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Abstract. Visibility constraints can aid the segmentation of
foreground objects observed with multiple range images. In our
approach, points are defined as foreground if they can be deter-
mined to occlude some empty space in the scene. We present
an efficient algorithm to estimate foreground points in each
range view using explicit epipolar search. In cases where the
background pattern is stationary, we show how visibility con-
straints from other views can generate virtual background val-
ues at points with no valid depth in the primary view. We
demonstrate the performance of both algorithms for detecting
people in indoor office environments.

1 Introduction

Object segmentation is an important preliminary step for many high-
level vision tasks, including person detection and tracking. State-of-
the-art systems [14, 2, 1, 5] use foreground /background classification fol-
lowed by pixel clustering and analysis. These systems commonly main-
tain a background model and label all pixels that differ significantly
from this model as foreground.

Ideally, these systems should be robust to rapid illumination varia-
tion, such as from outdoor weather or indoor video projection systems.
Several segmentation methods have been proposed which use back-
ground models based on color/intensity [14,13,12], stereo range [7,
1] or both [6]. Generally, non-adaptive color-based models suffer from
varying illumination. Adaptive color models [12] are more stable un-
der lighting changes, but can erroneously incorporate objects that stop
moving into the background model. Range-based background models
can be illumination invariant, but are usually sparse. To avoid ambi-
guity at undefined background values (and the resulting illumination
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dependence [3]), they have been either used in conjunction with color
models [6], or are built using observations from widely varying illumi-
nation and imaging conditions [3]. In this paper we show how visibility
constraints from other range images can aid segmentation.

Our approach to foreground segmentation is to combine free space
constraints found from multiple stereo range views. We decide if a given
pixel is “foreground” by checking whether there is any free space behind
it, as seen from other range views. We scan the set of epipolar lines in
the other views corresponding to the given pixel, and test whether
there are range points on the epipolar lines which indicate empty space
behind the given point.

This is a similar computation to algorithms proposed for the ren-
dering of image-based visual hulls [9]. The key difference is that our
method takes as input unsegmented noisy range data and evaluates 3-
D visibility per ray, while the visual hull method presumes segmented
color images as input and simply identifies non-empty pixels along the
epipolar lines in other views. Also related are space carving and col-
oring methods [8,11], which split the space into vozels and use color
consistency across multiple cameras to locate opaque voxels and to de-
tect free space. These methods are quite general, and work with an
arbitrary set of monocular views. They also require the construction of
a volumetric representation of the scene for reconstruction or segmenta-
tion. We are interested in algorithms that perform segmentation solely
in the image domain, without computing a volumetric reconstruction.
We believe ours is the first method for range image segmentation using
image-based (non-voxel) freespace computation.

In this paper we develop two complimentary segmentation algo-
rithms that use visibility constraints. The first is an instantaneous
foreground detection algorithm, which is independent of previous time
points and does not presume scene or illumination constancy. The sec-
ond assumes a stationary scene and a background range model per
view, and generates virtual background values at pixels which would
otherwise have had insufficient contrast to have valid range.

In the next section we describe our method for using “complimen-
tary” camera(s) to determine whether a single 3-D point, visible by a
“primary” camera, occludes any free space. We describe how to cluster
such points, and to determine whether two clusters provably belong to
separate objects. We then propose a method for creating dense virtual
backgrounds for stationary scenes. Finally, we demonstrate the results
using our algorithm tracking people in an indoor office environment.
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2 Foreground segmentation

We wish to segment objects that are not attached to any “background”
surface other than the floor, by detecting pixels that occlude some
empty space.

When a 3D point P is imaged by a range sensing device (e.g. stereo
camera) C! (Figure 1), we know that there exists a nontransparent
material at that point, and that all points between it and the camera’s
center of projection are transparent. But C! is unable to provide any
information about what lies behind P on the same projection ray. On
the other hand, we can use the observation B of the appropriately
located range sensor C? to discover that P, which is occluded by P in
CV’s view is transparent.

An ideal (rectified) stereo rig may be completely described by the
baseline B, focal length f and the image coordinates of the principal
point (¢, ¢y ). The following equations describe a relation between point
(z,y) in the disparity image Ip and the corresponding 3-D location
(X,Y,2).
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As has been shown in [4], the disparity space is a projective space,
and we can write the transformation from disparity to camera-centered
FEuclidean projective coordinates as
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In the rest of the paper we refer to (z y d)” and (X Y 2)T
(zy dw)? and (X Y Z W)T) as disparity and Euclidean (projec-
tive) spaces, and denote them D and E respectively.
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Fig. 1. Visibility-based segmentation. Observation of B in C? allows us to
infer that P in C* is foreground. Point B visible in I? (projecting to C? dis-
parity point E) lies behind point P relative to C2, and thus provides evidence
for existence of free space behind P (projecting to b) by demonstrating that
P is transparent. Line { contains the oversilhouette for the part of an object
lying along ray [C*, P)

The general setup of the imaging system assumed in our algorithm
is presented in the Figure 1. There are two calibrated stereo rigs, C!
(“primary”) and C? (“complimentary”), with disparity-to-Euclidean
camera coordinate transforms TE, = Ta(f!, B, cl, 1) and TE, =
Tc(f? B? c2,c}), image planes I' and I?, and disparity images I, and
I% respectively. The Euclidean coordinate transform between views is

E2
TE].

2.1 Pixel-level segmentation

The first stage of our foreground segmentation algorithm applied to
the disparity image of the camera C? is to determine which 3-D points
visible by C* occlude some free space. That is, for each disparity point
P = (px py I(pz,py) 1), where I (ps, py) is valid, we check whether
there is some free space behind the point P,

X

Y i
7 | =P=~Tgp (4)
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where =~ denotes equality up to a scale factor.

We say that point P is behind point P relative to rig C?, if P lies
on the optical ray [C!, P), and |P — Ci| > |P — Cl|.

Let point P be behind P relative to camera C*. We project P into
D7 i # j to obtain point b, such that

8

S o S
<

=b~ (TE) 'TEP (5)
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The points (b,, Z_)y), corresponding to all possible Ps, form a ray of the
line epipolar to (py,py) in I/ (passing through projection of the Ct to
I’ and b).

If the disparity value I% (b, b,) corresponding to any of such bs is
valid and is smaller than by (i.e. some point B behind P relative to
camera C7 is visible by C7), then point P is transparent, and may be
assumed to belong to free space. When we can find cases where

1% (ba, by) < ba (6)

we consider that point to be evidence for P (correspondingly p) be-
longing to foreground.

In the current implementation of the algorithm, we use the number
of found evidence pixels as a measure of certainty that point p belongs
to foreground. If more than one “complimentary” camera is available,
then the results from each of them may be combined to provide more
robust output. We compute a map of the number of observed occluded
free-space points:

o) — 1 I} (b, by) is valid and A7, (bs, by) < by
10 otherwise

OFs(p)= 3 0(b)
b,
for all P

Where the factor A > 1 is introduced to deal with noise inherent
in disparity computation. Since we expect the stereo-based range to be
less robust for locations that are far from the camera, we can classify
p as foreground if OFS(p) > Tors(pa), where Tors(d) ~ 1/d.
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Fig. 2. Segmenting multiple objects. The silhouettes S* and S? of objects
O' and O? are adjacent in I', but the I? oversilhouettes, OS' and OS?,
which are computed from S' and S? (and the first freespace points found
behind them) do not overlap, so we may conclude that O! and O? are indeed
separate objects.

2.2 Range cluster generation

The method described in the previous section provides us with a mea-
sure of how much free space is occluded by each pixel in a given view.
We use this information to estimate the extent and connectivity of fore-
ground regions in each view, and then link regions across views based
on their projected overlap. Individual pixels are first clustered in each
view, and we then determine whether two clusters belong to separate
objects (Figure 2).

A naive approach would be to cluster the points based on proxim-
ity in either disparity or Euclidean space, and assume that each such
cluster corresponds to a separate object. Such assumptions are correct
in cases such as one in Figure 3(a), but lead to oversegmentation in the
example in Figure 3(b), where components S* and S? actually corre-
spond to parts of the same object. To resolve this ambiguity, we use
the visibility information computed for each pixel (Section 2.1).

In Figure 2 we cannot separate O' and O? using only information
from I' (S! and S?). If the actual silhouettes of the objects in the
second image were available, we could see that in fact they are non-
overlapping, and thus objects are unconnected. In practice we do not
have a set of complete silhouettes when range data is sparse. Instead,
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we compute an approximation of the silhouette in I? using the free
space visibility constraints found for I'. We define an “oversilhouette”
to be the projection into I? of 3-D line segments formed by observed
points P from I' and the first confirmed freespace point they occlude.
If such “oversilhouettes” of two components do not overlap in I2, then
we conclude these components belong to different objects (Figure 2).
If the components’ “oversilhouettes” overlap, we assume that com-
ponents correspond to parts of the same object (Figure 3(b)). This
can lead to undersegmentation (e.g. Figure 3(c)) if there are insuffi-
cient views to observe the segmentation between disjoint objects. With
additional cameras this could be resolved as shown in Figure 3(d).

3 Virtual background generation

While the algorithm described in the previous section is capable of
semi real-time performance (2fps on full resolution images) on current
hardware, our tracking applications require much faster segmentation
algorithms. The common range background subtraction algorithms pro-
vide high-speed performance, but are unreliable in the absence of the
dense range data [3, 1]. While some improvement may be obtained using
statistical training, the range images obtained in the indoor environ-
ment would generally be sparse (Figures 4(d), 5(d)). In this section we
describe a method for generating dense virtual background images.

When the common range background subtraction methods are used,
each pixel in the “background” image represents an upper limit on
the depth (lower limit on the disparity) of free space visible along the
corresponding optical ray when no foreground objects are present. Such
upper limit may be obtained by, for example, taking the minimum of
the observed valid disparity values at the pixel over time [3].

If no range data is available at the point, we can estimate this limit
from visibility constraints obtained from “complimentary” cameras. For
each point in I* with invalid range we search the corresponding optical
ray to detect all free space points along it that are visible by other
cameras C7s, and select the one with the greatest depth as the virtual
background.

In order to simplify the algorithm we inverse the order of computa-
tion. Instead of searching along the optical rays of C*, we compute all
free space points visible by C7, i # j, using the computation described
in the next section.
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Fig. 3. Connected components configurations. (a) the components S*, and
52 belong to separate objects, as the oversilhouettes computed from them in
I? do not overlap. (b) the components belong to the same object. (c) The
algorithm undersegments the scene, assuming that S* and S? belong to the
same object, since their “oversilhouettes” overlap in I%, but the same scene
may be correctly segmented (d) if an extra view (I%) is available.
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For each valid range point p = (p, py I}, (ps, py) 1)T, all points on
the optical ray between P ~ ngjp and CJ are transparent and may
be assumed to belong to free space. Thus any point P € (P, CJ) is a
candidate virtual background for the corresponding point in I*, (bs, by),
such that

8

B~ (TE)'TEP )

el =l Kl
=SS

_ After a set of candidates for a single (discrete) image location ({b; =
(by by bg;, 1)T'}) is computed, we select

v = min Edi (9)

as the virtual background value at the location (b, by).

If both virtual and statistically trained background images are avail-
able, we may combine them to increase robustness by using data from
statistically trained background when it is available (as it represents
the true limit), and using virtual background data otherwise (Figure

7(a-f)).

4 Experimental results

The foreground segmentation algorithm as implemented currently con-
sists of several parts. The first part performs per-pixel computation
described in Section 2.1 with A = 1.05. We then cluster the pixels
using techniques from Section 2.2, and finally pass the connected com-
ponents through a size filter (accepting components greater than 1% of
the image). The algorithm, running on 700MHz Pentium III, achieved
the performance of 2 frames per second on the full resolution images.
To test our algorithms we used an installation with two Point Grey
Digiclops cameras [10]. One camera used 6mm lenses, and another had
3.8mm lenses (wide-angle) (Figures 4 and 5), with approximately per-
pendicular viewing directions. The cameras were calibrated offline. We
used the Triclops SDK [10] to produce rectified reference and disparity
images. High surface and texture validation thresholds were specified to
produce much more reliable (although more sparse) disparity output.
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Fig. 4. Intensity and disparity pairs obtained from camera C*. (a, d) — empty
room. (b, €) — empty room under different lighting conditions. (c, f) room
with two people. The pixels with invalid disparity are shown in white.

(d) (e) ()

Fig. 5. Intensity and disparity pairs obtained from camera C2. (a, d) — empty
room. (b, e) — empty room under different lighting conditions. (c, f) room
with two people. The pixels with invalid disparity are shown in white.
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Fig. 6. Foreground detection results. (a, d) Non-conservative disparity back-
ground subtraction result for the views of the empty room under different il-
lumination. This approach detects many false positives, when new valid range
data becomes available in the background regions as illumination changes.
(b, e) Conservative disparity background subtraction result between views
of empty room and room with two people. This approach never detects fore-
ground points when they appear in parts of the model with invalid range
data. (c, f) Results of applying foreground segmentation algorithm described
in this paper. Note that only instantaneous range information is used (Fig-
ures 4(f) and 5(f). The connected components are shown in different colors.

(d) (e) ()

Fig. 7. Results of applying virtual backgrounds algorithm. The background
disparity images from Figures 4(d) and 5(d) were used to generate virtual
backgrounds (a) and (d). (b) and (e) are the background images obtained by
combination of direct observations and virtual backgrounds.The (unfiltered)
results of applying conservative background subtraction to images 4(f) and
5(f) are shown in (c) and (f) respectively. Compare the results from our fore-
ground segmentation algorithm (Figure 6(c, f)), and conservative background
subtraction results using background model obtained via direct observations
(Figure 6(b, e)) and combined direct and virtual observations (e, f).
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In Figures 6(a, d) we show the results of nonconservative back-
ground subtraction (i.e. labeling new pixel as foreground if a valid range
was detected where the background model is invalid) between range
views of the same scene under different lighting conditions. Figures
6(b, e) show the results of conservative background subtraction (i.e.
labeling new pixel as foreground only if background model contained
valid value different from the new one) when trying to segment two peo-
ple in the room. As can be seen neither method produces acceptable
results under the conditions we expect the segmentation algorithm to
handle. Nonconservative background subtraction produces large num-
ber of false positives when illumination changes, and contrast (and thus
valid range data) become available on previously uniform background
regions. A conservative approach, on the other hand, never detects fore-
ground objects where no valid range data is available in the background
model.

Figures 6(c, f) demonstrate the results of applying our foreground
segmentation algorithm to the same data as in figures 6(b, e). Note
that the algorithm was able to correctly segment people where no back-
ground range data was available (cf. Figures 6(a) and 6(c)). Classifying
parts of the table as foreground is, in fact, correct behavior of the al-
gorithm, as there is empty space detectable behind them.

The output of the virtual background generation algorithm applied
to the same data is shown in Figure 7. The dense pure virtual back-
ground images (a, d) were generated from the disparity images in Fig-
ures 4(d), 5(d). The background models (b, d) used in our conservative
background subtraction, were obtained by combining direct observa-
tions and virtual range images. The resulting (unfiltered) segmentations
are shown in (c, f).

5 Conclusions

We have presented two novel range-based segmentation algorithms,
that take advantage of availability of multiple, widely spaced stereo
views. The semi real-time foreground segmentation algorithm relies on
the visibility information obtained from other views to locate points
that occlude free space. Since the algorithm does not maintain an ex-
plicit background model and uses only immediately available reliable
range information, it is able to handle variable lighting conditions.
We further extended the algorithm to use visibility constraints to im-
prove clustering of the object points. The virtual backgrounds algo-
rithm uses the visibility information to create dense range background
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images which can then be used with common real-time conservative
background subtraction methods.
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