. However,
it is clear that sharing memory can exacerbate the memory latency
problem due to conflicts amongst processors. Currently, users of high
performance computing systems prefer to “throw out the baby with
the bathwater” and fore-go virtual memory and sharing of memory
resources. We believe such extreme measures are not needed. Memory-
aware scheduling can solve the problem.

This paper has studied the effects of the memory contention amongst
processors that share the same memory on job scheduling. The case
study of SPEC CPU2000 benchmarks has shown that sharing the mem-
ory can significantly degrade the performance unless the memory is
large enough to hold the entire working set of all processes. Further,
memory performance is heavily dependent on job scheduling. We have
shown that the best schedule that minimizes memory contention cannot
be found based on conventional footprints.

Miss-rate curves and an analytical model has been proposed as a
new method to incorporate the effects of memory contention in job
scheduling. The analytical model accurately estimates the overall miss-
rate including both space-sharing effects and time-sharing effects from
the miss-rate curves. Therefore, they provide a new cost function of
memory performance, and any scheduler can be modified to incorporate
memory considerations by adding this new cost function.

As an example, a simple gang scheduler is modified to optimize the
memory performance. Applying theory to practice is not straightfor-
ward: First, some mechanism is needed to estimate the miss-rate char-
acteristics at run-time since it is unreasonable to expect the user to
provide an accurate function. Second, a heuristic algorithm is required
to find a solution in polynomial time. Simulation results have validated
our approach that can effectively find a good schedule that results in
low miss-rates. Both a model-based algorithm and a heuristic algo-
rithm were simulated and evaluated. Although the exhaustive search
algorithm based on the model showed slightly better performance than
the heuristic algorithm, the difference is minimal. Therefore, we believe
that anything more than an inexpensive heuristic is overkill.

The paper is mainly focused on optimizing the performance for si-
multaneously executing processes. However, the approach based on the
miss-rate curves and the analytical model is also applicable to schedul-
ing problems related to time-sharing. In time-shared systems, there is
a tradeoff in the length of time slices. Our model provides the metric of
memory performance for this tradeoff. Especially, it is shown that a cer-
tain range of time slices can be very harmful for memory performance
and this range can be avoided using the model.
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The development of more realistic memory-aware schedulers is left
for future studies. Practical schedulers have many considerations other
than memory performance, thus it is more complicated to incorporate
memory considerations into these schedulers as compared to a simple
gang scheduler. However, we believe that the miss-rate curves and the
analytical model provide a good metric for memory performance and
existing schedulers can be modified to optimize the memory perfor-
mance utilizing the given degrees of freedom.
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